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Abstract. A linearization of the nonlinear regression model causes a bias in estimators
of model parameters. It can be eliminated, e.g., either by a proper choice of the point
where the model is developed into the Taylor series or by quadratic corrections of linear
estimators. The aim of the paper is to obtain formulae for biases and variances of estimators
in linearized models and also for corrected estimators.
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1. INTRODUCTION

A model of many experiments can be written in the form

W Y ~ Na(E(81), ), B = (g;) eV,

V= {(u) cueRM, veRe, h(u,v):0q71}.
v

Here Y is an n-dimensional random vector (observation vector) normally distributed
with the mean value equal to f(3;) and a covariance matrix equal to 3. The unknown
k-dimensional vector 3 is an element of the parametric space V, 3’ = (3, 35), £1 is
ki-dimensional and (B is ks-dimensional, k1 + ko = k. The covariance matrix X is
known. The constraints h(3;, 32) = 0 will be called the constraints of type II.

* This work was supported by Grant No. 201/99/0327 and by Council of the Czech Gov-
ernment J14/98:153100011.
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This kind of constraints occurs frequently in chemistry but not only there. An
example of a utilization of the regression model with constraints of type II in metrol-
ogy is presented in [3] and [5]. Constraints of type II are different from constraints
of type I (a model with constraints of type Iis Y ~ N, (f(3),X), {8: h(8) = 0}),
since in constraints of type II the subvector 35 of the vector parameter B occurs
in the constraints only. The author has not been able to investigate a model with
constraints of type II as a special case of the model with constraints of type I and
therefore it is studied separately.

In the following let such good approximations ﬁ§°> and ﬂéo) of the vectors (31
and (s, respectively, be known that we can use the quadratic approximation of the
functions b(-) and h(, ).

Let

B =B\ + 66y,
(81) = o + 3By + L(0B)
fy = £(5;"),
F = 0f(w)/0u],_ 0.
K(6B1) = (K1(6B1), - -, kn(6B1)),
Ri(961) = 0 fiw)/Oudn| o, i=1,...m,
h(B1.B2) = HidBy + Hadf + (0B1.08y)
H, = 0h(u,v)/0w],

:ﬂgo),v:ﬁéo)’
H, = oh(u, V)/@V’|u:ﬁ§o)7v:ﬁ;0)7
w/(éﬂla 6/82) = (wl (6ﬁ1a 6/82)7 e 7wq(6ﬁ1a 6/82))7
8%hi(u,v) 8%hi(u,v)
oudu’ ? ouov’ .
wi(5 ,(5 = s Z:L..., .
( B1 EQ) (825:((91:1’,\]), 82;‘;'(81‘1,’,") ) ’u_gio),v_ﬁéo) q

The choice of ﬂ%o) and ﬁéo) is such that h( %0), éo)) =0.
The linearized version of (1) is

(2) Y — £y ~ N, (F§31,%), H;061 + Ha6B82=0
and the quadratized version of (1) is
1
(3) Y*fg NNn(F5,31 +§I€(5ﬁ1),2),
1
H.0681 + H2082 + 540(531,552) =0.

176



In the following it is assumed that the rank r(F') of the matrix F is r(F) = k1 < n,
r(Hy,Hs) = ¢ < k1 + ko and r(Hsy) = ko < ¢. The covariance matrix ¥ is known
and positive definite.

2. AUXILIARY STATEMENTS

Proofs of the lemmas in this section can be found, e.g., in [2] or [5].

Lemma 2.1. The BLUE (best linear unbiased estimator) of the parameters 531
and 63, in the model (2) is

581 = 68, — C'H| (M, H,C~'H, My, ) H, 681,

N _ / ~
0Bz = — [(H/Q)m(HIC*lHi):I H10p1,
661 = CTIF'SH(Y — 1),

C=FX'F,

My, = I - Hy(HyHy) ' H),
Var(§61) = C~' — C'H, (M, H,C'H, My, ) "H,C ",
cov(6B1,68:) = — C™'H,(H,C~'H + H,H),) 'H,
x [Hy(H;C™'H + HoHY) ~THL) 7,
Var(éég) = [Hy(H,C'H| + HH,) 'Hy] ' - L

