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Abstract. Consider a bifurcation problem, namely, its bifurcation equation. There is a
diffeomorphism @ linking the actual solution set with an unfolded normal form of the bi-
furcation equation. The differential D®(0) of this diffeomorphism is a valuable information
for a numerical analysis of the imperfect bifurcation.

The aim of this paper is to construct algorithms for a computation of D®(0). Singularity
classes containing bifurcation points with codim < 3, corank = 1 are considered.
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1. INTRODUCTION

Consider
(1.1) g: REX R X RF = R, g=g(xt2)

to be a smooth mapping defined on a neighbourhood of the origin. Assume
9(0,0,0) = g,(0,0,0) = 0.

We have in mind the particular applications when g comes out from a Ljapunov-
Schmidt reduction at a singular point with corank = 1, see e.g. [4], [6]; for the
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622/13-3, Grants No. 201/02/0844 and No. 201/02/0595 of the Grant Agency of the
Czech Republic and by the projects MSM 113200007, MSM 223400007 of the Czech
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numerical version of the reduction, see e.g. [7] and for a similar reduction in Banach
spaces, see e.g. [1]. In the context of the Theory for Imperfect Bifurcation, see [5],
the variables (z,t,2) of g can be interpreted as a (reduced) state z € R, a control
t € R! and an imperfection z € R¥.

Let h: R? — R! be defined as the restriction h(z,t) = g(z,t,0). Hence, the
solutions to h(z,t) = 0 represent the perfect bifurcation scenario. Following [6], this
scenario can be classified by linking h with a suitable normal form h*: R?> — R.

We recall, see [5], that h and h* are contact equivalent if there exist a smooth
M: R? — R! and a local diffeomorphism ¥: R? — R?, W(x,t) = (x(z,t),7(t)),
such that

(1.2) x=0, M>0, x>0 and 7=0, 7r>0 at 0ecR?
and
(1.3) h=Mh*oW

in a neighbourhood of 0 € R?.

We will call ¥ a contact diffeomorphism. It links the solutions of h(z,t) = 0 with
the roots of h*(x,7) = 0.

We shall abbreviate (1.2), (1.3) writing h ~ h*; the operation ~ is a well defined
equivalence on germs of smooth functions R? — R!, see [6], p. 104.

For the list of normal forms considered in this paper see Tab. 2.1. We assume
that for a given g there exists a normal form h* from Tab. 1.1 such that h ~ h*
where h(z,t) = g(x,t,0). Moreover, we assume that k, which is the number of
unfolding parameters, is equal to the appropriate codim, see Tab. 1.1; for the notion
of codimension, see [6].

In Tab. 1.1, universal unfoldings of the relevant normal forms are also listed,
see [6], p. 196.

In [3], we proved

Lemma 1.1. Let M: R> — R!' and a local diffeomorphism ¥: R?> — R? sat-
isfy (1.2) and (1.3) in a neighbourhood of 0 € R?. Let g*: R*> x R* — R be
a universal unfolding of h*. Then there exist a smooth S: R*** — R! and a smooth

mapping

(1.4) d: R*F SRR D(at,2) = (X (2,8, 2), T(t, 2), Z(2)),
such that
(1'5) (I)('v '70) = \IJ('v ')7 S('7 '70) = M('v ')7
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Singularity codim Normal Form Universal Unfolding
B (,1) 6 (2,1,2)
k=2 paz?’ + qtx px3 + qtx + 21 + 207>
Pitchfork 4 4 2 3
k=3 px” + qtx px” + qtx + z1 + 292 + 237
Family
k>2 pxk+1 + qtx pxk+1 +qtx + 21 + z2x2 + ...+ zkxk
k=0 paz2+qt px2+qt
k=1 px3+qt px3+qt+zx
Hysteresis k=2 pzt + gt pzt + gt + 217 + 292>
Family
k=3 paz5 + qt px5 +qt+z1m+22x2 + 232>
k>1 pxk+2 + qt p:vk+2 +qt + z1x + zox? 4+ ...+ zkxk
k=1 paz2+qt2 px2+qt2+z
A tri
symmettie k=2 px? + qt3 pr? 4 gt + 21 + 2ot
Cusp 2 4 2 4 2
Family k=3 px® 4+ qt px® 4 qt™ + 21 + 2ot + 23t
k>1 pz? + qtk+1 pz? + qtk+1 421+ 2ot +... + zktl“l
Winged
& k=3 pz> + qt? pz> + qt? + 21 + 29% + 237t
Cusp
Table 1.1. The considered bifurcation singularities of corank = 1; |p| = |¢| = 1.
hence they satisfy (1.2), and
(1.6) g=8g* o d

in a neighbourhood of 0 € R?**,

Assume ® to be a diffeomorphism in a neighbourhood of the origin, i.e., let
D®(0) € L(R*** R***) be a regular matrix. The basic observation is that
g(x,t,z) = 0 if and only if ¢*(X,T,Z) = 0, where ®(z,t,2) = (X(x,t,2),T(t,2),
Z(z)); the statement holds in the obvious local sense. The same applies to singular
roots of g and g* since ®~! provides a one-to-one link between stratified manifolds
of singular points of g and those of g*. As a rule, singular roots of g* are easily
computable; it is also important that a parametrization of these roots is known.

The diffeomorphism ® is constructed given a contact diffeomorphism ¥. We shall
say that ® is an unfolded contact diffeomorphism.

In [3], we proposed a postprocessig technique aiming at finding the first order
predictors to all singular solutions of g(z,t,z) = 0. The idea was to linearize the
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unfolded contact diffeomorphism ® at the origin. For numerical experiments, see
case studies [8] and [2].

The aim of this paper is a computation of D®(0) as the data for the above men-
tioned postprocessing analysis. We present algorithms for the construction of D®(0)
provided that ¢ is a singularity from Tab. 1.1. This covers e.g. all “elementary”
bifurcation singularities with codim < 3, corank = 1 from the classical book [6].
The differential D®(0) depends on selected partial derivatives of g at the origin. We
assume that all the partials required are known.

Observe that due to the canonical structure of @,

X:v Xt Xz
(1.7) DO(0)=| 0 T, T. | eL(R** R*F) Z, € L(R" RF);
0 0 Z

the required partial derivatives of X (z,t,z2), T(¢,z) and Z(z) are evaluated at the
origin.

Let us recall an equivalent characterization of bifurcation points by means of
Defining and Nondegeneracy Conditions, [6], p. 198, Tab. 2.3: Let g be classified by
a particular normal form h* from Tab. 1.1, i.e., h ~ h* where h(x,t) = g(z,t,0).
This is equivalent to the fact that particular partial derivatives of g being evaluated
at the origin are equal to zero while the other particular partials of g are nonzero.
In Tab. 1.2, these Defining and Nondegeneracy Conditions are listed for the relevant
items of Tab. 1.1. This “algebraic classification” becomes later a substantial tool.

