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ADDITIONAL NOTE ON PARTIAL REGULARITY

OF WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

IN THE CLASS L∞(0, T, L3(Ω)3)*
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(Received March 21, 2001)

Abstract. We present a simplified proof of a theorem proved recently concerning the
number of singular points of weak solutions to the Navier-Stokes equations. If a weak
solution u belongs to L∞(0, T, L3(Ω)3), then the set of all possible singular points of u in Ω
is at most finite at every time t0 ∈ (0, T ).
Keywords: Navier-Stokes equations, partial regularity
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Let Ω be a bounded domain in 
 3 with C2+µ (µ > 0) boundary ∂Ω, T > 0 and
QT = Ω × (0, T ). Consider the Navier-Stokes equations describing the evolution of
the velocity u and the pressure p in QT :

∂u
∂t

− ν∆u + u · ∇u +∇p = f ,(1)

div u = 0,(2)

u = 0 on ∂Ω× (0, T ),(3)

u|t=0 = u0,(4)

where f is the external body force and ν > 0 is the viscosity coefficient. The existence
and properties of weak solutions to (1)–(4) are discussed for example in [6].
The attention of many authors in the last decades has been directed to the question

whether a smooth solution to (1)–(4) can at a certain instant of time lose its smooth-
ness and develop a singularity. One of the basic papers concerning the problem was
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written by L. Caffarelli, R. Kohn and L. Nirenberg (see [1]). They established the
concept of a suitable weak solution to (1)–(4) and proved that if u is such a weak so-
lution then the one-dimensional Hausdorff measure of the set S of all singular points
of u is equal to zero. A point (x, t) ∈ QT is called regular if u is essentially bounded
on some space-time neighbourhood of (x, t). Otherwise, the point is singular.
We will concentrate on an interesting result proved by J. Neustupa in [4]:

Theorem 1. Let u ∈ L∞(0, T, L3(Ω)3) be a weak solution to (1)–(4), where
f ∈ L2(QT )3 ∪ Lq

loc(QT )3 for some q > 5/2 and div f = 0. Then the set St0 =
S ∩ {(x, t) ∈ QT ; t = t0} contains no more than K3/ε3

5 points for every t0 ∈ (0, T ),
where

K = sup
t∈(0,T )

(∫

Ω

|u(x, t)|3 dx
)1/3

and ε5 is the number given by Lemma 3.

In other words, the solution u can develop only a finite number of singularities
at every particular time. The goal of this paper is to present a simplified proof of
Theorem 1. Our simplification is due to the following two facts. Firstly, it is not
necessary to use the concept of a separated subset of St0 (as was done in [4]) and so
we can avoid the proofs of some technical lemmas. Secondly, we do not use the cut-off
function technique. The boundary integrals developing as a result of this approach
can be handled easily and do not represent any major problem. When reading the
paper it is helpful to have [4] at hand.

Lemma 1 was proved in [2] for weak solutions to (1)–(4) and f = 0. It is not
difficult to generalize it to the case f 6= 0.

Lemma 1. There exists an absolute constant ε0 > 0 such that if

sup
t∈(t0−σ, t0+σ)

(∫

Br(x0)

|u(x, t)|3 dx
)1/3

< ε0

for some r > 0, σ > 0, then (x0, t0) is a regular point.

The following lemma is an easy consequence of Lemma 1.

Lemma 2. There exists an absolute constant ε0 such that for every singular point
(x0, t0) ∈ S we have

lim
r→0+

lim sup
t→t−0

(∫

Br(x0)

