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NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITION
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Abstract. The computation of nonlinear quasistationary two-dimensional magnetic fields
leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such
a problem with a nonhomogeneous Dirichlet boundary condition on a part I} of the bound-
ary is studied in this paper. The problem is discretized in space by the finite element
method with linear functions on triangular elements and in time by the implicit-explicit
method (the left-hand side by the implicit Euler method and the right-hand side by the
explicit Euler method). The scheme we get is linear. The strong convergence of the method
is proved under the assumptions that the boundary 02 is piecewise of class C? and the
initial condition belongs to Lo only. Strong monotonicity and Lipschitz continuity of the
form a(v,w) is not an assumption, but a property of this form following from its physical
background.

Keywords: finite element method, parabolic-elliptic problems, two-dimensional electro-
magnetic field

MSC 2000: 65N30, 65M60

1. INTRODUCTION

For two media the computation of a nonlinear quasistationary two-dimensio-
nal electromagnetic field leads to the following nonlinear parabolic-elliptic initial-
boundary value problem. Given a two-dimensional bounded domain 2 and its
subdomains Qg, Qp with Q = Qr UQp, Qg N Qp = 0, measQp > 0 and such
that T' = 09, 0Qp, 00F are Lipschitz continuous and piecewise of class C2, find
a function u: Q x (0,7) — R such that its restrictions uy; := ulq,, (M = E, P)
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satisfy the equations

209
m Z i
2

< graduP\) ) +fp in Qpx(0,T),

) )
(2) <VE lgrad ug|) a“f) Y fp in Qpx(0,T),

ox;

i=1

where 0 < T < o0 and 0 = o(z) > 0, vpar = v (8), s = |gradup|, far = faur(x,t)
are given functions. Further, u should satisfy boundary conditions on 0%:

u=a on Iy x(0,7),

ug—Z:q on Iy x(0,7),

where I UT, = 0Q, It NI, = (), meas; Iy > 0 and n is the unit outward normal to
0f). The initial condition is prescribed on Qp only:

up(z,0) = ul (z) Yo € Qp.
On 9Qp N INg the function w has to satisfy for ¢ € (0,7) the so-called transition
conditions
ou "
Wi = |rp| o0

where n* denotes the unit normal to 9Qg N IQp oriented in a unique way and [f }g

has the following meaning:

P . .
=1 B)—-1
A1 = Jim f(B)~ Jim f(C)
for arbitrary points A € 0Qp N0NE, B € Qp, C € Qp.
We assume that the function @ is so smooth that there exists a function z such
that

(3) z€ HYQ), zp € H*(Qp), zp € H*(QE), tr(z) =@ on Iy,

where H¥(Q) (k = 0,1,2,...) denotes the Sobolev space W} (Q2) and tr(v) is the
trace of the function v € H'(£2) on the boundary 9 (see [12], Theorem P.73).
The function o has the meaning of electrical conductivity, v = 1/ is the magnetic
reluctivity, f = Je3 with Je3 the x3-component of the density of the external current
and u is the x3-component of the magnetic vector potential, u = As. In engineering
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applications o is considered piecewise constant and is equal to zero in the noncon-
ductive parts of a machine and greater than zero in the conductive parts. We will
consider o = 1 in (1) for simplicity.

We can derive equations (1), (2) from Maxwell’s equations (see [4]).

2. FORMULATION OF THE PROBLEM
Using Green’s theorem we can reformulate the initial-boundary value problem in
the following way:
Problem 2.1. Let a form a(v, w) be given by the relation

ov 6w

@) aww)= Y am(v,w), au(v,w)= /VM lgrad v]) Zax oz, 9

M=E,P Onr

where vy (s) € C1([0,00)) (M = E, P) are functions satisfying

(5) 0 < 7ar < < [svar(8)] < By Vs € [0,00),

where B3 > yar > 0 are constants. Let z satisfy (3) and let u}’, f be given functions
such that

(6) uf € La(Qp),
far € Lo(I, WA (Qr)), far € Lo(I, WL (Q)) (M = E, P),

where I = (0,7), T > 0, fM denotes the strong derivative with respect to the time ¢
of the abstract function fa; = fasr(t) and Qs will be specified later (see (31)).

Find an abstract function u: I — H'(Q) with the properties

(7) 0 Loo(I, HY(Q), up € C(T, 1o(2p)) N Loo(T, H(©p)),
®) ip € Lo(I,Vp),
9) up(0) = uy € La(Qp),
(10) tr(u(t)) =trz in Lo(Iy) Yt €I —E (meas; E =0),
(11) / {{ap(7), vp (1)) P + alu(r),v(r))} dr

0

_ /Ut(f(T),v(T))dT Vo € Lo(I,V) Wt €T,
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where we set
(12) A(ﬂﬂﬂ@ﬂdT: §;PA<nﬂﬂvamww

and

V={veH(Q): tr(v) =0 on Ty},
Vp = {vp € H'(Qp): tr(vp) =0 on I} NINp};

(-,+) and (-, ) (M = E, P) denote the scalar products in the spaces L2(2) and
L2(Qr), respectively. The symbol V5 denotes the dual space of Vp and (-, -) p is the
duality between V3 and Vp.

Remark 2.2. For greater simplicity we consider only a homogeneous Neumann
boundary condition on I';. The case of a nonhomogeneous one is similar to [6].

We will define a discrete problem where the nonlinearity is removed. To this end
we add to both sides of (11) the bilinear form

2
ov Ow d

(13) (w,w)= > lu(v,w), lu(,w) =0y . Dz, Oz,

M=E,P Q=
where ©); (M = E, P) are positive constants satisfying the condition
1
(14) Oy > 5 B

and Oy are constants from (5). Then we can write relation (11) in the form

(15) A?@mﬂwﬂﬂ»+KMﬂwwmnv

_ /Ot{d(u(r),v(T)) +(F(), o)} dr Yo € Lo(I,V) Vi € I
where d(v,w) is defined by
(16) (v, w) = (v, ) — a(v, w).

It can be shown that the form a(v,w): H*(Q) x H'(Q) — R! has a potential
J(v), i.e. that there exists a functional J(v): H(Q) — R! which is G-differentiable
at arbitrary v € H*(Q) and satisfies

(17) a(v,w) = J'(v,w) Yo,w € H(Q),
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where J'(v,w) is the Gateaux derivative of J(v) at w € H'(Q). Further, J(v) is
twice G-differentiable at arbitrary v € H'() and has the following properties:

(18) J(0)=0, J(0,w)=0 Ywec H(Q),
(19) |J" (v, w, 2)| < Blw|i|z]1 Yo, w,z € HY(Q),
(20) J" (v, w,w) > ’y\w\% Yo, w € HY(Q),

where v < 3 are positive constants not depending on v, w, z and |- |1 is a seminorm
in H'(Q); J” denotes the second Gateaux derivative of J. Zlamal proved in [15]
that the form a(v,w) appearing in variational problems which correspond to non-
linear quasistationary electromagnetic fields has a potential J(v) with all the above
presented properties that have the following consequences.

Lemma 2.3. Let conditions (17)—(20) be satisfied. Then we have for all v, w, z €
HY(Q)

(21) a(v,v —w) — a(w,v —w) > ylv — w3,
(22) |a(v, w) — a(z,w)| < Blv — 2]y [w]y,
(23) SIol? < J(w) < 351l
(24) a(v,v —w) >J(v)fJ(w)+%’y\v7wﬁ,
(25) a(v,w — v) + J(0) — J(w) > —%mv—wﬁ.
Proof. For the proof see [10], p. 12. O

Let us define the functional

J(v) = Z Ju (), I (v) :/ Fu(Jgradv|) do
M=E,P Qnmr
where )
Fu(y) z/ svp(s)ds (M = E,P).
0
In [15] it is shown that J(v) satisfies estimates (19), (20) with v = min(yg,vp),
B = max(Bg, Bp), where ypr < Oy (M = E, P) are positive constants from (5).

