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Abstract. A test statistic for testing goodness-of-fit of the Cauchy distribution is pre-
sented. It is a quadratic form of the first and of the last order statistic and its matrix
is the inverse of the asymptotic covariance matrix of the quantile difference statistic. The
distribution of the presented test statistic does not depend on the parameter of the sampled
Cauchy distribution. The paper contains critical constants for this test statistic, obtained
from 50 000 simulations for each sample size considered. Simulations show that the pre-
sented test statistic is for testing goodness-of-fit of the Cauchy distributions more powerful
than the Anderson-Darling, Kolmogorov-Smirnov or the von Mises test statistic.
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1. Introduction

Suppose that x1, . . . , xn is a random sample. The null hypothesis, that it is drawn
from a Cauchy distribution, is recommended in Section 4.14 of [1] to be tested by

means of the Anderson-Darling test statistic

A2 = n
∫ +∞

−∞

(
Fn(x) − F̂ (x)

)2

F̂ (x)(1 − F̂ (x))
dF̂ (x)(1.1)

= − n− 1
n

n∑

i=1

(2i− 1) log
(
Z(i)(1− Z(n+1−i))

)
,

*This work was supported by the Grant VEGA 1/7295/20 from the Scientific Grant
Agency of the Slovak Republic.
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or by means of the von Mises test statistic

(1.2) W 2 = n
∫ +∞

−∞

(
Fn(x) − F̂ (x)

)2
dF̂ (x) =

n∑

i=1

(
Z(i) − 2i− 1

2n

)2
+
1
12n

.

Here

(1.3) Fn(x) =
1
n
card{j; j � n, xj � x}

is the empirical distribution function, Z(i) are the order statistics computed from
Zi = F (xi, θ̂),

(1.4) F (x, θ) = F
(x− µ

σ

)
, F (t) =

1
2
+
1
�

arctan(t)

is the distribution function of the Cauchy distribution with the parameter θ = (µ, σ),

the estimator of the distribution function F̂ = F (x, θ̂), and θ̂ = (µ̂, σ̂)′ is the estima-
tor of the unknown parameter, computed by means of the order statistics x(i)n from

the formulas

µ̂ =
n∑

i=1

gnix
(i)
n , gni =

1
n
G

(
i

n+ 1

)
,(1.5)

G(u) =
sin(4�(u − 0.5))
tan(�(u− 0.5)) = −4 sin

2(�u) cos(2�u),

σ̂ =
n∑

i=1

cnix
(i)
n , cni =

1
n
J

(
i

n+ 1

)
,(1.6)

J(u) =
8 tan(�(u − 0.5))
sec4(�(u− 0.5)) = −8 cos(�u) sin

3(�u).

This null hypothesis can be tested also by means of the Kolmogorov-Smirnov test
statistic

(1.7) KS =
√
n sup

x
|Fn(x) − F̂ (x)| = √nmax{D+n , D−

n },

where

D+n = max

{
i

n
− Z(i); i = 1, . . . , n

}
D−

n = max

{
Z(i) − i− 1

n
; i = 1, . . . , n

}
.

As has been observed in [10], for the constants in (1.5) the equality
∑
i

gni = 1

does not hold and therefore the estimate µ̂ is not equivariant. Consequently, the
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distribution of A2 based on the trigonometric estimates (1.5), (1.6) depends on the

parameter of the sampled Cauchy distribution and the upper tail percentage points
for A2 given in Table 4.26 on page 163 of [1] are not suitable for testing goodness-of-
fit for the Cauchy distribution when the sample size is moderate and the parameter θ

in (1.4) is unknown. This follows from the results of simulation in [10], which show
that for A2 and values of the location parameter considered ibidem the nominal

significance level is far below the actual size of the test. As can be seen from Table 1,
in the case of the von Mises test statistic the situation is the same and when the

scale parameter is fixed, the increase of the location parameter µ shifts the actual
size of the test towards 1. We remark that the following table is computed from

N = 2000 trials for each sample size and the upper tail percentage points v(α, n)
are taken from Table 4.26 on page 163 in [1]; all simulations considered in this paper

were carried out by means of MATLAB, version 4.2c.1.