The symbol 1 means the identity matrix, the notation (Mg, H;C~'H{Mp,)"
means the Moore-Penrose generalized inverse of the matrix M H2HlC_1H’1M H,

and (H’Q);(ch,lH{) means the minimum H,C~'H/-seminorm g-inverse of the ma-

trix H}, (in more detail cf. [7]). Further,

(Mp,H,C'H\My,)" = (H;C'H| + H,H,)"! — (H;C'H} + H,H),) 'H,
x [Hy(H,C™'H} + HoHY) ™' Hy)
x Hy(H,C™'H, + HoH,) ™,
Hy) o imo-my) = (H,C™'H} + H,H),) 'H,
x [Hy(H; C™'H) + HoHY) 'H, ]t

Remark 2.1. The equality
5ﬁ2 = *[(Hé)%(chle{)]/Hlaﬁl = *[(H;);(chlei)]/Hlaﬁl

can be easily proved. If the aim of the calculation is to determine 5,32 only, then the
last equality may be of some use.
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Lemma 2.2. The estimators from Lemma 2.1 are biased in the model (3) and
A 1
E(0p1) = 01 + 51— C7TH (M, HiC™ T H My, ) "Hy|CT 'S (581)
1
+5C HL (M, HiC ' H{Mu,) Tw(981.062),

0B
58,68, B) ( )

( /81 /82) 5ﬁ2

=661 + =001 + by,
)
ot ompmes) ()

2

B(682) = 682 + 5[(H), 1, sy V0081, 662) — HL G F'S ™ (561

e
/ / (f1)
(6/3176/82)D f (662)
=002 + : = 682 + bs.
1)
(685,68, DUk2) ( 5?)

2

Here
Bl — 1 ( g{PC v, © TR aﬁlafa” O)
2 0, 0
1 - —1gy/ —1gy/ + 82
+3 > {CT'H| (Mg, H,CH My,) "} 3
P 1
J <ﬁ ) (517162)

i=1,... ki,
P&y, =1— CT'H | (Mp, HiC™'H My, ) THy,

pUo— _ 1 <a;{[<H/2)m<chlHi>]/Hl TR O)
2 0, 0
1 2 0%h; .
+§Z{ H1C 1H!) ]/} B : s i=1,0 ko,
= ( &) o(8,. 8)

and

{e;}; = d;; Kronecker delta, e; € R*,
{f;}; = 0;;; Kronecker delta, f; € RF2 .
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3. LINEARIZATION

Lemma 3.1. Generalized inverses of the matrices Var(éél) and Var(63), re-

C, 0
spectively, are C and ( 0 0), respectively.

)

Proof. It is sufficient to show the equality
[C™! - CT'H|(My,H,C'H|My,)"TH,C'|C
x [C™! - CT'H,(Mpy,H,C'H,My,)"H,;C ]
=[C'-CT'H|(My,H,C'H\My,)"TH,C ],

which is elementary. Further, it is necessary to verify the equality

Var(&é) (g’ g) Var(&é) = Var(éé).
O

Lemma 2.2 is a basis for the determination of linearization regions, i.e. such sets
in the parametric space in which shifts of the parameters do not cause any essential
damage of the estimators. It will be formulated more precisely in the sequel.

To follow the idea of [1] let us define a measure of nonlinearity C}l;i; 231 (Bo)-

Definition 3.1.

(par) _ V@1 + @2 -5 RF1+k2—q
Cr1.55, (Bo) = S“p{ 5K, CKos °© ’

where
Q1 = &' (Ki09)S PRy, k(Kids),
1 Hy

Q2 = w'(Kés)T'CPG 1y, Tw(Kds),

T =C 'H|(H,C 'H| + H,H),) !,
U =H,(H,C'H, + H,H)) !,
4b/Cb; = Q1 + Q.
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Remark 3.1. It is necessary to make some comment to the above definition.
In amodel Y—fy ~ N,,(F63+1k(68), %), 63 € R* (the model without constraints
on the parameter 3) the Bates and Watts parametric curvature is defined as

K(par) (ﬁO) = sup { \/K/(u)’zujézﬁlfln(u) ‘ue Rk} )

The nominator in this relation can be expressed also as 21/b/[Var(68)]~'b, where
b = E(58) — 8 = :C'F'S~'k(58). In the model without constraints the covari-
ance matrix Var(éﬁ) is C~! and it is regular. Thus it is natural to study the size of
the bias b using the expression b’Cb.

However, the covariance matrices Var(63;) and Var(68;) are not regular in the
case of the model with constraints of the type II. It seems that the expression

b} [Var(éél)]_bl could be used in the definition of the parameter curvature. How-
ever, the last expression is not invariant with respect to the choice of the generalized
inverse of the matrix Var(§é1), since by € M(Var(é,él)) need not be valid. The
positive definite, i.e. regular, version of the generalized inverse is C (cf. Lemma 3.1).