Remark 2.4. According to definition (4) of the forms ap(v,w) (M = E, P)
all relations (21)—(25) are also true for the forms aps(v,w). In particular, the forms
ap (v, w) are Lipschitz continuous:

\aM(v,w) — aM(z,w)| < ﬁM‘”U — z|1’M|w|1’M V”U,U),Z € Hl(Q]V[).
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Lemma 2.5. Let
(26) dpyr(v,w) = Iy (v, w) — aps(v, w).
We have for all v, w,z € HY(Q)
(27) |dp (v, w) — da(z,w)| < Tmlv — 21 mlwli,mv (M = E, P)
where Ty is a constant independent of v, w, z and such that
(28) 0< 7 <Oy
Proof. We follow ideas from [15]. We estimate the functionals
1
Ly (v) = / {591\4|gradv|2 - FM(gradvD} de (M =E,P).
Qup
With regard to [1, Chap. 2], (13) and (4) we get
d

(29) Ly (v,w) = @LM(U + )| y_,

/ {@NIZ Ov (’9_11; — v (Jgradvl) Z
Qm =1

= Iy (v, w) — ap(v,w).

oot
Ti OT;

Thus Ly (v) is the potential of dps (v, w).
Further, we see that

d
Q/VJ(%”LU’Z) = d19 (U+f‘92 w |19_0
2

0z Ow 0z Ow
/QM{ M aiﬂz 8581 B VM Z; ze

ov 0z ov Ow
_ !
Var( Z Ox; Oz, g Ox; Ox; }

:/ (grad 2) "Dy grad w dz,
Qup

where v},(s) = dvar(s)/ds, n = |gradv| and the matrix Dy has the form

2 Jv_ Ov_
Dy — On — o — 5M(daf1) —0Mp,r dz1 Ox2
M= Sy 2 O On — ans — opr (22 )2
M3z, s M M M\ Dz,
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where anr = var(n), o = 071}, (n). The eigenvalues p11 2 of Dy are of the form

1 .
,u,'Z(‘)M—OéM—5((51\/ji|(5M|)772 (221,2).
It can be shown that

On —an = Op —var(n),
(30) P2 = {

Onm — an — dan® = Onr — [pvar ()]
Integration of (5) over [0,t] (¢ > 0) and the continuity of v/ (s) yield
v < vp(n) < Bum Vn € [0, 00).
This together with (5) and (30) implies
v < ang F %(5M + |60 )0? < Bur-
As we assume condition (14), we can prove that
|il < Onr — o,

where opr = min(vyy, 2(0n — ;ﬁM)), 0 < o < ©)y. Hence

|Lhy (v, w, 2)| < 7ar|2]1,m|wli, v

where 0 < 7ay = O — o < O (M = E, P). Using Taylor’s theorem in the form

Ly(w+ ¢, 0) = Ly (w,9) + L (w + 99, 0,9)

where 0 < ¥ < 1 and w, ¢, v are arbitrary functions from H!(2)s), by (29) we
obtain relation (27). O

Remark 2.6. Lipschitz continuity (27) and its discrete form (42) with the con-
stant 757 satisfying (28) will play an essential role in Theorem 4.14.
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3. DISCRETE PROBLEM

Let us approximate the domain €2 by a domain 2;, with a polygonal boundary
09y, the vertices of which lie on 0Q2. Let 7, be a triangulation of €. This trian-
gulation consists of two subtriangulations 7, and 7,p such that 7, = 7,5 U 7pp,
Thwe NThp =0, Thg and Tp,p are triangulations of Qg and Qy, p, respectively, where
Qnar is a polygonal approximation of Qy (M = E, P). We assume that the points
forming the set Iy N I, are nodal points of 7,. With every triangulation 7;, we
associate three parameters h, h and ¥, defined by

h=maxhy, h= min hp, ¥ = min 9r
TeT, TeT, h TET,

where hp and Yr are the length of the greatest side and the smallest angle, respec-

tively, of the triangle T' € T;. We restrict ourselves to triangulations satisfying the
conditions

Yo >0 Yh € (0,hg) o = const,
Co >0 Vh € (0,hy) Cp = const.

The bounded domains Q, Qg, Qp appearing in (6) satisfy
(31) ﬁDQUQh, QM:)QMUQMV[ Vh € (O,ho)
For all v,w € H*(),) we define forms

(32) ap(v,w) = Z app (v, w),

M=E,P

ahM(U, w) = /
Qo 1

We again have

an(v,w) = Jp(v,w) Yo,w € H'(Qp)

(33) B0 = 3 Jar), Ja() = /Q Fur(lerad o) dz



Lemma 3.1. For all v,w,z € H*(Q),) we have

(34) ap(v,v —w) — ap(w,v — w) 27\v—w|iﬂh,
(35) lan (v, w) — an(z, w)| < Blv = z[1.0,|wla,,
(36) Sl a, < (o) < 38R0,
(37 an(v,0 —w) > J(0) — Ju(uw) + 53l —wfl g,
(38) ap(v,w —v) + Jp(v) — Jp(w) = f%mv —w iﬂh'
Proof. See[11], Lemma 2.1. O

Remark 3.2. Similarly to (38) we can derive the relation

(Bplv—wli p, + Belv—wl g,),

N =

(39) an(v,w — v) + Jp(v) — Jp(w) > —

which we will use in a priori estimates.

We can also define for all v,w € H'(2,) forms I, (v, w) by

2 v dw

T
1 axz 8xz ’

(40)  hww) = 3 barfww), lar(v,w) = O /

M=E,P Q=

where the constants O (M = E, P) satisfy condition (14). Further, we define
(41) th(v,w) = th(v,w) —ahM(v,w)
and introduce the following lemma similar to Lemma 2.5.

Lemma 3.3. For all v,w,z € H*(Qp,0) we have

(42) |dnat (v, w) = dpa (2, w)| < Tvlv = 2|1 My, Wl v, (M = E, P),

where T); is a constant independent of v, w, z and satisfying (28), i.e. Tpy < O .

Proof. Inspecting the proof of Lemma 2.5 we see that the functional
1
Lh]V[(U) = §th(”U,”U) 7JhM(”U) (M:E,P)

where 57 (v, w) and Jpps(v) are given by (40) and (33), respectively, is the potential
of the form djp (v, w) defined by (41). Thus in the same way we can derive an

estimate

|L;:M(U’ w, z)‘ < TM"Z 17Mh|w|17Mh

with 0 < 7ar < ©pr (M = E, P) and using Taylor’s theorem we prove (42). O
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Let us define finite dimensional subspaces of H*(Q2,) N C(Q4)

Xp = {v € C(Q): v|r is linear for all T € T},
Vh:{’UEXh:’U(PZ'):O VPiGFl},
Wy, = {”U € Xy ”U(PZ) = Z(R) VP, € Fl}

According to (32) and (40), we have for all v,w € X},

2
ov| Ow
ap(v,w) = Z Z ZVM(|gradv|T)8_xi . oz, TmeasT,
M=E,P T€Tyy i=1
2 ov | Ow
In(v,w) = Z Z ZGM@xi o TmeasT.

M=E,P T€Tyy i=1

As the derivatives are constant on triangles no numerical integration is needed for
the computation of the forms ay, (v, w) and I, (v, w). Also the term

(v, w)a,, = Z (v, w)r Yv,w € Xp,
TeThp

can be computed exactly without the use of numerical integration. Thus only the last
term on the right-hand side of (15) will be approximated by means of a quadrature
formula on a triangle. The symbol (far(¢;), w M){wh, where w € X}, will denote this

approximation of (far(t;), war) s, -

Lemma 3.4. Let g € WL () and let the quadrature formula on a triangle used

for the computation of (g,v){, be of degree of precision d = 1. Then

(43) (9,0, = (9,0)8,] < Chlgll, o gllvlie, Yo Xy
where the constant C' does not depend on h, v and g.
Proof. Lemma 3.4 is a consequence of [2, Theorem 4.1.5]. g

Let {h,}52, be a sequence such that h, > 0, hy, > hpi1, ILm hy, = 0 and let
{Q, }22, and {7}, }22, C {7n} be the corresponding sequenZesoj)f polygonal do-
mains and triangulations, respectively. Let {At,}22 ; be a sequence independent of
{hn}22, with the properties At, > 0, lim At, =0, ry := T/At,, = integer.

In order to simplify the notation wenwioﬁ write Q,, X,, V, and a,(v,w), (v,w),
instead of Qy,,, Xp,,, V4, and an, (v,w), (v,w)q,  , etc.

We discretize Problem 2.1 in space by the finite element method with linear func-
tions on triangular elements. The discretization in time is carried out by applying
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the implicit Euler method to the left-hand side and the explicit Euler method to the
right-hand side of (15). (Let us note that the idea of implicit-explicit methods goes
back to [5], [3].) We get a scheme which is linear:

(44) At N AUl p,vp)p, + (U v) = do (U1 0) + (f(tie1),0)h Yo € Vi,

where AU , = Ul , — Ul3!, the forms 1, (v, w), dn (v, w) are defined by (40) and

(45) dp (v, w) = 1, (v, w) — ap (v, w).