n = 10
µ 0 10 20 30 60

P (W 2 > v(0.1, n)) 0.100 0.36 0.71 0.86 0.96
P (W 2 > v(0.05, n)) 0.050 0.14 0.49 0.71 0.91
P (W 2 > v(0.025, n)) 0.025 0.06 0.28 0.54 0.84

n = 30
µ 0 10 20 30 60

P (W 2 > v(0.1, n)) 0.100 0.25 0.71 0.92 0.99
P (W 2 > v(0.05, n)) 0.050 0.08 0.38 0.75 0.98
P (W 2 > v(0.025, n)) 0.025 0.03 0.08 0.33 0.91

n = 50
µ 0 10 20 30 60

P (W 2 > v(0.1, n)) 0.100 0.24 0.68 0.92 1
P (W 2 > v(0.05, n)) 0.050 0.11 0.44 0.80 0.99
P (W 2 > v(0.025, n)) 0.025 0.04 0.17 0.53 0.98

Table 1. Simulation of the probability of the type I error for the von Mises statistic W 2

based on the trigonometric location and scale estimates (1.5), (1.6).

Since for the Kolmogorov-Smirnov test statistic based on the estimates (1.5), (1.6)
the situation is similar, the results of simulations are not included in the text in this

case.
One apparent remedy for this situation is the use of some modified scores g∗ni

in the estimator (1.5) instead of the original ones, e.g., g∗ni = gni/
∑
j

gnj or g∗ni =

gni + (1 −
∑
j

gnj)/n, but simulations show that this choice of the estimators yields

test statistics which have not good performance under the alternatives. As is well
known, the Cauchy distributions are heavy-tailed, the sample median µ̂ is insensitive
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to the extreme values and since for (1.6) the equality σ̂ =
∑
i

|cni(x
(i)
n − µ̂)| holds,

from now on we consider only the case when the test statistics (1.1), (1.2), (1.7) are
based on the sample median

(1.8) µ̂ =





x
(k+1)
n n = 2k + 1,

x
(k)
n + x(k+1)n

2
n = 2k,

and on the trigonometric scale estimate (1.6). Percentage points of the statistics A2,
W 2, T = Q(n, 0.1, 0.9) and KS, defined by the equalities P (A2 > a(0.05, n)) = 0.05,

P (W 2 > w(0.05, n)) = 0.05, P (T > t(0.05, n)) = 0.05, P (KS > ks(0.05, n)) = 0.05
and obtained from N = 50 000 simulations for each considered sample size n, are

given in the following table; the statistic T = Q(n, 0.1, 0.9) is defined by means of
the formula (2.5) of the next section.

n 14 16 18 20 25 35
a(0.05, n) 1.3361 1.3079 1.2890 1.2528 1.2276 1.1353
w(0.05, n) 0.2336 0.2238 0.2168 0.2058 0.1971 0.1743
t(0.05, n) 16.0122 13.2702 10.8749 13.5259 11.6821 9.8522
ks(0.05, n) 1.1091 1.1022 1.0881 1.0736 1.0554 1.0043

Table 2. Five percent upper tail percentage points of the statistics A2, W 2, T and KS
based on the median and on the trigonometric scale estimate.

These constants are used as a tool in the simulation study, presented in Table 4
of this paper.

Since the construction of the statistics (1.1), (1.2) and (1.7) is based on the empir-
ical distribution function, they are often called the EDF statistics. The construction

of the goodness-of-fit tests can be also carried out by applying disparities (diver-
gence measures) of discrete probability vectors to appropriate partitions of the sam-

ple space. This approach was investigated in various publications; results, covering
a general class of disparity measures and concerning goodness-of-fit tests based on

a parameter estimator possessing a special type of the asymptotical representation,
are derived in [8]. In the next section of this paper a new test statistic is constructed

by means of the results related to the quantile test statistic.
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2. Test statistic and power comparisons

The performance of the test statistics mentioned in the previous part of the pa-
per will be in this section compared with the power of a test which will be derived

from the quantile test statistic. Here by the quantile test statistic one understands
a chi-squared type statistic based on the difference between the fixed chosen value

of the probability and its estimate, obtained by plugging an estimator into the pa-
rameter value of the underlying theoretical probability. This approach has been a

subject of various publications; a list of classical papers on this topic can be found
on p. 129 of [3]. These papers assumed validity of the Rao-Cramér type regularity

conditions on densities and utilized parameter estimators asymptotically equivalent
to the maximum likelihood estimator. In a general setting, under mild regularity

conditions on densities and with the underlying estimators assumed only to be as-
ymptotically linearizable, this idea was studied in [9].