As far as the denominator in the definition of Cg’%%l (Bo) is concerned it seems
that the quantity 5,6’[Var(5,é)]’5,8 should be used. Since 63 = Kds plus terms of
the second order and M(K) = M[Var(éé)], the quantity 5,@’[Var(6ﬂ:)]7§ﬁ can be

C, 0
expressed as 6s'K’ ’ ds = 0s'K/| CK és.
0, 0 !

)

In the case by ¢ M(Var(éél), it is of no sense to compare the value hib; with
the value h) Var(5,é1)h1 (it is to be remarked that for h; 1 M(Var(é,él)) we have
h} Var(éél)hl = Var(hﬁdél) = 0). However, it is reasonable to compare the value
hb; with the value hf{C~'h;, even though hj{C~'h; > Var(hﬁéél). That is why
Definition 3.1 was used.

One version how to eliminate the constraints in the model (3) is to write

0 K 1/T
(5:2;) - (K;) 0s — 9 (U) w(K;0s,Kads), ds c RFrThz—a,

Now the model (3) can be rewritten as
1 1 k1 o —
Y — £y ~ N, [F(K;1ds — §Tw(K65)) + §m(K1§s), Y], dse R

Then the following theorem can be proved (in detail cf. [4] and [5]).
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Theorem 3.1. Let
b= <b1> = (E(ﬁzl) a Bl) (cf. Lemma 2.2).
b> E(Bz2) — B2

2¢e
o (BO)

If

0s'K|CKds <

then

V{h; € R*}/h)b;| < e/h,C~1h;.
1

Thus the e-linearization region for the parameter 3; can be defined as the set

2e
5ﬁ12 (;,31 = Kl(SS, (SS/K&CKl(SS < ari} .
{ Ciiss, (B©)

Definition 3.2.

C (8)
_ o (H1C—TH| +Hy H)~ 1
= su \/q/(ch 1H/1 + H2H/2) 1PH2 o d : I8 c Rkl +ko—q
P 3s'K,CK s '
where

q=w(Kds) - H|C'F'EZ1k(K,ds).

Remark 3.2. It can be easily shown that

Vo (H C-1H, + HoHy) 1P i e e
0s'K 1 CK;ds
_9 \/béHé(chilHll —+ H2H5)71H2b2
B ds'’K CK; s )

Remark 3.3. Analogously to Remark 3.1 it is necessary to make some com-
ment to Definition 3.2. Since Var(ééz) is not regular, it is not suitable to study
the size of the bias by using the expression bé[Var(&ﬁ:g)]_bz and to compare the
value hby with the value hf Var(éég)hg. It seems to be reasonable to study the
size of the bias by using a norm ||bs| = \/b5Ab,, where A is a positive definite
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matrix. In what follows the matrix A is chosen as Hj)(H;C~'H) + HoHY%) 'Ha,
i.e. byAby = byH,(H;C~1H) + HoH),) " 'Hyb, (the square root of this expression
is the nominator in Definition 3.2 divided by 2). In this case it is quite natural to
compare the quantity hyby with hy[Hj(H;C~'H/ + H>Hj) '"Hs| 'hy. The term
[H,(H,C~'H/ + HyH/,) 'H,] ! is the main term in the expression for Var(53:)
(= [Hy(H,C™'H| + HoHS) 'Hy) ! —1).

Theorem 3.2. If

2¢e

08’ K{ CK10s < ——
CII,5ﬁ2 (BO)

then

¥{hy € R* }hybe| < e\/h’z[H’z(chle’l + HyH))~'Hy)hy.
Proof. Proofis also given in [4] and [5].

4. QUADRATIC CORRECTIONS OF THE ESTIMATORS

The constraints of the parameters, i.e.
1
H,06; + H2062 + §w(6ﬁ17 §ﬁ2) =0,

cannot be satisfied by the linear estimators 63; and 6B2 exactly, since H1§B1 +
H,08; = 0. If %w(éﬁl,éﬁg) cannot be neglected (the linearization region is too
small, the nonlinearity of w(-,--) is too large, etc.), hence it is necessary to use other
estimators. In the simplest case it is possible to correct the linear estimators by
quadratic terms.