|u(x, t)|3 dx
)1/3

> ε0.
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Suppose throughout the paper that f satisfies the assumptions of Theorem 1.
Further, let u ∈ L∞(0, T, L3(Ω)3) be a weak solution to (1)–(4). Finally, let
(x0, t0) ∈ QT be an arbitrary singular point of u, r ∈ (0, 1), σ > 0 and Br(x0) ×
〈t0 − σ, t0 + σ〉 ⊂ QT , where Br(x0) = {x ∈ 
 3 ; |x − x0| < r}. Using the unique-
ness theorem for the weak solutions to (1)–(4) from L∞(0, T, L3(Ω)3) proved by
H. Kozono and H. Sohr in [3] and the theorem on the existence of suitable weak
solutions from [1] we obtain that u is suitable on (δ, T ) for every δ. Using [1] once
more we come to the conclusion that the one-dimensional Hausdorff measure of the
set S of all singular points of u is equal to zero. Therefore, we may suppose without
loss of generality that S ∩ (∂Br(x0) × 〈t0 − σ, t0 + σ) = ∅. Denote D = Br(x0)
and Γ = ∂D. Under the assumptions of this paragraph we can state the following
lemma.

Lemma 3. Under the assumptions of the preceding paragraph there exists an
absolute constant ε5 > 0 independent of (x0, t0) and r such that

lim inf
t→t−0

(∫

D

|u(x, t)|3 dx
)1/3

> ε5.

���������
. We can write (t0 − σ, t0 + σ) = G∪ ⋃

γ∈N

(aγ , bγ), where G is a countable

set and u ∈ L2
loc(aγ , bγ , W 2,2(Ω) ∩ W 1,2

0,σ (Ω)), du/dt ∈ L2
loc(aγ , bγ , L2

σ(Ω)) and p ∈
W 1,2(Ω) for almost every t ∈ (aγ , bγ). According to [6] we have L2(D)3 = H0⊕H1⊕
H2, where

H0 = {u ∈ L2(D)3; div u = 0, (u · n)|Γ = 0},
H1 = {u ∈ L2(D)3; u = ∇q, q ∈ W 1,2(D), ∆q = 0},
H2 = {u ∈ L2(D)3; u = ∇P, P ∈ W 1,2

0 (D)}.

Let πi denote the projector operator from L2(D)3 on Hi, i = 1, 2, 3 and put π01 =
π0 + π1. Suppose now that t ∈ (aγ , bγ) for some γ ∈ N . Multiplying equation (1) by
π01(u|u|) and integrating over D we get

1
3

d
dt

∫

D

|u|3 dx− ν

∫

D

(∆u) · π01(u|u|) dx +
∫

D

(u · ∇u) · π01(u|u|) dx(5)

+
∫

D

(∇p) · π01(u|u|) dx =
∫

D

f · π01(u|u|) dx.

Let us now estimate the last four terms in (5). We denote by c a generic constant
independent of (x0, t0), r and σ, C will denote a generic L1-function on (t0−σ, t0+σ)
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and δ > 0 will be specified later. We have

ν

∫

D

(∆u) · π01(u|u|) dx = ν

∫

D

(∆u) · (u|u|) dx = ν

∫

Γ

∂ui

∂xj
njui|u| dΓ(6)

− ν

∫

D

∂ui

∂xj

∂ui

∂xj
|u| dx− ν

∫

D

∂ui

∂xj
ui

uk

|u|
∂uk

∂xj
dx.

Since u is bounded on Γ× (t0−σ, t0 +σ) and ∇u ∈ L2(QT ), the first integral on the
right-hand side of (6) can be viewed as a function from L1(t0 −σ, t0 + σ) and we get

(7) ν

∫

D

(∆u) · π01(u|u|) dx = C(t)− ν

∫

D

|u||∇u|2 dx− 4
9
ν

∫

D

|∇|u|3/2|2 dx.