The quantile goodness-of-fit test statistic and its asymptotic behaviour can be in
the case of the Cauchy distribution, when the parameter is estimated with (1.8), (1.6),

described briefly as follows. Suppose that k � 1 is a fixed integer, 0 < p1 < . . . <

pk < 1 are fixed real numbers and (cf. (1.3))

ξ̂pi,n = inf{t; Fn(t) � pi}

denotes the pith sample quantile. Further, put (cf. (1.8), (1.6), (1.4))

(2.1) θ̂ = (µ̂, σ̂)′, ∆n(p1, . . . , pk) =
(
F (ξ̂p1,n, θ̂)− p1, . . . , F (ξ̂pk,n, θ̂)− pk

)′
.

It is proved in [10] that

σ̂ − 1 = 1
n

n∑

j=1

ψ(xj) +OP (n−1), ψ(x) = −2 cos(2 arctan(x)),

provided that the sample is drawn from the Cauchy C(0, 1) distribution. This as-
ymptotic linearity together with the known asymptotic representation of the sample

median imply that for such a sampling

θ̂ −
(
0
1

)
=
1
n

n∑

j=1

l(xj) + oP (n−1/2), l(x) =

(
� sign(x)/2

−2 cos(2 arctan(x))

)
,

√
n[θ̂ − (0, 1)′] L−→ N(0,L), L =

(
�
2/4, 0
0, 2

)
.
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These facts together with the results from [9] are employed in [10] for proving that

the random vector
√
n∆n(p1, . . . , pk) is asymptotically Nk(0,Σ) normal with an

asymptotic covariance k × k matrix

(2.2) Σ = Σ[k, p1, . . . , pk] = A+G,

where

A = (aij)
k
i,j=1, aij = min{pi, pj}(1−max{pi, pj}),(2.3)

G = (gij)ki,j=1,

gij =
sin2(pi�) sin

2(pj�)
4

− sin
2(pi�)
2

min{pj, 1− pj}(2.4)

− sin
2(pj�)
2

min{pi, 1− pi} −
sin(2pi�) sin(2pj�)

2�2
,

provided that the random samples x1, . . . , xn are drawn from a Cauchy distribution.

Further, if pi �= 0.5 for all i = 1, . . . , k, then according to Theorem 1.2 of [10] the
matrix Σ[k, p1, . . . , pk] is regular and the test statistic

(2.5) Q(n, p1, . . . , pk) = n∆n(p1, . . . , pk)′Σ[k, p1, . . . , pk]−1∆n(p1, . . . , pk),

where n denotes the sample size, has for n > 1 an exact null distribution (i.e., the
distribution of (2.5) does not depend on the parameter of the sampled Cauchy dis-
tribution). Thus under these assumptions the statistic (2.5) is asymptotically χ2k
distributed and the null hypothesis H0 that the random sample x1, . . . , xn comes
from a Cauchy distribution can be tested by means of the test rejecting H0 for large

values of (2.5). This rule is a chi-square goodness-of-fit test, and, as is observed
on pp. 91 and 92 of [1], this class of tests usually does not possess large power and

is less efficient than EDF tests. As the simulations in [10] for Q(n, 0.1, 0.9) show,
such a lack of power turns out to occur also for the Cauchy distribution, because an

acceptable power is recorded only for sample sizes about 30–40 (the choice of a larger
number k of the partitioning points would only cause “an increase of the noise” and

the quantile test would exert its power only for even larger values of the sample size).
Probably one of the causes of this worse performance is not only a slower effect of

the chi-square asymptotic, but also the approach consisting in keeping pi’s fixed, and
for this reason we will choose the values of pi’s in dependence on the sample size.