Since for any (k1 + k2) % (k1 + k2) symmetric matrix U

E(68'U68) = [B(66)) UE(55) + Tr[U Var(66)]
= 68'UsB + Tr[U Var(63)]
+ terms of the third orders in 6.3,
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the quadratic estimators can be written in the form

o SBBEB Te[B(e) Var(68)]
581 =081 — : + : ,
5E'Br)63 Te[B(es) Var(53)]
o 58/ DU6A Te[DU) Var(68)]
532 = 532 - : + :
5é’D(fk2)5é Tr[D(sz) Var(éé)]

These estimators are unbiased as far as the second order terms are concerned, how-
ever, the terms

Te[B() Var(53)] Te[DU) Var(68)]
Te[BC) Var(56)] Te[DUe) Var (53)]

make some problems in the constraints as the following theorem shows.

Theorem 4.1. Let

) Te[B() Var(58)]
5?1 551 - : )
Tr[B(ex) Var(&é)]
) Te[DU) Var(68)]
B2 = 0p2 — :
Te[DUe2) Var(58)]

Then
HL1B: + Ha0Bs + 5w(581,082) = 5w (581, 082) — 5 (081,082).

Proof. Obviously H;63, + HadBs — 0. Further,

5@/]3(@)55: 5@/])(]%)5@
My [0 | ={Habs |
§B'B(ex)§3 @ D)3

. k1 N . k2 N
= —68'> {H1},,B)63 -8 {H,},,DV)53
r=1 r=1

kl n
2 1
= — 60 § {Hl}w5 § {I-C'H,(My,H,C 'H|My,) H,]
r=1 j=1
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0% f;

Clprs—1y A
x CT'F'X }m5518ﬂ/15ﬁ1

:/ & 1 ! —1yy/ —1yy/ + a2hr A
— 63 g {H1}37T§ g {CTH|(My,H,C " H{Mp,)"},; —5,385’6ﬂ

r=1 =1
kz n
2 1 _ _ _
,5BQZ{H2}S,T(75)Z{[(H’Q)m(chlei)]/ch Ty,

S S —6BZ{H} Z{ P 56,
8618,3/ 1 28,15 m(ch 1H’ ”858,6"

We also have (terms with 5,8:)

- Z{Hl}s "5 Z{ [1- C 'H,(Mp,H,C "H\Mpy,) " H]
x C™ 1F > 1}“]‘

ko n
=3 H e () S, PO FE

j=1

Z {H; - H;C'H| (M, H,C'H|Mp,) "H;|CT'F'S '}, ;

[y

+ 5> {Hy[H,(H,C™'H) + HoHY) ™' Hy) ™!
J:

H,(H,C™'H| + HbH)) 'H;C7'F'S 7'}, ; =0,

[\

since

[H, - H;C'H|(My,H,C'HMy,)"H,|]C'F'2!
= H,[H,(H,C~'H} + H,H}) 'Hy) !
x Hy(H,C™'H) + HoH))'H,C'F'S~ L,

As far as the terms with 5,@ are concerned, we have
k1 1 q
- Z{Hl}s,r§ Z{CilHll(MHzchilHllMHz)jL}TJ

_Z{H2}sr Z{ H/ m(H,C- 1H{]/}T’j
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1
2 Z{ch_lHll (MHzch_lHllMHz)+}S,j
j=1

1 q
~5 > {H,[Hy(H,C™'H} + HoHy) 'Ho) ™!
j=1

x Hy(H,C~'H + HoHY) ',

1< _ _ _
_EZ{(ch 'H! + H,H),)[(H,C™'H, + HoH)) ™!
j=1

— (H1C71H’1 + H2H’2)71H2[H’2(H1C71H’1 + H2H’2)71H2]71
X Hé(chilHll + HQHé)il]}s’j

1 q
~3 > {Ho[Hy(H,C'H) + HyHY) ' Hy ™!
j=1
x Hy(H,C™'H] + HoHy) ™'
1 q
=-3 > {1}
j=1

Thus

H,08: + Ha03 + %w(éﬁ) - %w(éﬁ) - %w(éé).
O

The bias is better eliminated in the estimators §3; and 832, however the estimators
581 and 68, better satisfy the constraints

1
H,06; + H2062 + §w(6ﬁ17 §ﬁ2) =0.

Remark 4.1. A decision on the choice of estimators, i.e. 65,65 and (53 must
be made by the user. In practice the constraints are much more important thAa,n the
bias. Thus in the first step the user must decide whether the term %w(éﬁl, §B2) can
be neglected and at the same time the conditions of Theorem 3.1 and Theorem 3.2
be satisfied. Then the estimator §ﬁ is preferred. If the answer is negative, then it
must be decided whether the term
Te[B() Var(58)] Te[DU) Var(68)]
(4) H; : + Ho .

