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Abstract. It is well-known that the idea of transferring boundary conditions offers a uni-
versal and, in addition, elementary means how to investigate almost all methods for solving
boundary value problems for ordinary differential equations. The aim of this paper is to
show that the same approach works also for discrete problems, i.e., for difference equations.
Moreover, it will be found out that some results of this kind may be obtained also for some
particular two-dimensional problems.
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1. Preliminaries

It is well-known (see, e.g., Taufer [1972]) that the method of transfer of boundary
conditions yields an elementary frame into which most methods for solving boundary
value problems for ordinary differential equations can be included. Namely, this
concerns such of them which are based on transforming this problem to initial value
problems.
The main idea of this approach starts, in the model case of a differential equation

of the second order, with the following observation: Any solution of the differential
equation

(1.1) −[p(x)y′(x)]′ + q(x)y(x) = f(x) in [a, b]

which satisfies, moreover, a linear boundary condition of the type

(1.2) −α0p(x0)y′(x0) + β0y(x0) = γ0

*This work was supported by Grant No. 201/97/0217 of the Grant Agency of the Czech
Republic.
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for some fixed x0 ∈ [a, b] has to satisfy in [a, b] a first order linear differential equation.
In other words, there have to exist functions α, β, γ : [a, b]→ � such that

(1.3) −α(x)p(x)y′(x) + β(x)y(x) = γ(x)

is satisfied for any x ∈ [a, b]. Moreover, the functions α, β and γ are solutions of
some initial value problems.
Since (1.3) has exactly the same form as (1.2) it may be viewed as the result of

transferring the condition (1.2) to a general point of the given interval.
The idea of transferring boundary conditions may be very easily utilized for solving

a two point boundary value problem for the equation (1.1): by transferring the left-
and right-hand boundary condition into a common point we obtain a system of two
linear algebraic equations for the value of the solution and its derivative at this point.
The aim of this paper is to show that the same approach works also for discrete

problems, i.e., for difference equations. Further, it will be found out that some results
of this kind may be obtained also for some two-dimensional problems.

2. Transfer of boundary conditions for one dimensional
difference equations

As a model example we will consider a linear difference equation of the second
order

(2.1) cn−1xn−1 + anxn + bnxn+1 = gn, n = 1, . . . , N − 1,

with boundary conditions

(2.2) a0x0 + b0x1 = g0

and

(2.3) cN−1xN−1 + aNxN = gN .

Hence, we deal in fact with the system of linear algebraic equations

(2.4) ANx = g ,

where x = (x0, ..., xN )T and g = (g0, ..., gN)T are (N+1)-dimensional vectors and AN

is an (N + 1)× (N + 1) tridiagonal matrix

(2.5) AN =




a0 b0 0 . . . 0

c0
. . .

...

0
. . . 0

...
. . . bN−1

0 . . . 0 cN−1 aN




.
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It is seen almost at the first glance that any solution of the difference equation (2.1)
which satisfies, moreover, the boundary condition (2.2) must fulfil a first order dif-
ference equation. Thus, the boundary condition of the type (2.2) can be transferred
to any point similarly as in the continuous case. Since the coefficients in the trans-
ferred boundary condition are not determined uniquely there are many forms of the
transfer of boundary conditions with different properties. Two of them are described
in the following theorems.

Theorem 2.1. Let cn �= 0 for n = 0, . . . , N−2 and let x0, . . . , xN be the solution
of (2.1) which satisfies, moreover, the boundary condition (2.2). Then we have

(2.6) znxn −
bn

cn−1
zn−1xn+1 = rn

for n = 0, . . . , N − 1, where the sequence {zn} is defined by the difference equation

(2.7) zn+1 = −
an+1

cn
zn −

bn

cn−1
zn−1, n = 0, . . . , N − 2,

with the initial conditions

(2.8) z0 = a0, z−1 = −c−1,

where c−1 is an arbitrary real number different from zero and the sequence {rn} is
defined by the difference equation

(2.9) rn+1 = rn −
gn+1

cn
zn, n = 0, . . . , N − 2,

with the initial condition

(2.10) r0 = g0.

�����. Put

(2.11) hn = znxn −
bn

cn−1
zn−1xn+1 − rn, n = 0, . . . , N − 1.