As is well known (e.g., cf. Theorem d on p. 39 of [5]), the mean of F (x(i)n , θ)
equals i/(n + 1) provided that θ is the true value of the parameter of the sampled

Cauchy distribution, and since heavy tails are typical for the Cauchy distribution, we
propose to test the hypothesis H0 by means of the test statistic Qn = Q(n, 1/(n+1),
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n/(n+1)), which uses the first and the last order statistic in the role of the estimator

of the 1/(n+ 1)th and n/(n+ 1)th quantile, respectively. The limiting distribution
of Qn under validity of H0 is unknown. Even though heuristic construction of the
statistic Qn uses asymptotically precise results from [10], in this case the quantiles

involved do not obey the rule of convergence of their arguments to limits from the
open interval (0, 1). Hence the asymptotic distribution of ∆n(1/(n+ 1), n/(n+ 1))

cannot be derived by means of the general assertions from [9] or their implementation
in [10], and the application of the formulas from [10] on asymptotic covariances is

not substantiated by the theory developed in the papers mentioned. Still, as will be
seen from the results of a simulation study, the resulting statistic turns out to yield

a powerful goodness-of-fit test for the Cauchy distribution.

In accordance with (2.5) the proposed test statistic is

(2.6) Q

(
n,

1
n+ 1

,
n

n+ 1

)
= n∆′

nΣ
[
2,
1

n+ 1
,

n

n+ 1

]−1
∆n,

where

(2.7) ∆n =

(
F (x(1)n , θ̂)− 1

n+ 1
, F (x(n)n , θ̂)− n

n+ 1

)′
,

F is the distribution function from (1.4), x(i)n denotes the ith order statistic, the
parameter is estimated by the estimators (1.8), (1.6) and the matrix

Σ[2, 1/(n+ 1), n/(n+ 1)]

is defined by (2.2)–(2.4). As has already been mentioned in the case of the statis-

tic (2.5), the statistic (2.6) possesses for every sample size n > 1 a null distribution.
Hence if the constants q(α, n) are chosen in an appropriate way then the rule

reject the null hypothesis that the sample is drawn from a Cauchy(2.8)

distribution, whenever Q(n, 1/(n+ 1), n/(n+ 1)) > q(α, n)

is a test of this null hypothesis at the significance level α. Some values of these
percentage points, obtained from a simulation study based on N = 50 000 trials for
each considered sample size n, are given in the following Table 3.

The proposed test is illustrated by the following example. It should be noted that

the data used in this example are usually used in the literature on detecting outliers
(e.g., in [2], p. 38 or in [4], pp. 54–55 and in the papers quoted ibidem).
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n 5 6 7 8 9 10 11 12

