
Applications of Mathematics

Vratislav Horálek
Stereology of dihedral angles

Applications of Mathematics, Vol. 45 (2000), No. 6, 411–417

Persistent URL: http://dml.cz/dmlcz/134449

Terms of use:
© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134449
http://dml.cz


45 (2000) APPLICATIONS OF MATHEMATICS No. 6, 411–417

STEREOLOGY OF DIHEDRAL ANGLES

Vratislav Horálek, Praha

(Received December 17, 1998)

Abstract. The paper presents a short survey of stereological problems concerning dihe-
dral angles, their solutions and applications, and introduces a graph for determining the
distribution functions of planar angles under the hypothesis that dihedral angles in �3 are
of the same size and create a random field.
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1. Introduction

The first paper showing the importance of dihedral angles from the point of view of

the characterization and behaviour of metallic materials was published by Harker and
Parker [8]. They calculated the distribution function Hχ◦(x◦) of a random variable

ψ◦, taking the values x◦ of planar angles (in degrees) observable in a random planar
section, under the hypothesis of an ideal stable spatial structure characterized by

dihedral angles of the same size χ◦ = 120◦ only. Riegger and van Vlack [12] plotted
the graphs of Hχ◦(x◦) for further predetermined values of χ◦ angles (from χ◦ = 15◦

to 165◦ [15◦]). All these curves were obtained by numerical integration of areas on
a map of ψ◦ angles constructed by Harker and Parker [8]. Duvaljan [7] was the

first to consider χ◦ as a random variable and suggested an approximate formula for
the conditional variance var(ψ◦|χ◦). Duvaljan’s results were applied by Rys and
Kasperczyk [13] to the investigation of metal and alloy microstructure heterogeneity
and were widely discussed by Schwandtke [14]. DeHoff [6] estimated the expected

value E(χ◦) in terms of the area point count and of the tangent count, but Brakke
[1] showed that this estimator is of low precision, especially for small angles. Miles
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[10] presented the probability density function go(u) of u = cotχ as a solution of a

Fredholm integral equation of the first kind with a symmetric kernel. The analytical
forms of the distribution function Hχ◦(x◦) and the probability density hχ◦(x◦) of
planar angles ψ◦ under the hypothesis of a random field of constant dihedral angle χ◦

in �3 were derived by Reeds and Butler [11] in connection with solving physiological
problems concerning the investigation of optical properties of lungs (Butler et al. [3],

Suzuki et al. [15]). The mathematical formulation of the dihedral angle problems
together with the above mentioned formula for Hχ◦(x◦) found by Reeds and Butler

[11] are recalled in Section 2 of this paper. To facilitate the use of this formula in
practice we decided to apply the graphical method. It enables us to determine the

distribution function Hχ◦(x◦) for a fixed but arbitrary value of the dihedral angle χ◦

and is introduced in Section 3 of this paper. Analogous graphs for determining the

probability density function hχ◦(x◦) have been already constructed and published
by Horálek [9].

2. Dihedral angle and the distribution function
of its random planar sections

An edge Ci is defined as an intersection of two surfaces Y2(1) and Y2(2). Such a
situation can arise in space as well as in situations where more than two surfaces

are meeting as e.g. in a cell structure with space-filling grains (polyhedrons); here a
grain edge is created by the intersection of boundaries of adjoining grains.
Let us suppose that at each point c ∈ Ci two planes tangential to Ci exist and

these planes are tangential also to the smoothly varying surfaces at the point c. Each
pair of adjoining tangential half-planes creates a wedge W smoothly varying as the

point c continuously traverses Ci. The angle of the wedge W at the point c is the
dihedral angle χ(c) or briefly χ, 0 < χ < �.

For simplicity, let us consider only two surfaces Y2(1) and Y2(2). The intersection
of the corresponding two tangential half-planes TW1 and TW2 creates a tangent to

the edge Ci at the point c. The true size of the dihedral angle at c ∈ Ci is observable
only in a plane normal to this tangent and such a plane creates an orthogonal section

of the dihedral angle. This situation is illustrated in Fig. 1.
Let the wedge W bounded by the half-planes TW1 and TW2 have a fixed angle χ.