Using (2.9), we obtain, after simple manipulations, that

hn+1 − hn =

(
zn+1 +

an+1

cn
zn +

bn

cn−1
zn−1

)
xn+1(2.12)

− 1
cn
(bn+1xn+2 + an+1xn+1 + cnxn − gn+1)zn
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for n = 0, . . . , N−2. Taking into account (2.3) and (2.7), we see that this expression
is equal to zero. Consequently, the sequence {hn} is constant. But if we put n = 0
in (2.11) and use (2.8) and (2.2), we have

(2.13) h0 = z0x0 −
b0
c−1

z−1x1 − g0 = 0.

Hence, the entries of the sequence {hn} are equal to zero for n = 0, . . . , N − 1, and
this fact proves the theorem. �

Theorem 2.2. Let an > 0 for n = 0, . . . , N , b0 � 0, bn < 0 for n = 1, . . . , N − 1,
cn < 0 for n = 0, . . . , N − 2, cN−1 � 0 and let AN be diagonally dominant. Then

(2.14) dnxn + bnxn+1 = un

for n = 0, . . . , N − 1, where the sequence {dn} is defined by

(2.15) dn+1 = an+1 −
cnbn

dn
, n = 0, . . . , N − 2,

with the initial condition

(2.16) d0 = a0,

and the sequence {un} is defined by

(2.17) un+1 = gn+1 −
cnun

dn
, n = 0, . . . , N − 2,

with the initial condition

(2.18) u0 = g0.

�����. The proof of this theorem will be an easy consequence of the following
lemma. �

Lemma 2.1. Let an > 0 for n = 0, . . . , N , b0 � 0, bn < 0 for n = 1, . . . , N − 1,
cn < 0 for n = 0, . . . , N − 2, cN−1 � 0 and let AN be diagonally dominant. Then
the sequence defined by (2.7) with the initial conditions (2.8) satisfies

(2.19) zn > 0, n = 0, . . . , N − 1.

�����. First of all remember that the diagonal dominance of the matrix AN

means that its row sums are nonnegative. The proof of the assertion of the lemma
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will be performed by induction. According to (2.7) we have z1 = b0 − a0a1/c0.
Consequently,

(2.20) z1 −
b1
c0

z0 = b0 −
a0
c0
(a1 + b1) � b0 −

a0
c0
(−c0) = a0 + b0 � 0,

since the diagonal dominancy implies a1 + b1 � −c0, and, obviously, −a0/c0 > 0.
But from (2.20) we obtain that

(2.21) z1 � b1
c0

z0 =
b1
c0

a0 > 0.

Thus, for n = 1, the relations (2.19) and

(2.22) zn −
bn

cn−1
zn−1 � 0

are satisfied. Suppose now that the inequalities (2.19) and (2.22) are satisfied for
n = m � N − 2 and prove, first of all, that (2.22) holds also for n = m+1. We have

zm+1 −
bm+1

cm
zm = − am+1

cm
zm − bm

cm−1
zm−1 −

bm+1

cm
zm(2.23)

= − zm

cm
(am+1 + bm+1)−

bm

cm−1
zm−1

� − zm

cm
(−cm)−

bm

cm−1
zm−1 � 0

since am+1 + bm+1 � −cm for m � N − 2 as follows from the diagonal dominancy
of AN , and (−zm)/cm > 0 according to the induction hypothesis. But from (2.23)
and the induction hypothesis the validity of (2.19) for n = m+1 follows immediately.
The proof of the lemma is complete. �

����� of Theorem 2.2. We have zn > 0 for n = 0, . . . , N − 1 according to
Lemma 2.1. Hence, the equations (2.6) may be multiplied for n = 0, . . . , N − 1 by
−cn−1/zn−1. If we put

(2.24) dn = −cn−1
zn

zn−1
, n = 0, . . . , N − 1,

and

(2.25) un = −
cn−1rn

zn−1
, n = 0, . . . , N − 1,

we obtain (2.14). The recurrence relations (2.15) and (2.17) now follow from (2.7)
and (2.9) by easy computation. Theorem is proved. �
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If we replace the boundary condition (2.2) by (2.3) the same investigations as
above lead to the following parallels of Theorems 2.1 and 2.2:

Theorem 2.1a. Let bn �= 0 for n = 1, . . . , N − 1 and let x0, . . . , xN be the
solution of (2.1) which satisfies, moreover, the boundary condition (2.3). Then we
have

(2.6a) −cn−1
bn

ẑn+1xn−1 + ẑnxn = r̂n

for n = N, . . . , 1, where the sequence {ẑn} is defined by the difference equation

(2.7a) ẑn−1 = −
an−1
bn−1

ẑn −
cn−1
bn

ẑn+1, n = N, . . . , 2,

with the initial conditions

(2.8a) ẑN = aN , ẑN+1 = −bN ,

with bN being an arbitrary real number different from zero and the sequence {r̂n} is
defined by the difference equation

(2.9a) r̂n−1 = r̂n −
gn−1
bn−1

ẑn, n = N, . . . , 2,

with the initial condition

(2.10a) r̂N = gN .