We set

(46) (ftica),v)h =D (fu(tica),om)hs, Yo € Vi
M=E,P

The scheme (44) cannot be used for i = 1 as the initial value u{ is known on Qp
only. Therefore, U} is defined as follows:

(47) At;l(AU}LP,vp)pn +an(U,1L,v) = (f(tl),v)fz Yo €V,

where U, = ul, € La(Q,p) and ul), satisfy (52). Let us note that (47) is a nonlinear
scheme considered (for arbitrary ¢ > 1) in [14], [11].
The following discrete problem approximates Problem 2.1.

Problem 3.5. Let n be a given integer and let r,, = T/At,,. Let
(48) t; =iAt, (i=1,...,m).

Let the forms a,(v,w) and I,(v,w) be given by (32) and (40), respectively. Find
Ui € Wy, (i=1,...,r,) such that

(49> Atgl(AU}LP7vP)Pn + an(Ui,v) = (f(t1)>v)£z Vv eV,
(50) U = ubl, € La(@up),
(51) At N (AU p,vp)p, + 1n(Ul,v) = dy (U 0) + (F(tiz),v)E Yo €V, i > 2,

where d,,(v,w) is defined by (45) and {u} }2,, ul’, € La(2,p) is a sequence satis-
fying the relation

(52) lim |uf, —ud[lo,p, =0,
n—oo

where uf’ € Ly(Q) is the extension of uf € Ly(Qp) by zero.

113



Theorem 3.6. The solution U. (i = 1,...,r,) of Problem 3.5 exists and is
unique.

Proof. For the proof see [15], pp. 430-431. Let us note that the existence and
uniqueness of U (i > 2) follow from the fact that the quadratic form b, (v, v), where

bn(v,w) = (UPawP)P,,, + Atnln(vvw)a

is bounded from below by C|lv||f, (C is a positive constant independent of n)
which is a consequence of the inequality (20) of [8], i.e.

(53) ol o, < C(llv

Ig,Ph, + ‘U‘%,Qh) V'U € Xh'

O

Now we will extend the approximate solution of Problem 3.5 to the whole interval
[0,T]. For this purpose we introduce some auxiliary definitions and lemmas.

Definition 3.7. A triangle T € 7;, is called a boundary triangle if it has two
vertices lying on 9 (or Qg NONp). Let P, Py, P53 be the vertices of a boundary
triangle T', Py lying in Q37 (M = E, P). The curved triangle T'¢ with two straight
sides Py Py, P1 P53 and one curved side which is formed by the part of 9Q (or 0Qg N
9Qp) lying between the points P», P; is called the ideal triangle. (The triangle T is
an approximation of 7'4.) The ideal triangulation ’Z;id of the domain €2 corresponding
to 7j is the triangulation of Q in which we replace all boundary triangles in 7; by
their ideal triangles.

Definition 3.8. Let w € X3,. The function @: Q,UQ — R! is called the natural
extension of w if @ = w on 2, and

w Tid on Tid D) T

Tia = P

where p is the linear polynomial satisfying p|7 = w|7 and T'¢ denotes the ideal
triangle.

Lemma 3.9. Let T' be an ideal triangle with vertices PT (i = 1,2,3), PT, P] €
0. Let Ty be the closed triangle which lies in the ¢, m-plane and has vertices
Pr =(0,0), Py =(1,0), Py = (0,1). There exists a transformation

(54) T = xid(ga 77)7 Y= yid(§7 77)

which maps one-to-one the reference triangle Ty onto the ideal triangle T'Y in such
a way that P; « PT, (i = 1,2,3), PrP! PlTPjT, (j = 2,3), P;P; «— X2 and
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Ty < T'Y, where ¥4 is the curved side of the ideal triangle T'Y. Let p(¢,7) be a
linear polynomial and let the mapping

£=E%y), n=ny)
be inverse to transformation (54). Then the function
(55) w(x,y) = p(€ (@, y), 0" (2.y))

has the following properties:

(1) w(x,y) is linear along the segments P PY', PI PI';

(2) @(PF) =p(P}), i =1,2,3;

(3) ifw(Py) = w(Pf) =0, then w(P) =0 VP € ©;

(4) let the boundary O be piecewise of class C3, let u € H?(T'?) and let w be
uniquely determined by the conditions w(P!') = u(PT), (i = 1,2,3). Then we
have

(56) @ — ully,ria < ChF ¥|lullgpia (k=0,1),

where the constant C' does not depend on hr and u.
Proof. The proof follows from [13] and [9]. O

Definition 3.10. Let T}id be the ideal triangulation of ) corresponding to the
given triangulation 7;,. Let w € X},. The function @ € H'(Q) is said to be associated
with w if

(1) @ e C@);

(2) w(P) =w(P) VP;

(3) w is linear on each triangle T € 7;, N 7,4 and on each ideal triangle T'¢ € 7,14
lying along I (ie. @ = @ on T'Y D T and @
T4 cT);

(4) if T'9 € T, lies along Iy and T € 7}, is its approximation then @ = @ on T4,

7ia 1s the restriction of w|s to

where @ is given by (55).

Remark 3.11. Using the rule “first indices, then bars, tildes, dots and hats” for
a function w € X,, the symbol @,; denotes the natural extension of wy; from Qs
onto Q2,3 U Qys and wys denotes the function from H'(Qpr) N C(2yr) associated
with wWpr -

It should be noted that (@) = Wy for all w € X,, while (@) # @Was-

Using the solution of Problem 3.5 we define the finite element Rothe functions
(57)  Un(t) = U7 + (AU JAL)(E —tii1), tE [tint], (i=2,...,m)
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where t; are given by (48) and functions ﬁfl € H(Q) are associated with U!. On
the interval [0, At,] we set

Upp(t) = U% + (AU p/At,)t, t € [0, Aty].

As Theorem 4.14 holds for the associated functions Uy p, Zy, we need ﬁgp =ak,.
For that reason we assume that

(58) Ul =ul, € X,
If we use (57) we can also define

(59) Zot)=UL, t€]0,At,], Zn(t) = Un(t), t € [Aty,T).

4. EXISTENCE, UNIQUENESS, CONVERGENCE
Let {s!'}, s € C§5°(Q2p), be a sequence satisfying
(60) lm ||zp + sf —ullo.p = 0.
j—00

For every pair j,n we define the following auxiliary discrete problem.

Problem 4.1. Let a,(v,w), l,(v,w), d,(v,w) and (f(t;_1),v)] be the same as
in Problem 3.5 and let r,, = T/At,. Find S;n eW,,i=1,...,r, (j,n fixed), such
that

(61) At;l(AS;nP,Up)pn + an(S;n,v) = (f(t1),v)E Yo eV,

(62) 89, =I(z+5F) € W,
(63) At Y (ASL p,vp)p, + (S}, v) = dn (S 0) + (f(tio1),v)) Yo € Vi (i 2 2)

where AS!, p = 5%, p— S;;}p, gf € C5°(Q) is the extension of sI" € C§°(Qp) by zero

and I,w € X, is the interpolant of a function w € C(Q,,).

Theorem 4.2. The solution S}, (i = 1,...,7,) of Problem 4.1 exists and is
unique.

Proof. This theorem can be proved in the same way as Theorem 3.6. O
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Lemma 4.3. Let (f(ti—1),v). be computed by means of a quadrature formula
of degree of precision d = 1. Then we have

(64) D NASHp/Atallg p, At + Y IASIIE 0, + 157l 0, < CG)
i=1

i=1
Ym,n (1 <m < ry)

where the constant C(j) does not depend on m and n.

Proof. In what follows the symbols C, C(j) will denote positive constants
independent of h,, and At,, with generally different values at any two different places.