Intercepting this wedge by a random plane T2, the half-lines T2 ∩ TW1 and T2 ∩ TW2

form in T2 an angle ψ (0 < ψ < �) the size of which depends on the orientation of T2.

In general, the equality ψ = χ is fulfilled only when T2 is an orthogonal section plane
(χ = �/2 is an exceptional case). In all other cases, ψ is a random variable.

Now consider a random field of dihedral angles in the �3 space, these angles
of the same size having random positions and orientations, i.e. at least one of the
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Figure 1. Orthogonal section of the dihedral angle χ.

probability distributions of the dihedral angle or of the section plane T2 should be
isotropic. In the section plane T2 we observe only induced images of χ and therefore

the corresponding moments of the random variable ψ are only conditional mean
values and the distribution function of ψ is only a conditional distribution function.

Let (x, y, z) be the cartesian coordinates in �3 , let the plane T2 intersect the z-axis
at the point (0, 0, z) and let the direction vector of T2 be a point r in the upper unit

hemisphere
r = (sin θ cosϕ, sin θ sinϕ, cos θ)

for 0 < θ < �/2, 0 < ϕ < 2�, −∞ < z <∞—see Fig. 2.
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Figure 2. Section of the wedge W bounded by the half-planes TW1, TW2, by the plane T2.

Then provided T2 intersects the edge Ci ⊂ z at c, or more precisely expressed, that
T2 intersects a linear element ∆Ci of the edge Ci, the marginal orientation density
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is given by

f(θ, ϕ | T2 ↑ ∆Ci) =
1
�

sin θ cos θ =
1
2�
sin 2θ.

When rotating T2 in such a way that c ∈ Ci remains fixed and the angle θ is constant,

only ϕ varies. Since ϕ is uniformly distributed on (0, 2�), the probability that a half-
line starting from c in T2 lies in the dihedral angle χ is equal to χ/(2�).

Reeds and Butler [11] have derived the conditional distribution function

(1) Ha(b) = Pr(cosψ < b | χ),

where

(2) a = cosχ.

We have

(3) Ha(b) =





χ

�

− 8L(b, a) 1
� sinχ

for a � b

χ

�

+ 8L(−b,−a) 1
� sinχ

for b � a,

where

L(b, a) = C(b, a)[3(1 + b)(1− a)RF (x, y, 1)− b(1 + a)RD(y, 1, x)

− b(1− b)RD(1, x, y) + b(b− a)RD(x, y, 1)

+ 2aRJ(x, y, 1, w)] +
b(1− b)(1 + a)2

4(1− a)(1 + b)2

and

C(b, a) = − (b− a)(1 + a)
6(1− a)3/2(1 + b)5/2

.

The Carlson elliptic integrals RF (x, y, z), RD(x, y, z) and RJ (x, y, z, w) are defined

for positive distinct x, y, z and w as follows (Carlson [4]):

RF (x, y, z) = 0.5

∞∫

0

1
Q1/2

dv, RD(x, y, z) = 1.5

∞∫

0

1
(v + z)Q1/2

dv,

RJ(x, y, z, w) = 1.5

∞∫

0

1
(v + w)Q1/2

dv,

where
Q = (v + x)(v + y)(v + z)
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and the arguments x, y and w are functions of a and b introduced in (2) and (3),

respectively,

x =
b− a

1− a
, y =

b− a

1 + b
and w =

2(b− a)
(1 − a)(1 + b)

.

3. Graph for determining the conditional distribution
function Hχ◦(x◦)

In contrast to (1), in order to simplify the use of the graph in practice, we consider

here the conditional distribution function

Hχ◦(x◦) = Pr(ψ◦ � x◦ | χ◦ = const),

where the angles χ◦, ψ◦ are given in degrees. The construction of the graph in Fig. 3
is based on quantiles x◦P fulfilling the equation

Hχ◦(x◦P ) = P (χ
◦).