Theorem 2.2a. Let an > 0 for n = 0, . . . , N , b0 � 0, bn < 0 for n = 1, . . . , N−1,
cn < 0 for n = 0, . . . , N − 2, cN−1 � 0 and let AN be diagonally dominant. Then

(2.14a) cnxn + d̂n+1xn+1 = ûn+1

for n = N − 1, . . . , 0, where the sequence {d̂n} is defined by

(2.15a) d̂n−1 = an−1 −
cn−1bn−1

d̂n

, n = N, . . . , 2,

with the initial condition

(2.16a) d̂N = aN ,
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and the sequence {ûn} by

(2.17a) ûn−1 = gn−1 −
bn−1ûn

d̂n

, n = N, . . . , 2,

with the initial condition

(2.18a) ûN = gN .

The reader has certainly noted that we have obtained, in fact, variants of the
Gaussian elimination method.
Let us conclude this section with a remark which may be of some interest. If the

assumptions of Theorems 2.2 and 2.2a are satisfied then two consecutive components
of the solution vector x of the system (2.4) fulfil

dnxn + bnxn+1 = un,(2.26)

cnxn + d̂n+1xn+1 = ûn+1.

The entries of the sequences {dn}, {un}, {d̂n+1} and {ûn+1} are computed from the
recurrence relations (2.15), (2.17), (2.15a) and (2.17a) and it is necessary to store
them only for those n’s which are the indices of those components of the solution
vector which we want to know. Thus, if we are interested only in few components of
the solution vector (as compared with the total number of them) the equations (2.26)
give us such a modification of the Gaussian elimination method which enables us to
solve extremely large systems of linear equations with tridiagonal matrices (having
millions of unknowns) on usual PC’s without any problems with storage.
Naturally, the same is true if we start with Theorems 2.1 and 2.1a instead of

Theorems 2.2 and 2.2a. The system analogous to (2.26) is now

znxn −
bn

cn−1
zn−1xn+1 = rn,(2.27)

− cn

bn+1
ẑn+2xn + ẑn+1xn+1 = r̂n+1

and it holds under more general assumptions. On the other hand, the entries of the
matrix of the system (2.27) may grow extremely rapidly even for very reasonably
behaved matrices. This fact may bring some stability problems.
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3. Discrete analogue of the Laplace equation

As an example of the application of the idea of transferring boundary conditions in
the two-dimensional case, we will deal here with a discrete analogue of the Dirichlet
problem for the Laplace equation on a rectangle. Hence, we will investigate the
system

4uij − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 = 0,(3.1)

i = 1, . . . , n− 1, j = 1, . . . , m− 1,

with boundary conditions

(3.2) u0j = fj , unj = gj, ui0 = uim = 0.

(General Dirichlet boundary conditions are easily obtained by superposition.)
Let us begin with introducing some notation. Let

(3.3) v (ν) = (v(ν)1 , . . . , v
(ν)
m−1)

T, ν = 1, . . . , m− 1,

be the complete system of orthonormal eigenvectors of the (m− 1)× (m− 1) matrix

(3.4) P =




2 −1 0 . . . 0

−1 . . .
...

0
. . . 0

...
. . . −1

0 . . . 0 −1 2




.

Further, let V be the ((m− 1)× (m− 1) orthogonal) matrix defined by

(3.5) V =
(
v (1), . . . , v (m−1)).

Finally, let

(3.6) ui =
(
ui1, . . . , ui,m−1

)T
, i = 0, . . . , n,

and c
(i)
ν (i = 0, . . . , n) be the Fourier coefficients of the vectors ui with respect to the

vectors (3.3), i.e.,

(3.7) c(i)ν =
m−1∑

j=1

uijv
(ν)
j =

(
v (ν)

)T
ui.
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Note that u0 and un are known vectors and, consequently, also the quantities
c
(0)
ν = c̃

(0)
ν and c

(n)
ν = c̃

(n)
ν can be supposed to be known. In the actual situation,

the direct computation gives that the components of the vectors v (ν) from (3.3) are
given by

(3.8) v (ν)j =
√
2h sin

ν�j

m
, j = 1, . . . , m− 1, h =

1
m

.