A) First we prove that [|S}, |10, < C(j). Choosing v = AS}, € V, in (61),
using (37) and then (36) together with the discrete form of Friedrichs’ inequality [12,
(29.1)] we get

y y
(65) 18850/ Atalld, p, Atn + 5 CIIASS T 0, + 515l 0,
B

Let us add the term 3|5, ||5 ,, to both sides of (65). With regard to S}, € W, we
have

1551651, = [Tz
Applying the discrete forms of Friedrichs’ and trace inequalities [12, (29.5), (29.2)]
and the above relation to (65) we obtain

|g,1"1n < ||Inz||(2),aszn-

(66)  [1AS)p/Atull§ p, At + [AS]IE o, + 18],]1% 0,
< CUISHIR . + In2llf o, + (f(t1), AS])5 )

The finite element interpolation theorem for linear polynomials on a triangle and
relations (62) yield

(67) Cl1S3.113 .,

o o [} 2
<C > {28 + G mllas, + 1T (zar + (55 ar) = (257 + (57)a) 1.0, }
M=E,P

C (o)
<C Y 15+ G, < C{lzellp + Iz
M=E,P

3p+ 17130} < CU,

where 2§, € H2(Qy) is the Calderon extension of zy; € H2(Qy) (M = E,P).
Similarly to the above,

2
68)  CllLzllo, <C 3 {TaarCenr) = 2§lluns, + 2§, }
M=E,P
<C Y 1:G12,, < ClllzElde + 230} < C.
M=E,P
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Lemma 3.4, assumptions (6), (46), (67) and the inequality
(69) lab| < ea?/2+b%/(26) a>0,0>0,e>0
with various values of € imply

(70)  CI(f(t2), S3)nl < C{I(F(t1), S5 )nl
+1(f(t1), S5 )n — (f(t1), Sfu)nl }
<O Y Mty o 5, 1550 ll1,01,

M=E,P
C(j){HfEHAC(f,WgO(QE)) + HfPHAC(f,W;o(ﬁp))}’
(1) CUF(t), Sj)nl <C Y Ity o0y, |1SFunell g,

M=E,P

2 2
< Ol ellcwe @ey + 1P hciws @)
LEA .

Using inequalities (67), (68), (70) and (71) we obtain from (66)

(72) 1AS]p/ Atallg p, Atn + [AS], |17 Sinllia, <CG),

which gives

(73) 15}, 1.2, < C().

B) Now we prove the inequality

m ) i ) 1
(74) D IASL, p/AL[S b, Atn + Y ASL IR o, + 5IIS}ZII?,9,L
=2 =2

)+ 5 At ZII g, (2<m <)

Let us choose v = AS;n €V, in (63). After summing from ¢ = 2 to i = m we obtain

m

(75) ZHA 1 b/ Otal3 p, Aty +Zan S ASL) Y 1n(AS,, AS])
1=2 1=2
= > (f(ti1), ASL)L.
1=2
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We set kyy = Oy — 38m, (M = E,P). We have ryy > 0 owing to (14), hence
k =min(kg, kp) > 0. It follows from (39) that

D la(ASE, ASL) + D an(S), " AS)
=2 =2

> Z{nm il + Tn(S5) = Tn(S51)}

= Ju(SJh) = Ju(S},) + £ Y _|AS
=2

Applying this relation to (75) and using the discrete form of Friedrichs’ inequality
[12, (29.1)] and (36) we obtain

(76) ZHA 4up/ Atall3 p, A + 2157 g, +HCZIIA
=2

ﬁ

Sin)n-

n

Let us add the term Z[|S7[|3 -, to both sides of (76). Similarly as in part A using
the discrete forms of Friedrichs’ and trace inequalities [12, (29.5), (29.2)] we come to
the inequality

(77) D IIASp/Atall3 p, Aty +ZIIA il + 1S5
=2 =2
C’{HS;n 2’ . n 2’ . AS’ ) }
z=2
Summation by parts gives
(78) D _(f(tim1), ASS)5 = (F(tmaa), Sia)n — (F(1), S30)
i=2
m—1
i=2

From Lemma 3.4, assumptions (6), (46), (73) and inequality (69) it follows that

(79) C‘(f(tmfl)asjn n C Z ||fJV[ m— 1)||looQM || nM”lJ\/[n

M=E,P
2
C{HfEHAc(I WL (Qg)) + ”fPHAC(j,Wolc(ﬁp))}
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(80)  CI(f (1) Snl <C D0 Ifm )y o iy, 15nnr 1o,

M=E,P

C(j){HfEHAC(f,WgO(QE)) + HfPHAC(f,W;o(ﬁp))}'
By analogy,
m—1

CI > () = f(tiza), Sju)h

=2

m—1
<C > Y Nfmt) = fru(tion)lly oo, 155

M=E,P i=2

oy §

M=E,P =2

t;

t)dt 185 nsll, a1,

1,00,Qn

tzl

1/2

oy Z{At /tlnf'Mmm@Mdt} 1S maelliag,

M=E,P i=2 ti
1/2
n}

<c Y \/EHfM”Lz(IWl (QM)){Zl

M=E,P

<C{EI 0w @y + 1P w

m—1

1 2
T

=2

Relations (77), (73), (68) and (78)—(81) imply (74).
By the discrete form of Gronwall’s lemma (see [12], Theorem P.134) we obtain
from (74)

ZIIA

Stalia, T 18Tt <CU) 2<m<r).
=2

Finally, (64) is a consequence of this estimate and (72) where the constant C(j)

depends on ( f||2’p). O
The norms || - |lo,p,, || - ||1,0, in inequality (64) depend on n. In order to obtain
a priori estimates introduced in Corollary 4.4, where the norms ll-llo,p, || - 1|1 appear,

we must consider the functions S inp S;-n associated with Sjnp, S, and apply
Lemma 48.5 of [12].
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Corollary 4.4. Under the assumption of Lemma 4.3 we have for all n > ng

m
(82) Y A8 p/ At p Aty +ZHA iallE + 1573
i=1 i=1

<C@F) YVmyn (1< m<ry),

where the constant C(j) does not depend on m and n.

For every pair j,n let us define the finite element Rothe functions
(83)  Sju(t) = S0t 4+ (ASL, /At (E—ti1), t€ [tima,ti](i=1,...,m),
(84)  Spup(t) = Sih + (AShp /AL (E —tir), t€ it (1= 1,...,7)
and the step-functions

(85) Sin(t) =801 teftiint) (i=1,...,m), S8u(T)=28""1

jn

where t; are given by (48).

Corollary 4.5. The finite element Rothe functions §jn(t), §jnp(t) and the
step-functions S;, (t) satisfy the relations

(86) 15,n (O]l < C(G) Ve € T Vn,
(87) 15,n (O]l < C(G) Ve € T Vn,
(88) [1Sjn — SjnH%z(l,Hl(Q)) < C(j)At, Vn,

T
(89 | 1485000/ dtlf pat < ) v

Proof.  All the relations follow immediately from Corollary 4.4, (67), [12,
Lemma 48.5] and the definition of functions (83)—(85). O

Lemma 4.6. For a fixed j we have

(90) 1S9, — (= + 5])llx < Ch2,
+||s§’\|2p}—>o if n—oo (k=0,1),

(91)

§>
o

— (zp + 87 lk.p <

if n—oo (k=0,1).

Proof. Lemma 4.6 is a consequence of (56), the finite element interpolation
theorem for linear polynomials on a triangle, assumption (3) and (62). O
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Lemma 4.7. Let f;M (M = E, P) be step-functions defined by
92)  farr() = far(tic1), t€ftint) (i=1,..,70),  fare(T) = far(tr,—1)

where t; are given by (48) and the functions fy; (M = E, P) satisfy assumptions
(6). Then we have

(93) fart — fuin Lo(I, WA (Qy)) (M = E, P).

Proof. The proof follows the same lines as in [12], p. 360. O

Lemma 4.8. Let j be fixed. Then there exist a subsequence {§jk} of the
sequence {S;,} and a function u; such that

(94) uj € Loo(I, H (),

(95) ujp € AC(I, L2(Qp)) N Loo(1, H' (2p)),
(96) wjp € Lo(I, La(Qp)),

(97) Sikp — ujp in C(I, Ly(Qp)),
(98)

(99)

(

(

~

)
S —wuj weakly in Lo(I, H'(Q
(

)

)
§jk —wu; weakly in Lo(I, H'()),

100) dS;ip/dt — i;p weakly in  Lo(I, Lo(Qp)),
101) u;p(0) =zp +s5 in C(I,La(2p)).

Proof. A)Relation (86) yields ||§jnHL2(]7H1(Q)) < C(j). According to Theorem
P.132 of [12], there exist a subsequence of the sequence {S;,,}>2; (let us denote it
again {S;x}) and a function u; € Lo(I, H'(£2)) such that

~

(102) Sji. —uj weakly in Lo(I, H(Q)),

which is (98).
As the norm || - ||; is weakly lower semicontinuous on H'(Q) (see [7], p. 183)
relations (86) and (102) imply

lus (@)1 < ligg}f\lgjk(t)\ll <C) vtel

Thus u; € Loo(I, H(2)).
Relation (99) is a consequence of (88) and (102).
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B) From (89) it follows that

t//
180p (") = Spup ()llop = H [ @Siuntoyjanar
t/

0,P
SOOI =M vt " eI =[0,T).