Te[B) Var(33)] T[DUx) Var(66)

can be neglected. In this case the estimator 83 is to be preferred. If the term (4)
cannot be neglected, then §3 must be used. However, at the same time the term

%[w(éﬁl,éﬁg) — w(6B1,685)] must be negligible.
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For the sake of simplicity only the estimators 551 and 652 will be considered.

Lemma 4.1.

Te[B) Var(68)]
E(5,§1) —0B1= — : + terms of the third order in 8,
Tr[B(er1) Var(63)]

Tr[DUY) Var(B)]

E(6B2) — 082 = — ( ) + terms of the third order in §3.

Tr[D*2) Var(B)]
Proof is obvious.

Lemma 4.2.

. (68 + b)'B(e) )
Var(csgl) = Var(63;) — 2 : ( Vargéﬁl)ﬁ )
(584 byBlew) | \coV(0B2,381)

— 2[Var(681), cov(681,682)] BV (58 + b), ..., B (58 + b)]
+ {4(58 + b)B“) Var(58)B) (58 + b)

+ 2 Tr[B(®) Var(&é)B(ej) Var(08)]}ij=1,... k1
cov(éEl,éﬁg) = COV(5,é1,5,é2)

88 + b)Bler) NN
2((ﬂ :) ) COV(531,A532)>

(38 + byBen) Var(68:)
— 2[Var(6é1), COV(5é1, 5522)]
x [DU(8 +b), ..., D) (58 + b)]
+ {4(58 + b)'B) Var(s3)DY) (68 + b)

.....

. (68 + b)'DU) s
Var(632) = Var(82) — 2 : (Cov(5ﬂ1;ﬂ2)>
(68 + b)DUr2) Var(d82)

— 2[cov(882,681), Var(632)][DV (68 + b), ..., DU (58 + b)]
+ {4(68 + b)'DY) Var(68)DU) (53 + b)

+ 2 Te[DY) Var(68)DY9) Var(68)]}ijer.....n-

7777
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Proof. Let 6é ~ Ni[0B+Db, Var(&é)] and let L be any k-dimensional vector and
S1, S any k X k symmetric matrices. Then the statements are direct consequences
of the relations

cov(L'68, 568'S:68) = 2L’ Var(68)S:(68 + b), i=1,2,
cov(68'S168,63'S200) = 2 Tt[S; Var(§8)Ss Var(68)]
+4(08 + b)'S; Var(683)S2(3 + b).

O
5. MSE OF THE ESTIMATORS h’léﬁl AND h’2§§2
In the following text the notation
kl k2
B(h1) — Z{hl}iB(Ei)v D(hz) _ 22{1,12}1,D(fi)7
i=1 i=1
where h; € R+ ,hy € R*2 are any vectors, will be used.
Thus we can write
= 2 2 2 ) 3
h}6p31 = 0581 — (58}, 585)B") ( 591> :
2
= 2 2 2 ) 3
068, = hyd8, — (53;,584)D ") 5gl> '
2
Lemma 5.1.
MSE(h}561) = (h}by)* + Var(h}53,)
= (68'B")§8)2 + 1, Var(6831 )hy,
MSE(h)882) = (hbs)? + Var(h}d3s)
= (68'D"2)§3)? + h, Var(682)ha.
Proof. It is a direct consequence of Lemma 2.2. O

Lemma 5.2.

E(W,68:) — h,68; = by — (68 + b)B") (68 + b) — Tr[B™) Var(53)]
= —268'B")b — b'BM)b — Tr[B™) Var(63)],
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E(0,88s) — 1682 = hhby — (58 + b)Y D) (38 + b) — Te[D"=) Var(58)]
— 268 D")b — b'D")b — Tr[D") Var(38)],
Var(h,68;) = b} Var(683:)h,
4R [Var(581), cov(681, 682)]B") (58 + b)
+4(68+b)B") (58 +b)
+2Te[B™) Var(58)B™) Var(58)],
cov(, 081, hhoB2) = W, cov(6B1, 582)hs

—2(58 +b)B") (COVV(:rﬁ(; 5‘552) ) h,
— 21} [Var(3B1), cov(3B1, 532)|D " (53 + b)
+4(58 + b)B™) Var(58)D"2) (58 + b)
+2Te[B™) Var(58)D™"2) Var(58))],
Var(hl682) = b} Var(682)he
— 4hb[cov(6Bs, 681), Var(682)]D2) (68 + b)
+4(68 + b)D"2) (68 + b)
+ 2Te[D) Var(§8)D") Var(s8)].