q(0.25, n) 3.7450 3.5890 3.8511 3.6778 3.6308 3.4376 3.3747 3.2647

q(0.1, n) 5.8599 6.0991 7.2295 7.2331 7.7291 7.5023 7.7171 7.3992

q(0.05, n) 6.8867 7.7621 9.5586 9.9707 11.0639 11.0354 11.5535 11.4097

q(0.025, n) 7.4767 8.9927 11.2955 12.4928 14.2798 14.9293 15.9187 16.0462

n 13 14 15 16 17 18 19 20

q(0.25, n) 3.1164 3.0457 2.9397 2.8247 2.7674 2.6590 2.5917 2.5084

q(0.1, n) 7.3468 7.1040 7.1511 6.8661 6.8262 6.6339 6.3644 6.3644

q(0.05, n) 11.5410 11.0797 11.3721 10.8227 10.8357 10.6602 10.2758 10.1910

q(0.025, n) 16.3741 15.9191 16.4377 15.7432 15.9121 15.4159 15.2422 15.2261

n 21 22 23 24 25 26 27 28

q(0.25, n) 2.4880 2.3905 2.3488 2.3566 2.3049 2.2432 2.2513 2.1900

q(0.1, n) 6.3243 6.1329 6.1209 6.1256 6.0069 5.9015 5.8235 5.7266

q(0.05, n) 10.2032 9.8285 10.0805 9.9099 9.8597 9.6343 9.4169 9.2680

q(0.025, n) 15.0427 14.2978 14.7135 14.5984 14.4329 14.1077 13.7516 13.5003

n 29 30 31 32 33 34 35 36

q(0.25, n) 2.1469 2.1182 2.1002 2.1001 2.0714 2.0451 2.0284 2.0165

q(0.1, n) 5.6535 5.6805 5.6353 5.6498 5.5591 5.5330 5.4946 5.4367

q(0.05, n) 9.3652 9.3099 9.1658 9.1831 9.2205 9.0557 9.0115 8.9639

q(0.025, n) 13.9056 13.5609 13.5959 13.5158 13.7156 13.3241 13.2268 13.1754

n 37 38 39 40 41 42 43 44

q(0.25, n) 2.0171 1.9900 1.9793 1.9470 1.9509 1.9374 1.9493 1.9264

q(0.1, n) 5.3216 5.3213 5.3354 5.1714 5.2555 5.2086 5.2502 5.2453

q(0.05, n) 8.9527 8.7588 8.9510 8.7395 8.8636 8.8209 8.8489 8.6110

q(0.025, n) 13.3174 12.7726 13.1408 12.8612 13.0227 13.0458 13.1573 12.8705

n 45 46 47 48 49 50 55 60

q(0.25, n) 1.9199 1.9136 1.8945 1.9083 1.8767 1.8931 1.8269 1.8181

q(0.1, n) 5.1821 5.1932 5.0325 5.1197 5.0648 5.0861 4.9083 4.8850

q(0.05, n) 8.6398 8.6345 8.6431 8.5830 8.5850 8.5822 8.4739 8.3429

q(0.025, n) 12.8991 12.9040 12.7874 12.8345 13.0603 12.8995 12.7494 12.5112

n 65 70 75 80 90 100 125 150

q(0.25, n) 1.8072 1.7886 1.7716 1.7706 1.7583 1.7182 1.6916 1.6890

q(0.1, n) 4.8864 4.8174 4.8144 4.7495 4.8250 4.6629 4.6660 4.5717

q(0.05, n) 8.3571 8.2896 8.1596 8.1670 8.2777 8.1184 8.1222 7.9964

q(0.025, n) 12.6725 12.5569 12.4711 12.2007 12.4042 12.5744 12.5826 12.2524

Table 3. Upper tail percentage points of the quantile statistics Q = Q(n, 1/(n+1), n/(n+1))
based on the median (1.8) and on the trigonometric scale estimate (1.6).
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�������. The following data consist of the individual deviations from the

mean of 15 observations of the vertical semi-diameter of Venus.

−0.30 +0.48 +0.63 −0.22 +0.18
−0.44 −0.24 −0.13 −0.05 +0.39
+1.01 +0.06 −1.40 +0.20 +0.10

We shall employ the quantile test for testing the null hypothesis that this sample
of 15 observations is generated by a Cauchy distribution (the fact that these values

are deviations from the sample mean does affect the value and the distribution of the
location and scale invariant statistic (2.6)). Since n = 15, for these data one obtains

the involved matrices

A =
(
0.0586 0.0039
0.0039 0.0586

)
, G =

(−0.0094 0.0054
0.0054 −0.0094

)
,

Σ−1 =
(
21.0991 −3.9954
−3.9954 21.0991

)
,

the parameter estimates and the vector of differences

µ̂ = 0.0600, σ̂ = 0.3184, ∆n = (0.0058, −0.0404)′.

Thus the test statistic (2.6) attains in this case the value

Q(n, 1/(n+ 1), n/(n+ 1)) = 0.5565 < q(0.05, n) = 11.3721

and the null hypothesis is not rejected at the 5 per cent level. Simulations based on

N = 50 000 trials show that in this case the level attained (the P-value) is

(2.9) α̂ = P (T � 0.5565) = 0.75,

which is a value typical for the null hypothesis. It is concluded on p. 38 of [2] on
the basis of an outlier testing procedure that under the normality assumptions the
smallest observation −1.4 is not discordant at the 5 per cent level. This can be
demonstrated also by means of another tool. Indeed, when the data are processed
by the Shapiro-Wilk test rule for the sake of testing the hypothesis that they come

from a normal distribution, then one obtains that in this case the test statistic
(cf. pages 602, 603 and Table 6 on p. 605 of Section 3 of [11]) is

SW =

( m∑
i=1

a(i, n)(x(n+1−i) − x(i))
)2

n∑
i=1
(xi − x)2

= 0.9398 > 0.881,
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and the null hypothesis of normality is not rejected at the 5 per cent level. Since the

small values of SW are critical, the infimum of the significance levels for which the
Shapiro-Wilk test rejects the normality hypothesis is P (SW � 0.9398). Simulations
based on N = 50 000 trials show that in this case under the normality assumptions

the level attained is
α̂ = P (SW � 0.9398) = 0.37.