The outline of the paper is as follows: For each singularity class, we explain (and
justify) computation of D®(0) for a general codimension k. The relevant general
formulae are quite nasty. The particular evaluation for k¥ < 3 simplifies D®(0)
considerably: We usually give the result skipping the calculation.

2. PITCHFORK FAMILY
We recall that the normal form of a pitchfork bifurcation point is the function
(2.1) h*(z,t) = pa*tt + gt

where codim = k > 2, the constants p, ¢ are normalized so that |p| = |¢q| = 1.
A universal unfolding of (2.1) is of the form

(2.2) g*(x,t,2) = h*(x,t) + 21 + 202% + 232° + ... + i1 4 g2,

see Tab. 1.1.



Pitchfork Family: h*(z,t) = pz**! + gta
Codim | Defining Conditions Nondegeneracy Conditions
k=2 | g=9gz=9t=9gaa =0 SgN grax =P, SGNGxt = (
k=3 | 9=9z =9t = gaz = Gazz =0 Sgnaa—;g:p, sgn gzt = ¢
k>2 |g=go=gi=gar=...= 2rg=0 sgn%s;:p, sgn gut = q
Hysteresis Family: h*(z,t) = pz"t2 + gt
Codim | Defining Conditions Nondegeneracy Conditions
k=0 |g=9g:=0 Sgn gzrx =P, SgNGt =q
k=1 19=9gs=9gaz=0 SgN Yzzaw =P, SGNYt = q
k=2 | g=gz=gsz = goax =0 sgnga—;;g=p7 sgngr =q
k=3 g:gx:gzz:gzzz:iQZO sgna‘a;g:p,Sgngt:q
k20 |g=ga=gar=...= 2rrrg=0 SEN s 9 = P, SENGE =
Asymmetric Cusp Family: h*(z,t) = pz? 4 qt" 1

Codim | Defining Conditions Nondegeneracy Conditions
k=1 |g=gz=9t=0 sgn gze = p, sgn Da(g) = pq
k=2 | g=gz=gt=Da(g) =0 sgn gzx = p, sgn D3(g) = ¢
k=3 |g=gz=gt=Da(g) =D3s(9) =0 sgn goo = p, sgn Da(g) = pq
k>1 |g=go=gt=Da(g)=...= Di(g) =0 | sgngasa = p, sgn Dy11(9) = p"q

where Di1(g) = g, Dj+1(9) = g22(D;(9))t — g2t(Dj(g))x for j =1

Winged Cusp Singularity: h*(z,t) = pa® + qt?
Codim | Defining Conditions Nondegeneracy Conditions
k=3 | 9=9c=9t=gea = gat =0 Sgn gezx =P, SENGit = q
Table 1.2. The relevant Defining and Nondegeneracy Conditions; |p| = |¢| = 1.

The claim that g is contact equivalent to (2.1) can be formulated algebraically:

(2.3)

and

(2.4)

ak
g=gm=gt=gm=.-.=@g=0
ak+1
S o 1 9 =P 88N Get =4

at 0 € R¥+2, see Tab. 1.2.
Consider S, ® satisfying (1.2)—(1.6).




Remark 2.1 Let g* be the particular unfolding (2.2). Taking an arbitrary
¢ > 0, we define another pair S, ® satisfying (1.2)-(1.6) as S = ¢ %715, & =
diag(c, c¥, k1 cF=1 ... c% ¢c) - ®. In particular, taking ¢ = (X,(0))~! yields that
X, (0) =1.

Consequently, we may scale X arbitrarily and consider X, (0) = 1 without loss of
generality.

Let us discuss the computation of D®(0) € £(RFT2, R¥+2) in this particular case.
Partial derivatives of g at the origin are considered as data.

Let
9z gt 9z
9z gzt 9zxz
B = Gzt gt Gtz c L(Rkﬁ, [R’”Q),

Grzx Gt Grxz

8k+l 8k+1 8k+l
90571 9 oakar 9 oaraz 9

where the derivatives are evaluated at the origin. We call B the gradient of Defining
Conditions (2.3). Analogously, we define B* € L£(R*+2 RF*2) as the gradient of
Defining Conditions for a universal unfolding ¢* of the normal form (2.1) at the

origin:
0 0 1
0 q 0 03 (k—1)
q 0 0
0 0 02!
3!
0 0 0 (k—1! 0
pk+1)! 0 00 0 k!

It is possible to verify that B is related to D®(0) as follows:

(2.5) B = AB*D%(0),
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where A € L(RF+2 REF2))

S 0 0 0 0
Sy SX. 0 0 0
S, SX, ST, 0 0
A=l Su 25, Xo + SXoun 0 SX2 0
Sear 39Xy + 38 Xee + SXpae 0 2 (LSX?) 0
o S 2 (8X) 0 2-(lsx?) ... sxt
at 0 € RF+2,

Note that the lower triangular matrix A is regular (due to (1.5), (1.2)); it can be
checked directly that also B* is regular. Therefore, D®(0) is regular if and only if
B is regular. In the sequel, we assume (apart from (2.3) and (2.4)) that

(2.6) det B # 0.

Remark 2.2. The assumption (2.6) is equivalent to the fact that g is a universal
unfolding of h, see [6], Proposition 4.4 (for an example), and also Table 3.2 on p. 204.

In the identity (2.5), B is the data while the elements of D®(0), see (1.7), are
to be computed (k% + 2k + 2 unknowns). Moreover, there are 2k + 1 additional
unknowns S, Sy, St, Szzy - -+, % Sand Xz, ..., % X in A inherited from the chain
rule differentiation. Mind also that the entry g.; appears in B twice. Therefore, the
identity (2.5) represents k% + 4k + 3 equations for (k? + 2k +2) + (2k + 1) unknowns,

which sounds plausible. Unfortunatelly, these equations are not independent.

In order to observe this, we recall (2.3); similarly, g%, g5, 9%, .. ., % g* are zero at
the origin. Consequently, the conditions related to g, g¢, gz - - -, (%—kk g in B on the

left-hand side of (2.5) are redundant. For example, the equation related to g, reads
gz = Szg* + Sg;X,. Restricting all functions to the origin, it yields no information
on S, S, and X,. Therefore, at least £+ 1 conditions are missing in order to be able
to determine D®(0) directly from (2.5).