Further,
∣∣∣∣
∫

D

(u · ∇u) · π01(u|u|) dx
∣∣∣∣(8)

6
(∫

D

|u|3/2 · |∇u|3/2 dx
)2/3

·
(∫

D

|π01(u|u|)|3 dx
)1/3

6 c

(∫

D

|u|3 dx
)1/6(∫

D

|u| · |∇u|2 dx
)1/2(∫

D

|u|6 dx
)1/3

6 δ

∫

D

|u| · |∇u|2 dx +
c

δ

(∫

D

|u|3 dx
)1/3(∫

D

|u|6 dx
)2/3

6 δ

∫

D

|u| · |∇u|2 dx +
c

δ

(∫

D

|u|3 dx
)2/3(∫

D

|u|9 dx
)1/3

6 δ

∫

D

|u| · |∇u|2 dx +
(

δ +
c

δ2

∫

D

|u|3 dx
)∣∣|u|3/2

∣∣2
6

6 δ

∫

D

|u| · |∇u|2 dx + c

(
δ +

c

δ2

∫

D

|u|3 dx
)

×
(

1
r2

∫

D

|u|3 dx +
∫

D

∣∣∇|u|3/2
∣∣2 dx

)
.

Since u ∈ L∞(0, T, L3(Ω)3) it follows from (8) that
∣∣∣∣
∫

D

(u · ∇u) · π01(u|u|) dx
∣∣∣∣(9)

6 δ

∫

D

|u| · |∇u|2 dx + c

(
δ +

c

δ2

∫

D

|u|3 dx
) ∫

D

∣∣∇|u|3/2
∣∣2 dx + C(t).

Let us estimate the last term on the right-hand side of (5):
∫

D

(∇p) · π01(u|u|) dx =
∫

D

(∇p) · π1(u|u|) dx =
∫

D

∇p · ∇q dx,
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where∆q = 0, ∂q
∂n |Γ = (u|u|−∇P )·n|Γ, ∆P = div(u|u|) and P ∈ W 1,2

0 (D)∩W 2,2(D)
(see [6] Chapter 1). Moreover, q ∈ W 2,2(D). Therefore,

(10)

∣∣∣∣
∫

D

(∇p) · π01(u|u|) dx
∣∣∣∣ =

∣∣∣∣
∫

Γ

p
∂q

∂n
dΓ

∣∣∣∣ 6 δ

∫

Γ

∣∣∣ ∂q

∂n

∣∣∣
2

dΓ +
1
δ

∫

Γ

|p|2 dΓ.

It was proved in [5] that p ∈ L2(ε, T, L2(Ω)) for every ε > 0 and therefore the last
term from (10) can be viewed as a function from L1(t0−σ, t0 +σ). Further, we have

δ

∫

Γ

∣∣∣ ∂q

∂n

∣∣∣
2

dΓ = δ

∫

Γ

∣∣(u|u| − ∇P ) · n
∣∣2 dΓ(11)

6 δ

∫

Γ

|u|4 dΓ + δ

∫

Γ

∣∣∣∂P

∂n

∣∣∣
2

dΓ

and t 7→ δ
∫
Γ
|u|4 dΓ is a bounded function on (t0 − σ, t0 + σ). It follows further that

∫

Γ

∣∣∣∂P

∂n

∣∣∣
2

dΓ 6 c
( 1

r3/2
|∇P |3/2

3/2 + |∇2P |3/2
3/2

) 4
3 6 c

∣∣div(u|u|)
∣∣2
3/2

(12)

6 c

(∫

D

|u|3/2|∇u|3/2 dx
)4/3

6 c

(∫

D

|u|3 dx
)1/3(∫

D

|u||∇u|2 dx
)

.

Summing up (10), (11) and (12) we obtain

(13)

∣∣∣∣
∫

D

(∇p) · π01(u|u|) dx
∣∣∣∣ = cδ

∫

D

|u||∇u|2 dx + C(t).

Finally, the right-hand side of (5) can be viewed as an L1-function on (t0−σ, t0 +σ)
and we can conclude from (5), (7), (9) and (13) that

1
3

d
dt

∫

D

|u|3 dx + (ν − cδ)
∫

D

|u||∇u|2 dx(14)

+
(

4ν

9
− cδ − c

δ2

∫

D

|u|3 dx
) ∫

D

∣∣∇|u|3/2
∣∣2 dx 6 C(t).