Though it is in a fair coincidence with the normality assumptions, it is still consider-

ably less than the value of (2.9). One may therefore conclude that the sample comes
from a Cauchy distribution.

The values of the probability of rejection of the null hypothesisH0 that the random

sample x1, . . . , xn comes from a Cauchy distribution, based on α = 0.05 upper tail
percentage points of the test statistics concerned (cf. Tables 2 and 3) and obtained

from N = 2000 simulations for each particular test statistic, sample size n and
alternative distribution, are given in the following Table 4, where L denotes the

logistic,N the normal, U the uniform, B the beta and StD(ν) Student’s t distribution
with ν degrees of freedom. Since in the location and scale parameter families the

distributions of the underlying test statistics do not depend on the parameter, the
logistic, normal and uniform distribution are mentioned without a reference to their

parameter.
Table 4 suggests that the test (2.8) distinguishes many alternatives from the

Cauchy distribution with a good performance, which one can assign to the fact
that the alternatives concerned and the Cauchy distribution have tails of different
orders.

The construction of the test (2.8) is based on the behaviour of the extreme order
statistics. The referee pointed out that this leads to the situation that the asymptotic

performance of this test will not be good for the alternatives with the same order of
convergence of tails to 0 (as |x| → ∞) as in the Cauchy distribution case, and the
Kolmogorov-Smirnov test statistic will asymptotically distinguish such alternatives
better. To demonstrate this property we consider here the alternatives defined by

means of densities having the uniform middle part and the tails from the Cauchy
distribution, i.e. the densities defined by the formula

(2.10) r(x,M) =





1
�(1 + x2)

|x| > M,

arctan(M)
�M

|x| � M,

whereM > 0 is a parameter. Even though alternatives of this kind do not appear in

lists of probabilities which are commonly used in statistical or probabilistic consider-
ations (e.g., the distributions studied in [6] and [7]), it is useful to consider them as
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n 14 16
Q KS A2 W 2 T Q KS A2 W 2 T

χ21 0.75 0.56 0.32 0.32 0.28 0.87 0.66 0.43 0.42 0.46
χ22 0.40 0.19 0.09 0.09 0.08 0.56 0.25 0.14 0.13 0.17
χ25 0.14 0.03 0.02 0.02 0.02 0.25 0.04 0.03 0.03 0.04
L 0.05 0.01 0.01 0.01 0.01 0.07 0.01 0.01 0.01 0.02
N 0.06 0.01 0.01 0.01 0.01 0.10 0.00 0.00 0.00 0.01
U 0.32 0.04 0.03 0.03 0.03 0.50 0.05 0.05 0.03 0.08

B(1, 2) 0.29 0.05 0.03 0.03 0.03 0.43 0.07 0.05 0.05 0.07
B(2, 2) 0.14 0.01 0.01 0.01 0.01 0.24 0.01 0.02 0.02 0.04
StD(2) 0.03 0.01 0.00 0.01 0.01 0.03 0.01 0.01 0.01 0.02
StD(5) 0.05 0.01 0.01 0.01 0.01 0.07 0.01 0.01 0.01 0.02

n 18 20
Q KS A2 W 2 T Q KS A2 W 2 T

χ21 0.95 0.77 0.51 0.48 0.63 0.98 0.85 0.62 0.58 0.60
χ22 0.70 0.33 0.19 0.17 0.27 0.84 0.41 0.26 0.22 0.22
χ25 0.37 0.06 0.05 0.04 0.08 0.52 0.09 0.08 0.07 0.06
L 0.10 0.01 0.01 0.01 0.03 0.17 0.01 0.02 0.02 0.03
N 0.16 0.01 0.01 0.01 0.04 0.24 0.01 0.02 0.01 0.03
U 0.67 0.06 0.09 0.05 0.17 0.82 0.09 0.13 0.07 0.13