One may try to go on with the differentiation of (1.6) at the origin. Unfortunatelly,
due to the chain rule, we have to compute unknowns we are not interested in (namely,
higher derivatives of S and @) in order to obtain a condition on an element of D®(0).
This produces a kind of snowball effect. The remedy was hinted at in [8] and [2]:
We seek for an additional information concerning the contact diffeomorphism (1.3).
In fact, we will construct ¥. In what follows, we shall prove step by step Lemma 2.4
and formulate Theorem 2.1.

First, we recall a simple consequence of the Mean Value Theorem:



Lemma 2.1. Let f = f(x,s) and d = d(z) be C*-functions (i.e., k-times con-
tinuously differentiable) on T x J and I, respectively, where T and J are open
intervals in R. Let d: T — J, and let f(x,d(z)) = 0 for x € Z. Then there exists
a C*~'_function M = M(z,s) on I x J such that

(2.7) f(z,s) = M(x,s)(s —d(z)), (x,8)eIxJ.

Proof. Let v = v(z,2) = f(x,2 + d(x)). Hence v is a C*-function on
M= {(z,2): (z,z+d(z)) € T x J} and v(z,0) = 0. The Mean Value Theorem
yields v(zx, z) = fol %v(:z:, tz)dt. Consequently, v(x, z) = M (z, z)z, where M (x,z) =

1
Jo [fs(z, S)|fftz+d(z) dt. Then f(z,s) = v(z, z)|z:s_d(m) = M(z,s)(s—d(x)), where
M(z,s) = M(x,s — d(x)). O

Let h(z,t) = g(x,t,0), i.e. the germ g without imperfection. Note that the proof

of the following lemma mimics the proof of Lemma 2.7 in [5].

Lemma 2.2. Under the assumptions (2.3) and (2.4), the germ h factors as
(2.8) h(z,t) = M(z,t)(z — (1)) (e p(z) - 1),

where M, ¢ and ¢ are smooth functions defined on a neighbourhood of the origin.

Moreover,

(2.9) sgn M(0,0) = —¢, sgne(0) = —pg, ¢(0) =0.

Proof. In the case of pitchfork bifurcation singularities with codim k we shall
construct two transversal solution sets t = x*¢ and = = ¥(t) of h(z,t) = 0, and then
factor h using Lemma 2.1. Let us elaborate:

It follows from (2.3) and (2.4) that

h(z,t) = 2" a(x,t) + otb(z, ) + t2c(x, t),

where sgna(0,0) = p and sgnb(0,0) = ¢. This motivates the following scal-
F=ly) = 2*G(z, p), where G(z,p) = za(x, 2 1u) + pb(x, 2% 1p) +
k=14). Clearly, G(0,0) = 0, sgnG,(0,0) = ¢q and sgnG,(0,0) = p
Hence, locally, G(z, ) = 0 iff p = x¢(x), where ¢ = ¢(x) is smooth and satis-
fies sgnp(0) = —pg. We conclude that h(z,z*p(z)) = 0 in a neighbourhood of

ing: h(z,x

o722 c(z, @

2z = 0. By virtue of Lemma 2.1, there exists a smooth £ = E(x,t) such that
h(z,t) = E(x,t) (% o(z) —t).
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We shall factorize E. Note that h(x,0) = z**a(z,0) = E(z,0)z*p(z). Conse-
quently, E(0,0) = 0, sgn F,(0,0) = —g. Due to the Implicit Function Theorem, there
exists a smooth function ¢ = (t) such that (0) = 0 and, locally, E(¢(t),t) = 0.
Hence, in accordance with Lemma 2.1, there exists a smooth function M = M (z,t)
such that E(z,t) = M(z,t)(z — ¥(t)).

We conclude (2.8) immediately. It was already shown that sgn¢(0) = —pg and
¥(0) = 0. Direct computation yields h.¢(0,0) = —M(0,0). Hence, sgn M (0,0) = —

]

Lemma 2.3. Under the assumptions (2.3) and (2.4), the germ h factors as
(2.10) h(z,t) = M - (px*™" + qx7),

where M = M (z,t), x = x(,t), 7 = 7(t) are smooth functions in a neighbourhood
of the origin. Moreover, M (0,0) > 0 and

(2.11) T(t) ct, ¢>0,
X(@,t) = (2 = $(8) H (z — (1)),

where v = (t), H = H(z) are smooth functions satisfying 1(0) = 0, H(0) = 1.

Proof. Let ¥ and ¢ be defined as in the statement of Lemma 2.2. Let us
consider the equation z¥¢(x) —t = 0. Let us set & = z — 1 (t) and substitute for z.
Hence, t = (£+(t))k@(& +14(t)). This defines implicitly a smooth function ¢ = #(¢).
It is easy to check that t(0) = #(0) = t"(0) = ... = t®)(0) = 0, t*+1)(0) = k! ©(0),
ie., sgnt**+1(0) = —pg. Hence, there exists a smooth function w = w(£), sgnw(0) =
—pq, such that x*p(x) —t = 0 iff t = Fw(€).

By virtue of Lemma 2.1, t — £*w(€) factors the function z¥¢(z) — t, namely, there
exists a smooth function E = E(x,t) such that

() =t = B(x,t)(E w(€) — 1),
where £ = & — 4(t). Hence, taking into account (2.8),
B, t) = M(z,t)(@ — () (& = () *wlz — (1) — t).

Note that h,:(0,0) = —M(0,0) and hence sgn M (0,0) = —

We setxz(a:—z/}(t))(w(i%g)(t)))l/k,T:c t, wherec-—% >0 and M =
f‘iﬁ(x, t)(%)”k. Then it is easy to check that the statement of Lemma 2.3
holds with the above defined x, 7 and M. ]
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Remark 2.3. The function H = H(z) from the statement of Lemma 2.3 has the
following structure:

- (55

where w = w(&) is defined in the proof of Lemma 2.3.

We consider (2.11), taking the above H into account. Then a direct computation
yields 7 = 0, x(0) = 0, x5(0) = 1, x¢(0) = —9'(0), x22(0) = 2H'(0) and x4t =
—2H'(0)¢'(0).

These formulae imply that X+ = Xt - Xao at the origin.

Lemma 2.4. Assuming (2.3) and (2.4), there exist smooth S: R¥*? — R! and a
diffeomorphism ®: RF*2 — RF2 & (2,t,2) = (X (2,t, 2), T(t, 2), Z(2)), satisfying

(2.12) X=T=27=0, X,=1, T,>0, S>0,
(213) Ty = 0, Xt = X2 Xy

at 0 € R¥*2 and the identity (1.6) in a neighbourhood of 0 € R¥+2.