Hence the functions §jnp(t) (n = 1,2,...) are (for fixed j) equicontinuous on I in
lo,p- Relation (86) and Rellich’s theorem [12, Theorem P.65] imply that
the sequence {§jnp (t)} is relatively compact in Ly(2p) for every t € I. According

the norm || -

to the generalization of the Arzela-Ascoli theorem [12, Theorem P.101], there exist
a subsequence {S;,p} of the sequence {Sj,p} and a function w € C(I, Ly(Qp)) such
that

~

Sjkpﬂw in C(T,LQ(QP)).

This relation yields that
T -~ ~
(103) [ ISjup(t) = w(O) p ot < Tamax |Syp )~ w®lfp — 0 or ko,
0 tel
As the form

/O(Z(t),v(t))dt, v e Ly(I, HY(Q))

is a linear bounded functional on Lo(I, H!(Q2)) for every fixed z € Lo(I, La(f2)),
relation (102) implies

Sir — u; weakly in  Lo(I, L2(12)).

With regard to this result and (103) we obtain w(t) = u;p(t) in La(Q2p) and (97)
holds.
C) For every t € I and for every k we have (for a fixed j)

~ —~,

(104) (Sjkp(t),’l)p)p — (S;-]kp,vp)p = /0 ((dgjkp(T)/dT),’Up)PdT VUP S LQ(QP).

According to (89) and Theorem P.132 of [12], we can extract a subsequence (we will
denote it again {d:S'\jkp/dt}) of the sequence {dgjkp/dt} such that

(105) dS;pp/dt — g;p  weakly in  Ly(I, Lo(p)).
Passing to the limit for k& — oo in (104) and using (97), (91) and (105) we obtain
¢
(ujp(t),vp)p — (2P + Sf,UP)P = /0 (gjp(7),vp)pdr Yup € La(Qp).
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Using [12, Corollary P.112(b)] we can write this relation in the form

t
(Ujp(t) —zp—s] —/ gip(r)dr, ’UP) =0 Yup € Ly(Qp).
0 P

From the last relation we get
t
ujp(t) =zp + sf —|—/ g;p(T)dT.
0

Thus according to [12, Theorem P.113], u;p € AC(I, La(Qp)), u;jp(t) satisfies the
initial condition (101) and we have

(106) ujp(t) =gjp(t) a.e. inl.

By (105) we have

T ~
(107) /0 ((dSjrp(t)/dt),vp(t)) , dt

T
- / (30 (8)svp () p dt Yop € La(I, La(Qp)).
0
Relations (106) and (107) imply (100).
Relation (106) gives u;p € Lo(I, L2(Q2p)), which is (96). O
In the next lemma and remarks we introduce some relations which we will need

in the proof of Theorem 4.12.

Lemma 4.9. Let @y, Un, Upp be the natural extensions of wys, Uy, Una, T'€-
spectively. Let 0y, Unpr, War be functions associated with v, vyar, was, respectively.
Then we have

(108) @317 cne < Challwarliar, Yo € X (e =7,w) (k=0,1),

where the constant C' does not depend onn and w and €, = Tpar, Wnns are defined
by

(109) wnrt = Qs = Qunr, T = Qv — Qv (M = E, P).
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Further, we have

(110) lim ||’l_)n — 1}”1 =0, lim ||’l_)nM — UMHLM =0VYvevV,
n—oo n—oo
(111) lim ||0, —v|1 =0 Yo €V,
(112) < K@) YweV (M=E,P),
(113) |Un]l1 < K(v) Yo eV,
(114) < K()hy, YveV (M =E,P),
(115) < Ch YweX, (M=E,P) (k=0,1),

where K (v) is a constant depending only on v and €.

Proof. See[12, Lemma 28.8] or [11], pp. 359-360 and [11], pp. 361-362. O

Remark 4.10. We will also use the following notation:

2 9 dw
deon(ev) = [ llgradol) 3 g 5
01} (9w
l. =0
e (0,0) M ennt i3 axi (’91:1

where e,01 = Tonr, wnnr, (M = E, P) are defined by (109).

The forms ac, ,, (v, w) and [, ,, (v, w) are bounded and we have

|G (0, W)

Lot (0, W)

| < /6M|,U|175nlw|w|175nkf Vo, w € Hl(ﬁ)’
| <

®N[|U|1367LM|U)|1167LM Vv,w € Hl(ﬁ)

Proof. The proof is similar to that in [11], p. 362. O

Remark 4.11. Let us define an auxiliary finite element Rothe function

(116)  Sjup(t) = Sop + (ASjp/Aty)(t = tiz1), t€[tic,ti] ((=1,...,m)
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and step-functions

(117) Si(t) =801, teltiont) (i=1,...,m),
sin(T) = S”fl
(118) Sinm(t) = S;n}w, teftint) (G=1,...,m),
Sinm(T') = S;":;,J\/fl (M = E, P),
(119) Sinm () =8ty teltiont) (=1,...,m),
Sinna(T) = Syt (M = E, P),
(120) fn(t) = f(ti-1), te€fti-nti) (i=1,...,m),
FulT) = f(tr, 1),
(121) Pn(t) =@(ts), te(tim,ts] ((=1,...,m),
Pn(0) = p(t1),

where ¢; are defined by (48), S;nl, S;n]l\/l denote natural extensions of S;nl, S;n]{/l,

the symbol S;n 1, denotes the function associated with Sln 1 and ¢ € C=(I).

Theorem 4.12. The function u; from Lemma 4.8 and the strong derivative ;p
of ujp form the unique pair satisfying the relations

(122) /0 (i (7), 0p (7)) p A7 + /0 a(uy (1), v(7)) dr

_ /t(f(T),v(T))dT Vo € Ly(I,V) Wt €T,

(123) u;p(0) = zp + s},
(124) tr(u](t)) =trz in LQ(Fl) Vtel— Ejj7

where meas; I/; = 0 and we have

(125) Sinp — ujp in CO(I, L2(2p)),
(126) Sin —  u, in Lo(I, HY(Q)),
(127) Sin — in Lo(I, HY(Q)),
(128) dS;,p/dt — @;p weakly in  Lo(I, Ly(p)).

Proof. A) Let w € V be an arbitrary, but fixed function. Let {w,}, where
wy, € V,,, be such a sequence that

(129) lim [|w, — w10, =0, lm |wanr — w10, =0 (M = E,P),
n— o0 n—oo
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where w® is the Calderon extension of w. The existence of {w,} is guaranteed by
Theorem 31.4 of [12]. We consider a function ¢ € C°°(I). Let us set v = w,p(t;),
Wy, € Vi, in (63), v = wpe(ty) in (61) and let us multiply these relations by At,,.

After summing up from ¢ = 1 to i = r,, we get

Tn

(130) Z(AS Py Wnp) P, @(ti) + Atnan (S}, wa)e(t)

+ At,, Zan Si b wn)p(ti)

Tn

= — At, Zz AS, w)p(ti) + Ata(f (1), wa)y, #(t1)

Tn

+ At, Z(f(tifl)a wn )b (ti).

=2

Let us use the auxiliary functions (116), (117), (120) and (121). Then we can write
(130) in the form

+Atn[an(§;mw ) — an(gg)mwn)]@(Atn)

-, zz (ASwndolts) + [ (Fu®) )i 5alt)

+ Aty (f(Aty), wn)n‘P(Atn) — At,(f(0), wn)fl‘P(Atn)-

Let us use the functions given by (84), (85), (92), (116)—(120). As we have

a(Sjx(t), Wx) = Z anr(Sjrar (t), Wear),

M=E,P

ar (S5 (t) = > AanGenr(t), Dear) + aryy, (Fjens (£), Trear)
M=E,P

— gy p, (S (), Wiear) }

where {k} is the subsequence of the sequence {n} appearing in Lemma 4.8 and the
sets exm, (e = T,w, M = E, P) are defined in (109), we can write relation (131) for
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a subsequence {k} of {n} in the following way:

(132) / (A8, (8)/ dt, ) p B (2) dt+ZA;"P+ / (S (), Tr)Be (1) dt

0 m=1

3 3
+> > B%”mRhZ oo -r-Y Y Dy

m=1 M=E,P m=1 M=E,P m=1M=E,P
CR-Y Y Ekm/ (Fa(8), ) B (1) dt
m=1 M=FE,P

3 3
+Z Z FglM*R*Z Z Gim — R2*Z Z Hyy
m=1M—E,P

m=1 M=E,P m=1M=E,P

where we define

T
AllcP = /(dgjkp(t)/dt,’wkp — ﬁ;kp)p@k(t) dt,
0
T — o~
AiP = / (dekp(t)/dt - dekp(t)/dt,z_ukp)ngk(t) dt,
0
T
A}p = / [(dSjkp(t)/dt, wip)r,, — (ASjep(t)/dt, Wip)w,, )@k (t) dt,
0
T ~
B}y = / an (Sjen (t), Wenr — Wenr)Pr(t) de,
0
T ~
Bhar = [ aae(Gar(0) uar) = axe (S (0. wan) | (0)
0
T
By = / [Qrons (Siena (), Whear) — Qwyps (ks (8), Wiear )Pk (2) dt,
0