B(1, 2) 0.60 0.12 0.10 0.08 0.16 0.77 0.15 0.14 0.10 0.10
B(2, 2) 0.38 0.03 0.04 0.03 0.08 0.53 0.03 0.06 0.03 0.06
StD(2) 0.05 0.01 0.01 0.01 0.02 0.07 0.01 0.01 0.01 0.02
StD(5) 0.10 0.01 0.01 0.01 0.03 0.14 0.01 0.01 0.01 0.02

n 25 35
Q KS A2 W 2 T Q KS A2 W 2 T

χ21 1.00 0.95 0.81 0.75 0.79 1.00 1.00 0.98 0.96 0.97
χ22 0.98 0.62 0.43 0.34 0.41 1.00 0.92 0.79 0.62 0.71
χ25 0.79 0.16 0.17 0.12 0.18 0.99 0.41 0.43 0.26 0.39
L 0.32 0.02 0.03 0.02 0.05 0.67 0.04 0.11 0.06 0.14
N 0.48 0.02 0.05 0.04 0.08 0.87 0.05 0.18 0.08 0.21
U 0.97 0.19 0.31 0.15 0.28 1.00 0.51 0.72 0.41 0.57

B(1, 2) 0.95 0.31 0.29 0.19 0.28 1.00 0.67 0.68 0.42 0.57
B(2, 2) 0.84 0.06 0.15 0.08 0.15 1.00 0.16 0.45 0.19 0.36
StD(2) 0.10 0.02 0.02 0.01 0.03 0.20 0.02 0.03 0.03 0.06
StD(5) 0.29 0.02 0.03 0.03 0.05 0.57 0.03 0.09 0.05 0.13

Table 4. The power of the statistics (2.6), (1.7), (1.1), (1.2) and T = Q(n, 0.1, 0.9) based
on the median (1.8) and on the trigonometric scale estimate (1.6).
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indicators of weak spots of the extreme order statistics test presented. In obtaining

some numerical results in this respect, the percentage points given in Table 5, which
are obtained from N = 50 000 simulations for each sample size considered, will be
used.

n 30 50 150 300 500 1000
q(0.05, n) 9.3099 8.5822 7.9964 7.9798 8.0510 7.8879
ks(0.05, n) 1.0180 0.9608 0.9012 0.8871 0.8861 0.8764

Table 5. Five percent upper tail percentage points of the statistics Q and KS based on
(1.8) and (1.6).

An outline of the behaviour of the power under validity of the above mentioned
alternatives is given in Table 6, containing the simulation estimates (based on N =

2000 trials) of the probabilities P
(
Q > q(0.05, n)

)
, P

(
KS > ks(0.05, n)

)
of rejection

the null hypothesis that the true distribution is a Cauchy distribution, when the

sampling of size n is drawn from the alternatives (2.10) and when the rejection
constants, corresponding to the significance level α = 0.05, are those given in the

previous table. The values 1, 2.4142 and 6.3138 of the parameterM are chosen here
to obtain the distribution having on the outer parts the total mass β of the Cauchy

type (i.e., β/2 on each side), with the values β = 0.5, 0.25 and 0.1, respectively.

n M = 1 M = 2.4142 M = 6.3138
Q KS Q KS Q KS

30 0.06 0.05 0.16 0.08 0.53 0.16
50 0.06 0.05 0.18 0.18 0.56 0.54
150 0.06 0.09 0.17 0.71 0.58 1.00
300 0.07 0.16 0.20 0.98 0.59 1.00
500 0.07 0.23 0.18 1.00 0.56 1.00
1000 0.06 0.47 0.18 1.00 0.57 1.00

Table 6. The power of the statistics (2.6) and (1.7) based on the estimators (1.8) and (1.6).

The results of simulations from Table 6 suggest that the test (2.8) will be asymp-
totically insensitive against the alternatives (2.10). Still, these simulations also show

that for n < 50 the test (2.8) is more powerful under (2.10) than the Kolmogorov-
Smirnov test.

On the whole one may conclude that the results of simulations testify in favor
of the test (2.8) based on the statistic Q = Q(n, 1/(n + 1), n/(n + 1)) defined by

(2.6), (2.7). Indeed, as can be seen from Table 4, the statistic Q possesses for the
alternatives considered ibidem the power fairly close to 1 for sample size n = 35, with

the exception of the logistic distribution and Student’s distribution having degrees of
freedom not too much different from 1 (Student’s distributions include the Cauchy
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C(0, 1) distribution, because C(0, 1) = StD(1)). In each case considered in Table 4

the test based on Q performs clearly better than its mentioned competitors. It is
therefore recommendable to test goodness-of-fit for the Cauchy distribution against
the alternatives with different order of the tail convergence by means of the test (2.8)

based on the extreme order quantile statistic Q(n, 1/(n+ 1), n/(n+ 1)).
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