Proof. Let us consider the functions M, x and 7 from Lemma 2.3. Let us define
U: R? — R? by setting U(xz,t) = (x(x,t),7(t)). Obviously, both (1.2) and (1.3) are
satisfied. By virtue of Lemma 1.1, there exist smooth S and a diffeomorphism &
satisfying (1.5) and (1.6). The condition (2.12) is obviously satisfied.

Both assertions in (2.13) follow from Remark 2.3. O

Theorem 2.1. Let us consider S and ® from Lemma 2.4. Then the differen-
tial D®(0) is uniquely defined. The required data are the following derivatives of g
at the origin:

gk+2 GF+1+i

(2.14) B e L(RFF2 RF2) where j=1,..., k.

sy Guxtts 8Ik+16t g, 6$k+1+j g,

Proof. 1In Tab. 2.1, there is a list of 2(2 4+ 3k) equations for the unknowns
listed in the last column of that table. Note that the number of unknowns equals
the number of equations. The partial derivatives on the left-hand side are given, see
the data (2.14). Each row in Tab. 2.1 represents the relevant differential of (1.6)
evaluated at the origin. Imposing (2.12) and (2.13) simplifies the relevant result
considerably.

The nonlinear system is canonically solvable as marked in the second column.
Nondegeneracy conditions (2.4) are taken into account. (]
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Data =
Ly = (k+1)pS S
Gat = ¢ST} Ty
Gtt = 2¢5T Xy Xy
gz = S(Z1)- (Zl)z
Gzt = STy Xyo + 2qT3S,
Sz Xox

250 = pes(SXHH)
Jzz = ¢ST, + (Z1)-5= T,
Gatt = 20Ty(SX: Xao + S Xi + i) + 6pSX7 St
Gtz = ¢STi X, + qST. X; + (Z1).S¢ X

for 1 =2,...,k do
o 9 = T (SX) o o ot
B g = pE S bt
o = dfeS LX) | (@,

Table 2.1. Pitchfork bifurcation analysis, codim =k; [p| =|¢| =1, Xz =1, z € R".
Finally, consider the formulation of Theorem 2.1 for the pitchforks with codim = 2

and codim = 3, see Tab. 1.2. The relevant versions of Tab. 2.1 are given in Tab. 2.2
and Tab. 2.3.

3. HYSTERESIS FAMILY
The normal form of a hysteresis bifurcation point is
(3.1) h*(x,t) = px* ™2 4 qt, k=codim, |p|=|¢| =1.
The relevant universal unfolding of (3.1) is
(3.2) g*(x,t,2) = h*(x,t) + 212 + z02® + ... + 22",

see Tab. 1.1.
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Data =

Jzze = 6pS S
got = qSTy T;
9 = 8(Z1): (Z1)-
Gt = 2¢5Ti X+ X
Gzt = @SXzTh + 2q11S, + 6pS Xy
Szy X

Grazz = 30pSXap + 24pS,
gzz = qST: + S2(Z1)- T,
Gort = 2qT,(SX i Xpo + X4 Sz + Si) + 6pSX7 Sy
gt = qSX. T +qST. Xt + (Z1).S: X
Gzaext = qT1(SXezz + 35:Xew + 3S22)

+18pX (25X ;0 + Sa) + 6pS; Sezs Xaax

aa% g = 30p(25 X420 +3SX2, + 65, Xy + 2S.2)

Table 2.2. Pitchfork bifurcation analysis, codim=2; |p| = |¢| =1, Xz =1, z € R2.

A germ g, see (1.1), is contact equivalent with (3.1) provided that

5k+1
(3.3) g:gx:gm:...:Wg:O
and
8k+2
(3.4) sgn Drk+2 g=p, 8gngt=4g

at 0 € R**2 see Table 1.2.
Let S, ® satisfy (1.2)-(1.6). We can assume without loss of generality that
X.(0) =1:

Remark 3.1. Let ¢ > 0. Define
S=c"25 &= diag(c, "2, M P) - @,

It can be checked that S, ® satisfy (1.2)(1.6). Taking ¢ = (X,(0))~", this yields
that X,(0) = 1.
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Data =
g—;g = 4lpS S
Gat = ¢ST} Ty
9= = S(Z1)- (Z1)-
gt = 2¢5Ti X+ Xy
Gowt = @ST Xow + 2qT1S,
Sey Xeo

L g = 5pS, +2-5pSX,,
Gz = ¢ST. + S:(Z1). T,
gorr = 2qT1(SX; Xpe + So Xy + 1) 4+ 6pSX} S,
Jtx = ¢ST: X, + ¢SXiT. + Si(Z1). X,
Grazt = qTi(SXpea + 352 Xaz + 3S22) + 24pS X,
D g = BIp(3Sus + 125, Xap + 9SX2, + 45X ) S Kz
Gzez = @ST.Xuz +2qS.T. 4 (Z£1) 2520 +25(22). (Z2)-
5257 9 = qTi(4S0se + 6550 Xuw + 450 Xuww + S Xures)

+41pS; + 2 - ApX (25, + 55 Xaa) .
o7 ) Seza, 21 X
57 g = T7-5p(Sewe + 6SeaXew +95: X2, +45: Xoaa

+3SX3, + 65X 00 Xoww + S Xozex)
Jozoz = qT2(3Se + 35: Xew + SXuua) + 41pSX.+

+Suaa(Z1)2 + 6(Z2) (S + SXza) +65(Z3). %):

Table 2.3. Pitchfork bifurcation analysis, codim = 3; [p| = |¢| =1, Xz =1, z € R3.

Applying the chain rule to (1.6), we immediately conclude (2.5) where

0 q

9z gt 9z 0 0

9zx Gzt 9zz O O

B= Grzx g%nt Jrzz : B* _ 0 0
k+1 k+1 k+1

ai} I az}f ! 6218 ! 0 0

9772 9 it 9 aurFioz 9 p(k+2)!1 0

o O O o o
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and

S 0 0 0 0

Sz SX,. 0 0 0

Sox (5X)aa SX2 0 0

A=l S (SX)uww (X2, SX3 0
L8 L (SX) R (5X7) £ L5 (SXP) L SXEH

at 0 € R*2 B, B* and A € £L(RK+2 RFF+2),
We assume (2.6) for the particular B; for the consequences, see Remark 2.2.
Similarly to Section 2, the matrix identity (2.5) is interpreted as a system of
k? 4+ 3k + 3 equations (mind k + 1 redundancies) for k% + 2k + 2 nonzero elements
of D®(0) and 2k + 2 additional unknowns due to the chain rule (see A). Therefore,
there is lack of at least k + 1 conditions.

We will try to find additional information concerning the contact diffeomor-
phism (1.3).