Proof. Itis a direct consequence of Lemma 4.2. O

Since only linear and quadratic estimators are studied, it does not seem to be
important to give terms of all powers (in §3) in the expressions for the MSEs. Of
course this is true; all terms are given for the sake of completeness only.

6. UPPER BOUNDS OF MSES
With the help of the lemmas from Section 5 we can easily compare the values
MSE(h}331) = b} Var(381)h + (58 B")5B)?
versus
MSE(h}d831) = Var(h}dB:) + [E(h}6B1) — h}6B:]?
and
MSE(h32) = hf Var(33)hs + (58D 53)?
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versus

MSE(h%6832) = Var(h}632) + [E(h}082) — hyd8:]%.

If the dimension k = k1 + k2 of the vector 63 = (63],35)’ is relatively small, then
it is possible to calculate the values of MSE in different directions of the shift §3
and to decide whether the quadratic corrections are useful or not.

However, in the case of a large number k this procedure is extremely tedious. Thus
it can be useful to know the upper bounds of the MSE values on a boundary of a
suitable set, e.g. the confidence region in the linearized model (2). In our case it is
given by the relationships

P{(Sﬁ € Elfa} =1 -,

_ uy . u_éﬂfl / ar N U.—(S,Bi1 2 -«
1o = {(V) (v_%) Var(53) (V_m) < kg1 )}

— [K6s: s € R R0 (Kss — 68) [Var(68)] (Kds — 6)
< Xiy k(1 — @)}

— [Kds: ds € R TR0 (K, 5s — 661)/ C(K16s — 661)
< Xiy ks —q(0;1 — @)} C Ker(Hy, Hy),

where xiﬁ_kz_q(l — ) is the (1 — a)-quantile of the random variable with the central
chi-square distribution with k; + ks — g degrees of freedom and the matrix K is given
in Section 3.

However, because of the definition of the quantities
C(Par) d C(Par)
11,661 (Bo) an 11,682 (Bo)

it will be more suitable to investigate the upper bound of MSE on the boundary of
the ellipsoid

En={6B: 08’V 1B = c?},

C, 0

0, Hé(ch_lHl + HgHé)_ng
¢® = X7, +ky_q(1 = @). Thus ¢? should be chosen larger than x 4, ,(1 — ) in such
a way that &_, C E.2.

where V~1 = ( ) Obviously &1 D & for
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Theorem 6.1. If the value c? is chosen, then (expressions for 631 )

(5/3’B(h1)513)2 < A TI‘(B(hl)VB(hl)V),
L' = —4h) [Var(5,é1),COV(5é1)]B(h1)7
IL'68] < eVL/'VL,
(3 Bo)? + (I3, (B0) VPV,
|46ﬁ/B(h1)§/8| < 402 TI'(B(hl)VB(hl)VL
8E'BUSB| < 4c/(CH™) (B0))? + (O, (Bo))2/Tr[(BU V2],

HBBb] < (CH), (Bo))? + (O, (B0)?] TH(BI VBUV).

IL'b| <

Expressions for 632 can be found analogously.

Proof. The inequalities are based on the Schwarz inequality and on the defi-
nitions of the quantities C;?flg;l (Bo) and C}Ijisré (Bo). For example (the matrix A is

symmetric),
|68’ Ab| = |68V ~1/2V1/2 AV1/2y—1/2p)
= | Te(68V~1/2VI/2AVI/2V—1/2)|
— |T\I'(Vl/2AV1/2V_1/2b§/8/v_1/2)|
< /T (VIZAVI2V12 AV1/2)

X/ TE(V-1/2b3@V-1/2V-1/258b/V-1/2)
= /Tr(VAVA)\/63'V-153b'V—1b
< ¢y/Tr(VAVA)
x 1/b{Cb; + by Hj(H,C1H + HyH,)~1Hsb,
1 ar ar
SV (VTAVTAJ (), (B0))2 + (CfF), Bo))?
X 6ﬁ106ﬁ1
1 ar ar
STV TAV TR (OIS, (Bo)? + (Y, (Bo))2

/N

N

Here the inequalities
B} Chy < £ (681 C3B1)*(C175%54, (o).

(681C6B1)*(C2%) (Bo))?

[l

b,H,(H,C™'H) + HoHj) 'Hsbs < 1

were used. In a similar way all the desired inequalities can be proved. U
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