The values x◦P were calculated for P (χ◦) = 0.005; 0.01; 0.03; 0.05; 0.1; 0.2, . . . , 0.9;
0.95; 0.97; 0.99 and 0.995 and for χ◦ = 2.5◦ to 90◦ [2.5◦]; the tables of this quantiles

will be published separately. For preparing the computer program the computer
routines for Carlson elliptic integrals elaborated by Carlson and Notis [5] were em-

ployed.
The shapes of isocurves P (χ◦) are plotted in Part A of Fig. 3 separately for

0 < χ◦ � 90◦ and for 90◦ < χ◦ � 180◦, respectively; it should be noted that only
the values of χ◦ and of P , that have the same orientation of the legend are related

mutually. The property of the distribution function Ha(b), defined in (1), namely

(4) H−a(−b) = 1−Ha(b),

was taken into account.
For a fixed but arbitrary angle χ◦ (0 < χ◦ < 180◦), the corresponding Hχ◦(x◦)

can be constructed in agreement with the key drawn in the graph. The point of
intersection of a horizontal straight line at an arbitrary angle value χ◦ with the chosen

quantile isocurve P (χ◦)—see Fig. 3, Part A—determines uniquely the quantile x◦P

for which the distribution function Hχ◦(x◦P ) takes the value P (χ◦)—see Fig. 3,

Part B. In this way, we are able to determine 17 points of the distribution function
Hχ◦(x◦).

415



0.005

0.995

0.01

0.99

0.03

0.97

0.05

0.95

0.1

0.9

0.2

0.8

0.3

0.7

0.5

0.5

0.7

0.3

0.8

0.2

0.9

0.1

0.95

0.05

0.97

0.03

0.99

0.01

0.995

0.005

80◦

60◦

40◦

20◦

0◦

90◦

100◦

120◦

140◦

160◦

180◦

P

(90◦�χ◦<180◦)

(0◦<χ◦�90◦)

P

χ◦ χ◦

Part A

PartA

�
20◦ 40◦ 60◦ 80◦ 100◦ 120◦ 140◦ 160◦ 180◦ x◦p

0◦20◦40◦60◦80◦100◦120◦140◦160◦180◦x◦
p

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

H60◦(x◦)

H120◦(x◦)

Part B: (0◦ � χ◦ � 90◦)

PartB:(90◦�χ◦�180◦)

P
r(
ψ
◦
<
x
◦ p
|χ
◦
=
co
ns
t.
)
=
H

χ
◦
(x
◦ p
) P

r(ψ
◦
<
x
◦p |χ

◦
=
const.)

=
H

χ
◦(x

◦p )

Key:

χ◦

P (χ◦) = Hχ◦(x◦p)

P (χ◦)

x◦P�
Figure 3. Graph for determining the conditional distribution function Hχ◦(x

◦).
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To illustrate the above outlined procedure, let us assume the dihedral angle χ◦ =

60◦ forming a random field in �3 . The relevant H60◦(x◦) of the random variable ψ◦,
0◦ < ψ◦ < 180◦, taking the values of induced images of the dihedral angle χ◦

observable in the section plane T2, is presented in Part B of Fig. 3. For determining

H120◦(x◦), we have used the relationship following from (4). Of course, H0◦(0◦) = 0
and H180◦(180◦) = 1.

The knowledge of the graphical course of Hχ◦(x◦) permits to test the hypothesis
on χ◦ by using the empirical distribution function of planar angles measured in the

section plane T2, i.e. to apply a graphical form of a test of goodness of fit, e.g. the
Kolmogorov-Smirnov test, to the measurement results plotted in the graph, and to

verify the hypothesis that all dihedral angles are of the same size the value of which
can be estimated by the average of planar angles observed in the plane section.
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