Lemma 3.1. Let h(x,t) = g(x,t,0). Under the assumptions (3.3) and (3.4), the
germ h factors as

(3.5) h(z,t) = M - (px*** + q7),

where M = M (x,t), x = x(z,t), 7 = 7(t) are smooth functions in a neighbourhood
of the origin. Moreover, M (0,0) > 0, and

T(t) = F 2,
x(z,t) = x(z) = caw(z),

where w = w(z) is smooth function satisfying w(0) > 0 and ¢ = ﬁ.

Proof. Tt follows from (3.3), (3.4) that
h(z,t) = 2" la(x, t) + th(z, 1),

where sgna(0,0) = p and sgnb(0,0) = ¢. This hints at the following scaling:
h(z, 2**1y) = "1 G (x, 1), where G(z, 1) = xa(x, 25 p) + pb(x, 2% y). Clearly,
G(0,0) =0, sgnG,,(0,0) = ¢q and sgnG.(0,0) = p. Hence, locally, by virtue of the
Implicit Function Theorem, G(z, 1) = 0 iff ©p = z¢(x), where ¢ = p(z) is smooth
k+2

and satisfies sgn ¢(0) = —pg. We conclude that h(z,z""¢(x)) = 0 in a neighbour-
hood of z = 0. By virtue of Lemma 2.1, there exists a smooth E = E(x,t) such that
h(z,t) = E(x,t) (2" 2p(z) — t).

16



Note that h(z,0) = z¥*2a(z,0) = E(x,0)z" 2p(z). Consequently, sgn £(0,0) =
—q.

We denote w(z) = (—pgp(2)) 72, ¢ = w=1(0) and set x = caw(z), T = "2t and
M (z,t) = —qc *2E(x,t). Then it is easy to check that the statement of Lemma 3.1
holds with the above defined x, w, 7 and M. (|

Remark 3.2. Let us note that y, =1, x; =0, 7v = ¢**? > 0 and 7+ = 0 at the

origin.

Lemma 3.2. Assuming (3.3) and (3.4), there exist smooth S: RF*? — R! and
a diffeomorphism ®: R¥*2 — RF2 ®(z,t,2) = (X(z,t,2),T(t, 2), Z(2)), z € R¥,
(k = codim) satisfying

(3.6) X=T=27=0, X,=1, T,>0, S>0,
Xt:O, Tttzo

at 0 € R¥*2 and the identity (1.6) in a neighbourhood of 0 € R¥+2.

Proof. Let us consider the functions M, y, 7 and w from Lemma 3.1. Let us
define U: R? — R? by setting ¥(z,t) = (x(w,t),7(t)). Obviously, both (1.2) and
(1.3) are satisfied. By virtue of Lemma 1.1, there exist smooth S and a diffeomor-
phism & satisfying (1.5) and (1.6). The conditions (3.6) and (3.7) are also clearly
satisfied. d

Theorem 3.1. Let us consider S and ® from Lemma 3.2. Then the differen-
tial D®(0) is uniquely defined. The required data are the following derivatives of g
at the origin:

oF+2+i

B € L(RM2 RFF2), 1,2,...,k = codim.

Hrk+t2+i g, Jj=12
Proof. For proof, see Tab. 3.1. This table should be interpreted exactly in the
same way as Tab. 2.1 in the proof of Theorem 2.1. g

Finally, consider the formulation of Theorem 3.1 for the hysteresis points with
codim = 0,...,4, see Tab. 1.2. The relevant versions of Tab. 3.1 are given in Tables
3.2-3.5.
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Data =
ai:ki g (k+2)!pS S
gt qST; Ty
g9 = dliiir S 2= S
for j=2,...,k+1 1=2,...,k+1
9z qST, T,
Gz ST, + S(Z1), (Z1)-
Lrn g = s (SXF2) Lo X
for j=1,...,k j=1,...,k
o 9 = Tiier S 2 S
ez g = (- S+ z L= (SXN(Z). | (Zi-1)-
for k > 2 and]f3,...,k+1 71=3,...,k+1
I f; D (SX)(Z0)-
g k+1(SX’““)X X.
for k>1

Table 3.1. Hysteresis bifurcation analysis, codim = k; |p| =

Table 3.2. Limit point bifurcation analysis, codim = 0; |p| =

Data
gew = 2pS | S
g = qSTy | Ty

4. ASYMMETRIC CUSP FAMILY

|q|:1,Xx:1,z€|Rk.

lg| = 1.

The normal form of an asymmetric cusp with codimension k is

(4.1)

h*(z,t) = pz* + qt* 1,

As a universal unfolding of (4.1) we use

(4.2)
see Table 1.1.
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Data =
Yozz = 3PS S
gt = ¢ST; Ty
9z = ¢ST, T,
gzt = qS: T} Sz
Yoz = q5:1. +5Z; Z,
Jozze = 4IPSz +6-3IpSXyy Xow
Gzat = qSzzTh Sex
Jrzz = qSzals +25,7, +3pSX, + 52, X, | X»

Table 3.3. Hysteresis bifurcation analysis, codim = 1; |p| = |¢| = 1, Xz = 1, z € R,

Data =
Jzzze = 4IpS S
g = ¢5Ty Ty
g: = q5T. T,
gzt = ¢S T} S
Gzz = qS:T. + S(Z1). (Z1)-
Gzat = qSzaTh Sea
Zg = 51pS, +2-5pS Xy, Xow
Grzz = qSpal> +25:(Z1). + S(Z1). Xuw +25(Z2). (Z2)-
Lg = 9-5pSX2, +4-5pSXyus +3-51pSea +2- 698, Xow | Xuwa
Grzxt = qSzazTy Sera
Gzzzz = @SzaxTl> + 3S22(Z1). + 35:X20(Z1). + 315:(22)- X
FAPSX. + 3(Z1): X + B X (2). )

Table 3.4. Quartic fold bifurcation analysis, codim = 2; [p| =¢| =1, Xo =1,z € R2.