Cin = AtkaM(é\;kM,'wkM — Wrar ) p(Aty),

CEyr = Atilans (S3pnr, Wenr) — ant(Shas, Tran)lo(Aty),
Cing = Atilar,, (Sjiar Wknr) = Gugns (Sear, W) o(At),
Dijnr = Atyans (S%ns Tinr — Brnr)o(At),

Diy = Aty [GM(Snga W) — aM(gﬁ-)km Wi )] p(Aty),
Dy = Aty [aTch(S;)k]\/[’wkM) - awkM(S?kMa@kM)]@(Atk),

Tk
Biar = Atk > I (ASk s, @iar — B )p(t:),
=2

Tk
Efy = Aty ZZM(A(S;ICJ\/[ = Sien)s Trem ) (i),
i—2
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Tk
EIEM = Aty Z[ZTICM (AngkMa wkM) - ZwkM (AS;kMa @kM)}(P(tz),

=2

T
Fry = / (fraa (t), s — Wenr ) @i (t) dt,
0

T ~ ~
Foy = /0 [(frnr (), wint ) s — (fena (8), Whont )wyns |2k (t) dt,

T

Hiae = Ate[(f31(0), war ) rny — (Far(0), @rr g Jp (At),
Hing = Aty [(£a0(0), wienr )iy, — (Far(0), wrar) ar Jo(Aty),
R} = Aty a(Sh, @) (Aty),
R} = Atka(§§k,@k) (Aty),

Fiy = / [(Fronr (8), wnr ) s, — (Foar (£), wiar) ar )P () d,
0

Grar = Atk (far (Atk), Dias — Wrar) mp(Aty),
Ginr = Ate[(far(Atk), winr)rynr — (Far (Atk), iar ) Jo(At),
Gin = Ate[(far(Aty), wkM)JV[;C (favr (Atr), wenr) a0 (Atr),
Hjpr = Aty (fa(0), Wrar — Wrar ) rp(Aty),

[

[

Rk—Athl k,wk ),

R} = Aty (f(Atk)a Wy )p(Aty),
R} = Aty (f(0), W) p(Aty).

B) Let the symbol H*(Q2) denote the dual space of H!(Q). For every k € {k} and
every ¢t € I we can define x,;(t) € H*(2) by the relation

(133) (i () w) = a(Sji (1), w) Yw € H'(Q).

From (85) it follows that

Ixie@®)|l« = sup (x;x(t),w) = sup a(§;;1,w), teftio1,t) (i=1,...,mp).

llwlli=1 llwlli=1

By (22) (with z = 0) and (82) from Corollary 4.4 we get ||x;x(¢)|l« < BC(j) Vt € I.
Thus xjx € Loo(I, H*(2)) and we have

(134) Xkl Lo, 1+ (20 < VI BC(),

where T is the length of the interval I. This result, the reflexivity of H'(Q) and
Theorems P.133, P.125, P.132 of [12] imply the existence of a subsequence of {k}
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(we denote it again by {k}) and an abstract function x; € Lo(I, H*(2)) such that
(135) Xjk — X; weakly in Lo(I, H*(Q)).

It is not difficult to prove that (details are omitted)

(136) lim T(dgjkp (t)/ dt, ﬁ;kp)p@k(t) dt = /OT(djp(t), U)p)p(p(t) dt,

k—oo 0

T T

(137) Jm [ a0 8004 = [ e.wear
T _ T

(138) dm [ (R@.o0z0d = [ (1000
(139) lim Ayp =0, lim Bij =0 (m=123M=EP),
(140) lim €, =0, lim DI, =0 (m=1,2,3M=E,P),
(141) lim By =0, lim Ffj =0 (m=12,3M=E,P),
(142) lim iy =0, lim HJ, =0 (m=12,3M=E,P),
(143) kl;r{)lcR (m = .,b),

where {k} is the same subsequence of {n} asin (135). We show (136)—(138) only; the

other relations can be proved using techniques from the proofs of [11, Theorem 3.8]

and [12, Theorem 46.4], where relations similar to (139)—(143) have been proved.
Let us express the term on the left-hand side of (136) in the form

/0 (dSjup(t)/dt, Wip) ,@x(t) dt = / (dSjup(t)/ dt, Gup — wp) ,@x(t) dt

+ /0 (A850p (1) /dt, wp) o (Fr(t) — (1)) dt + /0 (80 (1) /dt, wp) pip(t) dt.

Relation (136) follows from (100), (89), (111) and [12, Lemma 46.2].
Similarly, using (133) let us write

| a7 dt = [ 00,0070 e -
0 0
T T
- / (i (6), B — w)Be(t) dt + / O (8, (@i (8) — o(t)) dt
+ / Ok (), w)p(t) dt.
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Relations (134), (111), [12, Lemma 46.2] and (135) imply (137).
Finally, we can write

| Gea0zea = 5 { [ o)t - o) el a

M=E,P

+/0 (f’“M(t)awM)M(@k(t) — () dt
T ~
+/0 (ko(t)awM)MQO(t)dt},

Relations (111), (93), [12, Lemma 46.2] and (12) yield (138).
Passing to the limit for ¥ — oo in (132) and using (136)—(143) we obtain

T

T
(144) / (it (), wp) pip(t) dt + / (s (8), w)ep(t) dt
_ /OT(f(t),w)<p(t) dt Yw e V Vo € C(T).

C) Restricting (144) to ¢ € Cg°(I) we get

/0 {(@jp (), wp)p + (x;(t), w) = (f(t), w)}p(t) dt =0 Yw € V' Yy € C5°(I).
Hence by [12, Lemma P.128]
(wip(t),wp)p + (x;(t),w) = (f(t),w) Vte I —E, Ywe,

where meas; E,, = 0. Let us integrate this relation over the interval [t/, "] C I. We
obtain

t//
(145) {(@p(t), wp)p + (x;(t), w)} dt

t/

t”
= / (f(t),w)dt Vt' <t" €[0,T] Yw € V.
t/

Let us choose v € Ly(I,V) and t € I arbitrarily. Let {z,} C La(I, V) be asequence
of step-functions such that

(146) zn, — v in  Lo(I, V).
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The existence of the sequence {z,} with the property (146) is guaranteed by [12,
Theorem P.118]. Then according to (145), we can write

(147) /0{(ujp(r),znp(r))p+<Xj(r),zn(7)>}d7:/0(f(r),zn(r))df.

Passing to the limit for n — co we conclude

/ [igp(r),op () + ()0} dr
(148) = /Ot(f(T),v(T))dT Yo € Ly(I,V) Vvt e 1.
D) In this part we prove that
(149) Sk —uj, Sjp—u; in Ly(I, HY(Q)).

The strong monotonicity (21) of a(v,w) gives

T _ - T
(150) /0 a(Sjk(t), Sjk(t) — u;(t)) dt 7/0 a(u;(t), Sjk(t) —u;(t)) dt

T
= 2
> 7/ |5 (t) — uy(£)]] dt.
0

From (99) it follows that
T ~

(151) lim a(u;(t), Sk (t) — u;(t)) dt = 0.

k—o0 0

According to (133), (135), we have

T T
(152) klim a(Sjr(t), u;(t)) dt:/ (x; (), uj(t)) dt.
—>Jo 0
We will prove that
T ~ ~
(153) limsup/ a(S;k(t), S;k(t)) dt
k—oo 0

T T
< / (ui(0), 2 + ) dt + / (F(£),us() — 2 — 3P dt
0 0
1 2
=5 luirp(@) =z = 7|, -
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We consider (61) and (63) only for {k} C {n} and multiply these relations by Aty.
We choose v = R € Vi in (61) and v = Rzk1 € Vj in (63), where

i—1 _ gi—1 _ ¢0 i-1 _ gi—1 0 ;
Ry = Sj — Sjes Bjp = Sjpp — Sjiepy 12 2-

Summing up from ¢ = 1 to ¢ = r; we obtain
(ASjp,s Rip)p, + Z (ASp, Ripp) P + Atpar (S, Rjy)
+ Aty, Zak(s;i,;l, R
i=2