Supposing that from now on c and C are fixed and choosing δ = (2ν)/(9c) we obtain

1
3

d
dt

∫

D

|u|3 dx +
7ν

9

∫

D

|u||∇u|2 dx(15)

+
(2ν

9
− c

δ2

∫

D

|u|3 dx
)∫

D

∣∣∇|u|3/2
∣∣2 dx 6 C(t).
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Let now

(16) (c/δ2)
∫

D

|u(x, t∗)|3 dx < ν/9

for some t∗ ∈ (t0 − σ, t0 + σ). Then

(17) (c/δ2)
∫

D

|u(x, t)|3 dx < 2ν/9

for every t ∈ 〈t∗, t∗+τ)∩(t0−σ, t0 +σ), where τ is a constant independent of t∗ such
that

∫
I C(t) dt < (νδ2)/(27c) for every interval I ⊂ (t0 − σ, t0 + σ) of the length τ .

Indeed, define A = sup M , where M = {η ∈ (0, τ〉; (c/δ2)
∫

D |u(x, t)|3 dx <

2ν/9, ∀ t ∈ 〈t∗, t∗+η)∩ (t0−σ, t0 +σ)}. Obviously, it follows from the L3(Ω)3-right
continuity of u on (t0−σ, t0 +σ) that M 6= ∅ and further A ∈ M . It suffices to show
that A = τ . Assuming that A < t0 + σ− t∗ and integrating (15) over (t∗, t∗ + A) we
obtain

∫

D

|u(x, t∗ + A)|3 dx 6
∫

D

|u(x, t∗)|3 dx + 3
∫ t∗+A

t∗
C(t) dt(18)

<
νδ2

9c
+

3νδ2

27c
=

2νδ2

9c
,

that is

(19) (c/δ2)
∫

D

|u(x, t∗ + A)|3 dx < 2ν/9.

The equality A = τ now follows from (19), the definition of A and the L3(Ω)3-right
continuity of u on (t0 − σ, t0 + σ).
Put further δ0 = (νδ2)/(9c) and choose ε5 > 0 such that (2ε5)3 < δ0. If

lim inf
t→t−0

(
∫

D
|u(x, t)|3 dx)1/3 < ε5 then there would exist a sequence tn → t−0 such

that t0 − tn < τ and (
∫

D
|u(x, tn)|3 dx)1/3 < 2ε5, ∀n ∈ � , i.e. ∫

D
|u(x, tn)|3 dx <

(2ε5)3 < δ0. Integrating (15) over (tn, t), where t ∈ 〈tn, t0〉, we obtain

(20)
∫

D

|u(x, t)|3 dx 6
∫

D

|u(x, tn)|3 dx + 3
∫ t

tn

C(ξ) dξ 6 (2ε5)3 + ε4.

Since ε4 can be made arbitrarily small when considering sufficiently big n, it follows
that

(21) lim sup
t→t−0

(∫

D

|u(x, t)|3 dx
)1/3

6 ((2ε5)3 + ε4)1/3.
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Choosing now ε5 and ε4 sufficiently small, the right-hand side of (21) can be made
arbitrarily small, which contradicts Lemma 2. It means that in fact

lim inf
t→t−0

(∫

D

|u(x, t)|3 dx
)1/3

> ε5

and ε5 is an absolute constant independent of (x0, t0) and r. Lemma 3 is proved. �
���������

of Theorem 1. Now it is easy to prove Theorem 1. Let {(x01, t0), . . . ,
(x0n, t0)} be a finite set of singular points of u. Then there exists r > 0 and σ > 0
such that Br(x0i) ∩ Br(x0j) = ∅ for i 6= j and

(22) K3 >
∫

Ω

|u(x, t)|3 dx >
n∑

i=1

∫

Br(x0i)

|u(x, t)|3 dx > nε3
5

for every t ∈ (t0 − σ, t0). This implies that the number of singular points developing
at the time t0 cannot exceed K3/ε3

5. �
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