Data =
Loy 51pS S
gt qST} T}
gz qST T
gat qSzT} Sz
Jrz qSzT- + S(Z1)- (Z1)=
Izt qSzxTt Sza
Jzaat qSzxzTy Sazx
5% 9 = qSraraTs Sewza
Loy 61pSy + 15 - 51pS Xaz Xua
Jaaz qSzaTz + 252(Z1)z + S(Z1) 2 Xzx + 25(22) (Z2)-
% g 21 - 5!pSzz + 105 - 5!pSy Xz + 105 - 51pSX2, + 35 - 5!pS Xoaa Xy
Jrzxz qSzzaTz 4 3S2a(Z1)z + 352(Z1) 2 Xz + 6S2(Z2) 2 (Zs)-
+5(21) 2 Xaaz + 65(Z2) 2 Xox + 65(Z3) -
Loy 56 - 51pSawe + 10 - T'pSee Xew + 20 - TlpSe X2, + 280 - 51pSe Xeae +
+10 - TpS X2, + 560 - 51pS Xow Xaze + 70 - 51pS Xezes o
50052 9 = GSezaaTs + 4S222(Z1)z + 6522(21): Xax + 12522(Z2)-
4S8y Xaaw (Z1)2 + 2482 Xaa(Z2) 2 + 4'pSx(Z3), + 5!pSX, X,
+5(Z1) 2 Xozzz + 6S(Z22):X2; + 85(Z2):Xaza + 36(Z3):Xoa
Table 3.5. Hysteresis bifurcation analysis, codim =3; |p| =|¢| =1, Xz =1, z € R3.

The germ ¢ is contact equivalent to (4.1) if and only if

(4.3)
and

(4.4)

g=9s=9t=Da(g) =...= Dy(g9) =0

sgn gzz =p, sgnDyyi1(g) = pfq

at 0 € R**2, where

Di(g9) =g+ and  Djy1(9) = 9oa(D;j(9))t — gut(Dj(g))z for j > 1,

see Tab. 1.2.
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Remark 4.1. Let ¢ > 0. Then define

<l —k—1 5 . kfL k+1 k  k—1
S=c S, @ =diag(c z ,c, "t M L

,c?) - ®.

It can be checked that S, @ satisfy (1.6). Taking ¢ = (X,(0))~!, this yields that

X, (0) =1.

Applying the chain rule to (1.6), we immediately conclude (2.5) where

B*

9z
Jzx
gzt
oo | P20
| (D3(9)a
(Dk-1(9))x
(Dr(9))z
0 1
0 0
0 0
0 0
0 0
0 ..
21k +D)ipF~1g 0
S 0
Sy S
S SX,
A=
a4.1 a4.2
Ak4+2,1 Qk+42,2

9=
Gzz
Gtz
(D2(9))-
(Ds(9))-
(Di-1(9))=
(Dk(9))=
0
0
0
0
22.3!

o O O O

o O O o o

282k (k — 1)

Kk
akt2,k+1 SUTY

B, B* and A € £(RF*2 RF+2). The formulae for the lower triangular elements of
the matrix A are very complicated and we will skip them. Nevertheless, an explicit

evaluation of these elements is inevitable to derive Tabs. 4.1-4.6.

We assume (2.6) for the particular B; for the consequences, see Remark 2.2.

The matrix identity (2.5) can be interpreted as a system of k2 + 4k + 1 equa-

tions (mind 3 obvious redundancies) for k? 4 2k + 2 nonzero elements of D®(0) and
k? + 4k — 2 additional unknowns due to the chain rule (see A). Therefore, there is
lack of at least k% + 2k — 1 conditions.
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We will proceed as in the previous sections trying to find additional information
concerning the contact diffeomorphism (1.3).

Lemma 4.1. Let h(x,t) = g(z,t,0). Under the assumptions (4.3) and (4.4), the
germ h factors as

(4.5) h(z,t) = M - (px* + ¢r™*1),

where M = M (z,t), x = x(,t), 7 = 7(t) are smooth functions in a neighbourhood
of the origin. Moreover, M (0,0) > 0 and

(4.6) 7(t) = (pgH ()" F+1),
x(x,t) =z +a(t),

where a = a(t) and H = H(t) are smooth function satisfying a(0) = 0 and H(0) =
H'(0) = 0, sgn(H"(0)) = pq.

Proof. Note that h = 1g,,(0,0)(1+O(z)). Due to the Malgrange Preparation
Theorem, see [4], there exist smooth functions M = M(z,t), b = b(t), ¢ = ¢(t) such
that b(0) = ¢(0) = 0 and

(4.8) h(z,t) = M(z,t)(pz® + b(t)x + c(t))

in a neighbourhood of 0 € R?. Therefore

(4.9) h(z,t) = pM(z,t) ((:1: + %)2 + M)

This suggests to define (4.7), where a(t) = %. The function M is positive in a
neighbourhood of the origin since hy, = 2pM(0,0) and (4.4) holds.

Let us evaluate D;(h) for j = 1,...,k at the origin: Di(h) = Mc¢;, Da(h) =
M?(2pcy; — b?), D3(h) = 2pM?3(2pciss — 3bibyt), - - ., ete. Therefore, due to (4.3), we
have ¢; = 0, 2pcy — b? = 0, 2pcies — 3biby = 0, . . ., etc. Going back to (4.9), we easily
conclude that

(4.10) H(t) = ~(4pc(t) — V(1)) = Kt" ' (1 4+ O(t)) as t—0,

1
4
where

1 Dyya(h)(0,0)

bl

(k+1)! hk+(0,0)
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the formal proof can be done by induction. Due to (4.4), sgn K = pq. Finally, let us
define a real function 7 = 7(t) setting

(4.11) r = (pgH (b)) /.

It can be easily verified that 7 is smooth in a neighbourhood of 0 € R!, and 7(0) = 0,
7:(0) = (pgK)*/ k1) > 0 and

(4.12) h(z,t) = M(z,t)(px> + qr" 1) = Mh* o 0.
In (4.6), ¢ = (pgK)Y/*+1, O

Lemma 4.2. Assuming (4.3) and (4.4), there exist smooth S: RF*2 — R! and
a diffeomorphism ®: RF*2 — RE2 ®(x,t,2) = (X(2,t,2),T(t,2),Z(2)), z € RF
satisfying

(4.13) X=T=7=0, X,=1, T;>0, §>0,
ak+1
4.14 Xpg =Xpt = Xpoo = Xpst = Xpt=...=———X =0
( ) t t tt ork+1—igti
for i=0,...,k

at 0 € R**2, and the identity (1.6) in a neighbourhood of 0 € RF*2.

Proof. Let us consider the functions M, x, 7 from Lemma 4.1. Let us define
U: R? — R? by setting ¥(x,t) = (x(x,t),7(t)). Obviously, both (1.2) and (1.3) are
satisfied. By virtue of Lemma 1.1, there exist smooth S and a diffeomorphism ®
satisfying (1.5) and (1.6). Then the conditions (4.13) and (4.14) are clearly satisfied.