:Atk(f( kk+Atkz z 1 R;klk
— Aty, Z I (AS},, RI).
As le = AS ev, R;kl §;;1 - §J0k € V the previous relation yields

T~ ~ . .
054>/'o%kuxsmu»dt:A«Asﬁp,Asﬁﬁn

- (Ag;kP’ A(EjlkP - §]1kP))P - (A(EjlkP - S?kP)a AS;kP)P
- {( 1IfP’ ASI )TkP - (AE;kP’ AE;kP)ka}

Tk

Z (ASip. Rigp) p = Y _(ASjp Ripp — Riyp)

=2

- Z ]kP ]kP R;klg Z{ AS;’kPa R;;}D)Tkl:’ - (AS]kP’ R;;}D)wkp}

T
+/awm»%uw7mmwm@w
0

g1 Bl B1
— Aty E am (Sienrs Bjrnr — Rjpn)—
M=E,P

— Atk Y {an(Shears Rirar) — ane (Sjrs Rjiar)}

M=E,P

— At {ar,, (SYass Rrns) = wnns (Senss Rlons)d
k TeM \P kM Vi M wem \P jkM s 1V M
M=E,P
Tk

_ At a (§i—1 Rl _]33‘—1)
k M\Rien M kM
i=2 M=E,P
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Tk
— At Y Y Aan(Siags Rigay) — ane (St Ripi)}

i=2 M=E,P

Tk
- Atk Z Z {aTkM (S]z;]\l/l’ R;;J%/[) = Quppy (S;Z]%/I’ R;;]{/I)}
=2 M=E,P

T ~ ~
+/() (fk(t),sjk(t))dt*/ (fu(t), ]k)dt

Tk
+ ALY > (i), Riny — Rigar)w

i=2 M=E,P

+Atkz Z {(fM(tlfl)’R;;]{/f)TkM - (fN[(tifl)’E;';]{/I)wkM}

i=2 M=E,P

+Atkz > {(fM(tz'—l)’R;-Zzb)Lk—(fM(tz'—l)’R;Z&)Mk}

i=2 M=E,P

M=E.P
+ Aty Z {(fM(tl)ale'ka)TkM - (fM(t1)7Rj1'kM)Wk1\4}
M=E,P
+At Y {(fu(t), ]kM) — (far(t), Rjgar) v, }
M=E,P
Tk Tk
— At Y UAS RN =AY Y (A8 Rk — Righy)
= i=2 M=E,P
— Aty Z Z I (A(Sh — §;kM)’ Eéﬁxf)
i—2 M=E,P
Tk
- Atk Z Z {l'rkM (AS]Zka R;;}VI) - lwkM (AS;ka R;;I{/[)}
i=2 M=E,P

Now we estimate the first and the fifth term on the right-hand side of (154). By
relation (84) we can write

Tk
(155)  —(AShp AShp)e — > (ASp Rich)
=2
. 2 Tk o~ ~ ~
3 i— i—1
= —[|aShellop =D (Ré'kP - Rjk;’ijkP)P
=2
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= - HAg}kPHi,p

Tk = ~ 1 ~ ~ 1 ~ =
N Z(RjkP - R;'Idl?’ i(R;'k;’ — Rjp) + i(R;k; + Rjkp))P

~ 1<k .
- HAS}kPui,P + 9 ZHAS;kPui,P

=2

__ZH kPHOP HE;Z;’Hip)

//\

Relation (89) implies

(156) Jim. Atk/Hdgjkp(t)/dtHép dt < C(j) lim Aty =0.
0

According to (97) and (91) we have

(157) Jim {|Sjp(T) — 8 = |lu;p(T) = 2p — 5} llo,p-

Thus relations (155)—(157) give

Tk
lim sup{ (AS}p. AShp) p = Y (ASSp, R;-;}»>P}

k=00 i=2

1
(158) < = Sllup(T) = 20 = 5715 p-

Using (90), (133) and (135) we find

(159) lim [ a(Sj(t),S5)dt = /0<Xj(t),2+§f>dt~

k—o0 0

Further, taking into account (12), (93), (99) and (90) we obtain

T

(160) dm [t Sp@)ar= [ (0.0
(161) khlilo (), S5,) dt = /O(f(t),z+§§’)dt.

. 1.~ N
S /0 | a8jp 1)/t — =[Sy () — %2
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It is not difficult (only technical) to prove that the remaining terms on the right-
hand side of (154) tend to zero with k& — oo (j is fixed). (The proof is a simple
modification of considerations introduced in part C of the proof of Theorem 3.8 in
[11]. Thus summarizing we see that all results (158)—(161) and relation (154) imply
(153).

In part E we will prove that

(162) /T ))ydt = /0T< ()z+s>dt+/0T(f(t),uj(t)—z—f%f)dt

1
~ lluip (@) = zp = 7 |; -

Comparing this result with (153) we obtain

(163) Jim sup /0 a(Si (1), §0(1)) dt < /0 (0 (8), () dt.

k—o0

Relations (152) and (163) yield

lim sup /OT a(gjk(t), Sir(t) — u;(t)) dt < 0.

k—oo

This relation together with (150) and (151) implies

T
limsup/ 15,0(8) — s ()2 dE < 0
0

k—o0
Therefore, we have

T
(164) lim 1Sk (t) — u;(t)[3dt = 0.

k—o0 0

By (97) we get

T

(165) [ 185kr(t)—uip ()1, p dt < Tmax [Sup (8) —wip (B3, — 0 for & — oo,
0 ’ tel ’

According to (88), it follows that

(166) kh_{glo |1Sjkp — SjkPHZLz(I,LQ(QP)) =0.

As

[1Sjkp — ujpllLy(r.Lop)) S 1Sjp — SikpllLa(r.Lo@p)) + 1Sjep — wjpllLo(r,La(0p))
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relations (165) and (166) yield
(167) Jim S0P = 5P La(r,L2@r)) = O
Now we use the continuous form of inequality (53) (see [8, (1)]):
(168) lullf < CClull§ p + [ulf) Yue HY(Q).
Thus relations (164), (167) and (168) give

Jim 1955 = wjl| o1, 0) = O

and relation (149)2 holds. Moreover, relations (149), and (88) imply (149);.
E) Now we prove relation (162) used in part D. Let us define

(169) Qi =8 Lz +sD) eV,

where Ij,(w) € X, is the interpolant of w and Iy (w) denotes the function associated
with Ij(w). By (62), (67), [12, Lemma 48.5] and a priori estimates (82) we obtain

Qi < IS5 1 + 155012 < C ).

Hence for the step-functions

(170) Qi(t) = QLY. telftionty) (i=1,...m%)
we have
(171) 1@kl arvy S COGWWT  (k=1,...,75).

According to (171) and the reflexivity of Lo(I, V') (which follows from [12, Theo-
rem P.125] and Theorem P.132 of [12], there exist a subsequence of the sequence {k}
(we denote it again by {k}) and a function w; € Lo(I, V) such that

(172) Qjr —w; in  Lo(I,V) C Ly(I, H(Q)).

Now let {®} be a set of all linear functionals on Ly(I, H()). Using (99) we have
for an arbitrary functional ® € {®}
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As by (90) and (62)
Jim |2+ 88 = Ti(z + sD)||, = 0,

we have

(174) lim ®(Iy(z + s7)) = ®(z + 57) V@ € {@).

k—o0

Relations (85), (169) and (170) imply

(175) Qjr(t) = Sjk(t) — Iy(z + féf),

Let us choose ® € {®} arbitrarily. The linearity of the functional ® and relations
(175), (173), (174) give

(176)  lim Q1) = Jim () — Jim O(I (2 + 87)) = ®(u; — 2 — 7).
On the other hand, relation (172) implies
(177) lim ®(Q;1) = ®(w;).

k—oo

Hence relations (176) and (177) and the uniqueness of the weak limit yield w; =
u; — 2z — gf in Ly(I, H*(Q)). Thus we have

(178) w;(t) =u;(t) —z— s in HY(Q) Vtel-Ej.

Let us set now v = w; € La(I,V) in relation (148):

(179) / (5P (7),w3p (7)) + (G (7), w3 (7))} dr = / (F(7),w;()) dr.