Hence, the sums in (3.7) may be computed very quickly by the fast Fourier transform.
Now we have all prepared to be able to formulate the main result of this section.

Theorem 3.1. Let uij , i = 1, . . . , n−1, j = 1, . . . , m−1, be the solution of (3.1)
satisfying the boundary conditions u0j = fj , j = 1, . . . , m − 1, ui0 = uim = 0,
i = 1, . . . , n− 1. Then we have

(3.9) DiVTui − VTui+1 = ri

for i = 1, . . . , n− 1 where

Di = diag
(
d
(1)
i , . . . , d

(m−1)
i

)
,(3.10)

ri =
(
r
(1)
i , . . . , r

(m−1)
i

)T
,(3.11)

the sequences {d(ν)i } and {r(ν)i } are defined by the recurrences

d
(ν)
i+1 =2 + λν −

1

d
(ν)
i

, i = 1, . . . , n− 2, d
(ν)
1 = 2 + λν ,(3.12)

r
(ν)
i+1 =

1

d
(ν)
i

r
(ν)
i , i = 1, . . . , n− 2, r

(ν)
1 = c̃(0)ν ,(3.13)

for ν = 1, . . . , m − 1, and λν are the eigenvalues corresponding to the eigenvectors
v (ν) of P .

�����. Taking into account the definition of the numbers c
(i)
ν , we can write the

solution of (3.1), (3.2) in the form

(3.14) uij =
m−1∑

ν=1

c(i)ν v
(ν)
j .

Then the c
(i)
ν ’s satisfy

(3.15) −c(i−1)ν + (2 + λν)c(i)ν − c(i+1)ν = 0, i = 1, . . . , n− 1,
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with the boundary conditions

(3.16) c(0)ν = c̃(0)ν , c(n)ν = c̃(n)ν .

If we now apply Theorem 2.2 to the difference equation (3.15) with the first con-
dition of the boundary conditions (3.16) (note that λν > 0) we obtain

(3.17) d
(ν)
i c(i)ν − c(i+1)ν = r

(ν)
i

for i = 1, . . . , n− 1 and ν = 1, . . . , m− 1. If we put, moreover,

(3.18) ci =
(
c
(i)
1 , . . . , c

(i)
m−1

)T
,

the equation (3.17) may be rewritten in the form

(3.19) Dici − ci+1 = ri.

On the other hand, we have

(3.20) VTui =




(
v (1)

)T
...(

v (m−1))T


 ui =




(
v (1)

)T
ui

...(
v (m−1))Tui


 = ci

where the last equality follows from (3.7). Substituting (3.20) into (3.19), we ob-
tain (3.9). The theorem is proved. �

Thus, the equation (3.8) represents the result of the transfer of the left boundary
condition of the problem (3.1), (3.2).
Analogously, if we apply Theorem 2.2a to the difference equation (3.15) with the

second condition of the boundary conditions (3.16) we obtain

Theorem 3.1a. Let uij , i = 1, . . . , n − 1, j = 1, . . . , m − 1, be the solution
of (3.1) satisfying the boundary conditions unj = gj , j = 1, . . . , m−1, ui0 = uim = 0,
i = 1, . . . , n− 1. Then we have

(3.9a) −VTui + D̂i+1VTui+1 = r̂i+1

for i = n− 2, . . . , 0 where

D̂i = diag
(
d̂
(1)
i , . . . , d̂

(m−1)
i

)
,(3.10a)

r̂i =
(
r̂
(1)
i , . . . , r̂

(m−1)
i

)T
,(3.11a)
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the sequences {d̂(ν)i } and {r̂(ν)i } are defined by the recurrences

d̂
(ν)
i−1 =2 + λν −

1

d̂
(ν)
i

, i = n− 1, . . . , 2, d̂
(ν)
n−1 = 2 + λν ,(3.12a)

r̂
(ν)
i−1 =

1

d̂
(ν)
i

r̂
(ν)
i , i = n− 1, . . . , 2, r̂(ν)n = c̃(n)ν(3.13a)

for ν = 1, . . . , m − 1, and λν are the eigenvalues corresponding to the eigenvectors
v (ν) of P .
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