O

Theorem 4.1. Let S and ® satisfy (1.6) and the conditions (4.13) and (4.14).
Then the differential D®(0) is uniquely defined by the set of nonlinear equations.
The required data are the following derivatives of g at the origin:

for codim = k = 1:

(4.15) B € £(R?,R?) KA
' ) 539 ar2ar?
for codim = k > 2:
03 o3
4.1 B REFIRFHLY ——
(4.16) € L( ) 539 Tee?
aj+2 ' ) )
<417> Mg fOI' 322,7]{37 2207...7],
and
(4 18) ak+2 ak+2

dzotk+1 9 Pk
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Proof. The proof consists in directly expressing the desired unknowns from the
listed derivatives. The particular formulae for the asymmetric cusp with codim k < 3

are given in the Tabs. 4.1-4.3. ]
Data
9z = SZZ Zz
ot = 2pSXy X
gtt = 2pSXt2 + 2(]STt2 Tt
Gez = SpZ,+2pSX, X,
Gext = 4pSy:Xi + 2pS; St
Table 4.1. Simple bifurcation point and isola center, codim = 1; |p| = |¢| = 1, Xz = 1,
2 € RL.
5. WINGED CUSP
The normal form of a winged cusp is the function
(5.1) W (x,t) = pa® + gt*,
where the constants p, ¢ are normalised so that |p| = |¢| = 1. The codimension k

of (5.1) equals 3, i.e. we set k = 3 in this section. As a universal unfolding of (5.1)

we use
(5.2) 9" (z,t,2) = h*(x,t) + 21 + 200 + 232,

see [6], p. 203, Tab. 3.1.
The claim that g is contact equivalent to (5.1) can be formulated algebraically:

(5.3) 9=9s =Gt = Jaz = gt =0
and

(5.4) SE0 Jawe = P, SENGH =
at 0 € R®.
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Data =
Jzx = 2pS S
Jat = 2pSXy Xt
gz = S(Z1)- (Z1)=
Yoz = 6pSz Sz
Gz = 2pSX; + 52(Z1)- Xz
Gzt = 4pS2 Xt + 2pSt St
(D2(9))e = 45 Xu Xt
(D2(9))e = 4S%X¢ Xyt + 12pgS> T} T
gtz = 2pSXi X. + Si(Z1)z + STy (Z2)- (Z2)=
gzzaz = 12pSza Szx
Gzt = 6pSza Xt + 6pSyt Szt
Jaatt = 2pSua X7 + 8pSat Xt + 4pSe Xet + 2pSi Stt
Gttt = 6pSut X7 + 6pSt Xt + 6pSz Xt Xpt + 6Sa T} Xout
+6pSt Xt + 2pS Xt
gttt = 12pSp X} + 24pSe Xe Xet + 24¢Si T} + 6pSXF; Ty
+8pS Xy Xyt + 30gSTE Ty
(Da(g))> = 12pgS>*TPT: + 2pS(Z1) (X2 Saax + Stt — 2X1Szt) -
12pS(Z2)=(2T4 St — 250 X¢ Ty + STy) + 482X Xpe |

Table 4.2. Asymmetric cusp bifurcation analysis, codim = 2; [p| =|¢| =1 Xz =1, z € R2.

Remark 5.1. Assume that S, ® exist. Let g* be the particular unfolding (5.2).
Takmg an arbltrary ¢ > 0, we define another pair S ® that satisfies (1.6), namely,
S = ¢ 88, P = diag(c?,c?,c5, c*, ¢)®. Then Sg* o ® = Sg o . Consequently, we
may again consider X,(0) = 1 without loss of generality.

The direct differentiation of (1.6) in a neighbourhood of 0 € R® yields for a wing
cusp bifurcation with codimension k& = 3:

(5.5) B = AB*D®(0),
where
9z gt 9z 0O 0 1 0 O
Jex Yzt YGaz 0 0 0 1 0
B=| 6gst 928 G |; B*=] 0 2¢ 0 0 0
Jeax  Jrat YGzaz 6p 0 0 0 O
Yzat  Yatt  Gutz 0O 0 0 0 1
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Data =

Jzx = 2pS S
Gat = 2pSXy Xt
9z = S(Z1)- (Z1)2
(D2(9))z = 4S*Xut Xt
gz = 6pSz Sz
Jxz = 2pSX. + S:(Z1)- X,
Jaat = 4pSz Xy + 2pSt St
(D3(9))e = 8pS?*(SXut + St Xur — S Xt Xt Xt
(D3(g))t = 96¢S3T} + 8pS? Xy X14(St — Sz Xt) + 8pS3(XZ + Xt Xetr) T
Gtz = 295X Xz + St(Z1)= + STe(Z2)- (Z2)=
grzzx = 12pSuza Szx
Gzt = 6pSza Xt + 6pSyt St
Jaatt = 2pSee X7 + 89Szt Xt + 4pSeXet + 2pSu Stt
25y = 20pSere S
S0 g = 8pSuan Xt + 12pSat Saat
giawz 0 = 2PSwas XE + 12pSart Xt + 6pSat + 6pSax Xet Satt
azg—zta 9 = 6pSeatXi + 12pSuit Xt + 6pSueae Xt Xot + 12pSat Xt St
+2pStit + 4pSz Xitt
33—;4 9 = 8pSut Xt + 12pSeu X7 + 12pSet Xt + 24pSee Xt Xt o
+8St Xtit + 6pSa X7; + 8952 Xy Xynt + 24Sa T} + 21?538—;: x|
D9 = 20pSutX? + 60pSu Xe Xet + 30pSe X7 + 40pSe X Xeee .
+20pSX e Xeut + 10pSXy 2x X + 1205, T + 240gSTP Ty *
(D2(9))z = 2pS(Z1)2(X{ Sza + St — 2X4Sut) + 4pS°T{ (Z3) - (Z3)-
+2pS(Z2) (214 St — 28: Xy Ty 4+ STye) 4+ 45% X X4y
(D3(g)): = 96¢S°TP T + 16pSSz X7 (Se Xt Xz — S XiT> — 25: X)
+8pS?(SX= Xput + St Xz Xet — S Xe XXt
+48(21)2[S(Sttt — 38wt Xt + 38wt + X7 — Szax X))
+S00 Xt (3SXet + St Xt — S X7P) + Ser(St — SuXt) T,

+8,:4(28: X2 — 28 Xt — 35Xy1))
+48(Z2)2[3ST (Sza X? + Stt — 2524 X¢)
2T (X7 S2 4 S7 — 25:5: X¢)

+S(4S¢ Tyt — 480 Xt Tt — 380 XeeTy) + S2Thet]
+8(Z3)2ST4(3STyt + 44Ty — 482 X4 Tt)

Table 4.3. Asymmetric cusp bifurcation analysis, codim = 3; [p| =|¢| =1, Xz =1, z € R3.
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and

S 0 0 0 0
Sy S 0 0 0

A=| s SX, ST, 0 o |,
Sea SXze +25; 0 S 0

Set S Xie+Si+SX. ST, SX; ST
B, B* and A € L(R®,R%).
Assuming that B is known, the system (5.5) represents 23 conditions (note that
gzt and gu.+ appear twice in B) for 17 unknowns in D®(0) (taking into account that
X = 1 has already been fixed) and 7 additional unknowns S, S, St, Sz, Szt, Xazx,

Xt inherited from the chain rule differentiation. Hence, five conditions are missing
to determine D®(0) from (5.5).