As the equality in L2(92) means the equality almost everywhere, it follows from the
properties of the Lebesgue integral and (178), (179) that we have

¢ ¢
(180) / (tjp(7),ujp (1) = 2zp — 1), dr +/ (x;j(7),u;(1) — 2 — Ty dr
0 0
¢
~ [t i -2 -5 ar
0
Let us set t = T in (180). For the validity of (162) it remains to prove

T
. 1
(181) /0 (a5p(t). wip (1) = zp = 5) pdt = G|ujp(T) = 20 = 57| -
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We see that

(w3 (T), wip (1)) — 5 (3p(0), w50 ()

N =

(182 [ (il up(0) =

According to [12, Theorem P.112(b)], we have

T T
(183) / (i5p(t), zp + sT) ,dt = (/ iyp(8) dt, zp +sf>
0 0 P
= (u;p(T),zp + Sf)P — (ujp(0), zp + sf)P.
As by (101) we have u;p(0) = zp+s? , subtracting (183) from (182) we obtain (181).

F) Relation (123) is relation (101) from Lemma 4.8.
G) Now we prove relation (124). By virtue of (178), relation

(184) wi(t) = u;(t) —z—s¥ Vel - E;

is satisfied almost everywhere in Q. Then the both sides of (184) are equal from the
point of view of the space H!(Q). As w; € Lo(I,V) we have tr(w;(t)) = 0 on I.
This relation and (184) imply (124).

H) Using the Lipschitz continuity (22) of the form a(v,w) we can write

t
[(afs00) (B v o
0
< Blluy — Sikll Lo,z @) 10l Loy Yo € Lo(1,V) VE e 1.

Passing to the limit for kK — oo and taking into account (133), (135) and (149); we
find

/ a(u;(1),v(r)) dr = / (x;(T),0(r))dr Vv € Lo(I,V) Vt € L.
0 0

Combining this result with (148) we obtain (122).
I) Now we prove the uniqueness of the solution of problem (122)—(124). Let us

assume that there exist two functions u},u? satisfying together with their strong
derivatives @}, %3 relations (122)-(124). Then we have

(185) /0 {(ajp(1) = @p(7),vp(7)) p + aluj(7), (7)) — a(uf(r),v(r)) } dr =0
Yo € Ly(I,V) Vt eI,

(186) ujp(0) — u?p(0) = 0.
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Choosing w = u}

2 . .
; — uj and using (124) we obtain

(187) tr(w(t)) =0 in Lo(Ih) Yt € I — Ej.

By virtue of the equality meas; E; = 0, relation (187) and the fact that u; €
Lo(I, HY(Q)) (i = 1,2), we have w € La(I,V). Thus we can set v = w in (185).
Using the strong monotonicity (21) of a(v,w), (186) and Friedrichs’ inequality [12,

Theorem P.84] we obtain after integrating (185)

1 t -
5Hu}p(t) —uip()5p + C/O [uj(r) —u3 ()3 dr <0 Vte I

This inequality implies ujp(t) = u?p(t) in La(Qp) Vt € I and

t//
/ lub(t) — u2(0)2dt =0 Vi ¢ € I.
t/

Hence ||u(t) — u3(t)|[1 = 0 for almost all ¢ € I.

J) It remains to prove (125)—(128). Till now we have proved (97), (100) and
(149), where {k} is a subsequence of the sequence {n}. However, the uniqueness of
the solution u; of the variational problem (122)-(124) implies that {k} = {n} (for
details see [10], p. 26). Thus relations (125)—(128) hold. O

Theorem 4.13. The solution of Problem 2.1 exists and is unique and we have

(188) Ujp — uUp in C(_ L2(QP))
(189) uj —u in Lo(I,H (Q)),
(190) lep — Tlp Weakly in LQ(I VP)

Proof. With small modifications we can follow the proof of [11, Theorem 3.10],
only we consider the space Lo(I, H'(2)) instead of La(I,V). We show just the
differences.

Relation (189) gives u € Lo(I, H'(Q)). However, we need to prove that u €
Loo(I, HY(Q)). From (189) it also follows that

(191) u;j —u in  Ly(I, H(Q)).

As the norm ||-||; is weakly lower semicontinuous on H*(2), similarly as in the proof
of Lemma 4.8, owing to (191) and (94) we get

u(®)]lr < liminf [Ju;(t)|, < C Vte I
‘]*?OO
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Thus u € Loo(I, HY(Q)). This fact together with (188) gives (7).
Now we prove (10). We can write

T

T T
(19 [ o= u®londt< [l wOllor de+ [ fust) - u®)lon dt
0 0 0

By virtue of (124), we have

T
|1z~ w0l de=o.
0

Relation (189) and [12, Theorem P.73(b)] imply

/0 [Ju; () — w(t)llo,r, dt < C’/O lluj(t) — u(t)||1 dt — 0.

These results and (192) prove (10). O
Using Theorems 4.12, 4.13 and Lemma 3.3 which is essential we can prove the

main result of this paper.

Theorem 4.14. Let (52) and (58) be satisfied. Then we have

~

(193) UanuP in O(I,LQ(QP)),
(194) Zp —u in Ly(I, H(Q))

where the functions U, p(t) and Z,(t) are given by relations (57)—(59) and u is the
solution of Problem 2.1.

Proof. A) The idea of the proof is the same as that of the proof of Theorem 3.11
n [11]. We derive only relations (204) and (205) which correspond to similar ones
in the proof mentioned, but their proofs are completely different. Let us set

(195) R}, =S}, —U. (i=1,....,rn), RY,p=S,p—U\p (i=01,...m).

We have R}, € V,, (i=1,...,m5).
Subtracting (49) from (61) and (51) from (63) and multiplying by At,, we obtain

(196) (Ale-np,Up)Pn + Atn{an(S;n,v) —a, (U, v)} =0 Yo €V,
(197) (AR.,p,vp)p, + Atyln (R, v) — Aty {dn (S5, 0) — dn(Uy " 0)} =0,

veVy, (i=2,...,m).
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It is easy to derive the identity

, 1
(198) (AR}, p, ;nP) HA nP||(2),Pn+§||R;‘nPH(2),Pn || nPHOP

Let us set v = R}, in (196). Using the strong monotonicity (34) of the form
an (v, w), the discrete form of Friedrichs’ inequality [12, (29.1)] and identity (198)
with ¢ =1 we find

(199) 1R; inlli o, < IR

s n

Let us choose v = R}, in (197) and sum from i = 2 to i = m < r,. Owing to (198)

we have
m 1 m
(200) Z JnPa jnP 52 nP||?),P,L+ ||R nells P, — ”le'nP”(%,P"
=2 =2
Loom 2 12
ST T

Applying Lemma 3.3, (40), inequality (69) and the discrete form of Friedrichs’ in-
equality [12, (29.1)] we obtain the bound

(201) At, Z{z s Rin) = (dn(S}, 1S Ri) — dn (U1 RE)

R

m
>Atnz Z {On|R) a3 ar, — | R, )

i=2 M=E,P

m
, 1 -
>80 Y. ¥ {oulRuulta, - (!
=2 E,P

n n

n

R;’-nMﬁ,M,L)}

=k,

M
1 UL
= EAtn Z {TJVI|R;‘T7LLM|%,MH — 7 |R} %,Mn + 2QMZ |R;‘nM|iMn}
M=E,P

=2

m
, 1
> At0C Y ||R;, I o, — 5AtnTHR}nllf,nn,

where 7 = max(7g,7p) > 0, 0 = min(pg, op) > 0 and 0 < 73y = Opr — o < Oy,
oM = min(*YM,Z(@M - %ﬁM)) (M = E,P).
Thus using (200), (201) and (199) we have

sibn

IR p 15 5, + C AL X:IIRz

< Hle-anﬁ,pn + TAt|| R <R plEp, (m=2,....10).
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This relation together with (199), (195) gives

(202) IRT: b6 b, < IRSplgp,  (0<m < iy),
m

(203) CAt, Y |18}, — Uil o, < IR plI5 5, (1 <m <),
=1

As by (195), (50) and (62) we see that
R?np =IL,p(zp+ sf) —ul
relations (202), (203) and [12, Lemma 48.5] imply
(204) IRT: pllo.p < CllInp(zp +sT) —ubllop, (0 <m <),

Tn
(205) At S0 S DU < C*Luplep + ) — ubul

i=1

Relations (204) and (205) are analogous to [11, (3.91)] and the last relation in [11],
p- 375, respectively. With only small modifications we can now follow the proof of
Theorem 3.11 of [11]. O

Remark. This paper is a generalization of the results of [15] and [11]: a linear
scheme of [15] is generalized to the case of a domain with a nonpolygonal boundary
and a nonhomogeneous Dirichlet boundary condition is taken into account.

As some theorems and lemmas from [15], [11] and [12] are applied in the proofs
of the theorems mentioned above it would be suitable to present them. However, to
keep the extent of the paper within reasonable limits only the appropriate references

were given.
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