Lemma 5.1. Under the assumptions (5.3) and (5.4), the germ h factors as
(5.6) h(w,t) = M- (px° +q7°),

where M = M (x,t), x = x(,t), 7 = 7(t) are smooth functions in a neighbourhood
of the origin. Moreover, M (0,0) > 0 and

(5.7) 7(t) = (pgB(1))"/?,
X(@,t) = (2 + a(t) (@ + a()? + a()) °,

where a = a(t), « = «(t) and 3 = B(t) are smooth functions satistying a(0) = 0,
a(0) = a’(0) = 0 and 5(0) = 5'(0) = 0, sgn(8"(0)) = pg.
Proof. We recall the assumptions (5.3) and (5.4). Due to the Malgrange

Preparation Theorem, see [4], there exist smooth functions M = M (x,t), b = b(t),
¢ = ¢(t) and d = d(t) such that b(0) = ¢(0) = d(0) = 0 and

(5.9) h(z,t) = M(z,t), (px> + b(t)2* + c(t)x + d(t))

in a neighbourhood of 0 € R2.

Differentiating (5.9) at the origin we arrive at the following conclusions: hgq. =
6pM which implies M > 0; ¢; =0, d¢ = 0 and sgn(ds) = ¢ # 0.

We rewrite the second factor on the right-hand side of (5.9) as

(5.10)  pa® +b(t)x? + c(t)x + d(t)
t)

- p((x N %f (o b;ﬁ—?) (pett) - bigt)) — %b(t)c(t) + 2pb32(7t) +pd(t)>.
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We set 1
w=ux+a(t), where a(t)= gpb(t).

The equation (5.10) can be rewritten in the form
prd +b(t)z? + c(t)z +d(t) = w® + a(t)w + B(t),
where w = w(x, t),
a(t) = pe(t) = 3a*(t),  B(t) =2a°(t) — pa(t)e(t) + pd(?).
The Taylor expansion at ¢t = 0 yields
B(t) = Kt*(14+O(t)) as t—0,
where

1
sgn K = pqg # 0.

Thus, we can define a smooth function 7 = 7(t),

(5.12) 7= (pgB(1)"/?
for all ¢ from a neighbourhood of 0 € R*.
We set

(5.13) X@,t) = ((z + a(®) (@ + a(t)? + a(t))) .

Obviously x(0,0) = 1, x22(0,0) = x2¢(0,0) = 0, 7(0) = 0, 7:(0) = (pgK)*/? > 0
and
h(z,t) = M(z,t)(px® +qr*) = M h* o .

0

Lemma 5.2. Assuming (5.3) and (5.4), there exist a smooth mapping S: R®> —
R! and a diffeomorphism ®: R®> — R, ®(z,t,2) = (X (2,t,2),T(t,2), Z(z)) satisfy-
ing

(5.14) X=T=2Z=0, X,=1, T,>0, S>0,
(5.15) Xot = Xop = Xaze =0

at 0 € R® and the identity (1.6) in a neighbourhood of 0 € R.
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Proof. Let us consider the functions M, x and 7 from Lemma 5.1. Let us define
U: R? — R? by setting ¥(x,t) = (x(x,t),7(t)). Obviously, both (1.2) and (1.3) are
satisfied. By virtue of Lemma 1.1, there exist a smooth S and a diffeomorphism &
satisfying (1.5) and (1.6). The condition (5.14) is obviously satisfied.

The remaining conditions X, = X,;; = Xz = 0 at the origin are also clearly
satisfied. O

Theorem 5.1. Let us consider S and ® satisfying (5.14), (5.15) and (1.6). Then
the differential D®(0) is uniquely defined. The required data are the following deriva-
tives of g at the origin:

(516) Be E(R57 [R5)7 9rxxrr, Jrxxt, Jratt, Jottt, Jttt-

Proof. For proof, see the Tab. 5.1. In this table the particular nonlinear
equations and the appropriate computable unknowns for the case of the wing cusp

bifurcation are listed for S and ® which satisfy (5.14), (5.15). O

Data

gzzz = 6pS S
gzt = 6pSXy X
git = QqSTt2 T
gott = 2¢S2T7 + 6pSX] Sa
9z = S(Z1)- (Z1)=
gz = Sz(Z1)2+ S(Z2): (Z2)=
grzat = 18pSz Xt + 6pSt St
gt = 6pSX} + 6¢SeT7 + 6gSTy Tt Tyt
gtz = 2¢STyT> + St(Z1)- T,
Zog = 60pSa Sea
gzzz = 6pSXz + (Z1)25z2 +252(Z2)- X
Goatt = 2qSaaTP +12pSe X7 + 12pSi Xt + 6pS Xy Xt
gattt = 6qSutT{ + 6pSe X} + 18pSi X7 + 18pS Xy Xyt + 6 STy Ty St
gotz = 2qSzTiT: + 6pSX X + (Z21)2S0t + (Z2)2(Sz Xt + St) + STe(Z3)= | (Z3)=

Table 5.1. Wing cusp bifurcation analysis, codim = 3; |p| = |¢| = 1, Xz =1, z € R®.
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6. CONCLUSIONS

The main results of the paper are algorithms for computing the differential D®(0)
of the unfolded contact diffeomorphism ® at the organizing center. Singularity classes
containing singular points with codim < 3, corank = 1 are assumed, see [6].

The algorithms are presented in a form of tables (see Tab. 2.1-Tab. 5.1) for each
particular singularity: there, Data are represented by selected partial derivatives of g
computed at the origin. The table itself can be interpreted as a system of nonlinear
equations in the variables listed in the last column. Note that among the variables
there are all elements of D®(0), see (1.7). The canonical solution of the nonlinear
system mentioned is also hinted at.

The crucial step towards a justification of the main results are Lemmas 2.3, 3.1,
4.1 and 5.1. They represent a constructive solution of Recognition Problem; see [6]
for the formulation of this problem.

The extension of the results presented to problems with corank larger then 1 seems
to be difficult. At least, we have not succeeded in any kind of constructive solution
of the above mentioned Recognition Problem.
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