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Abstract. As a measure of deformation we can take the differenceD�ϕ−R, whereD�ϕ is the
deformation gradient of the mapping �ϕ and R is the deformation gradient of the mapping
�γ, which represents some proper rigid motion. In this article, the norm ‖D�ϕ −R‖Lp(Ω) is
estimated by means of the scalar measure e(�ϕ) of nonlinear strain. First, the estimates are
given for a deformation �ϕ ∈ W 1,p(Ω) satisfying the condition �ϕ

∣∣
∂Ω =

�id. Then we deduce

the estimate in the case that �ϕ(x) is a bi-Lipschitzian deformation and �ϕ
∣∣
∂Ω �= �id.
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1. Introduction

An important aspect of the theory of elasticity is Korn’s inequality. It enables us
to show that the functional of potential energy associated with a linear problem is

coercive. What is the analogue in the case of finite elasticity? R.V. Kohn introduced
a new measure of nonlinear strain e(�ϕ) and found estimates for deformation in the

case of hyperelastic material, such as rubber.
We start from the description of the mathematical model given by R.V. Kohn.

(See [3] for details.) Let Ω ⊂ �
n be a domain and let the mapping �ϕ : Ω → �

n

be differentiable a.e. on Ω. The deformation of Ω is usually described by means

of the gradient D�ϕ. In what follows, we use the terms “deformation” and “de-
formation gradient” for �ϕ and D�ϕ, respectively. Hyperelastic material is governed

by a stored energy function W (�x, D�ϕ). If, in addition, this material is homoge-
neous and isotropic, then W can be expressed as a symmetric function of eigenvalues
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0 � λ1 � . . . � λn of the nonnegative-definite and symmetric matrix

(1) U = (D�ϕT D�ϕ)
1/2

.

This fact can be used for the definiton of the scalar measure e(�ϕ) of the deforma-

tion:

(2) e(�ϕ) = e1(�ϕ) + e2(�ϕ) + e3(�ϕ),

where

e1(�ϕ) = (λn − 1)+(3)

e2(�ϕ) = (λ2, . . . , λn − 1)+(4)

e3(�ϕ) = |detU − 1|(5)

and a+ is the positive part of a.

R.V. Kohn found an estimate for the oscillation D�ϕ in the form

‖D�ϕ−R‖2L2(Ω) � C‖e(�ϕ) + |U2 − I| ‖L1(Ω),

where R is some orthogonal matrix and I is the unit matrix. In this paper, the

generalization of Kohn’s estimate in the case p > 2 is obtained.

First, we find estimates for the deformation �ϕ
∣∣
∂Ω
= �id. The idea how to measure

the deformation is the following: Imagine that in Ω there are stretched elastic bands
pinned on the boundary of this domain. Every deformation of the domain must

evoke stretching of at least one of these elastic bands. So the deformation can be
controlled by stretching of elastic bands.

We begin with some auxiliary estimates for directional derivative in the direction �θ

which represents the deformation of the band parallel with this direction. After that

we estimate the oscillation of the gradient D�ϕ.

Secondly, we consider the case �ϕ
∣∣
∂Ω

�= �id. The results obtained can be used for

the study of coercivity in the theory of elasticity for hyperelastic materials.
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2. The estimate in the case �ϕ
∣∣
∂Ω
= �id

In what follows, we denote by 〈�x, �y〉 the inner product of two vectors �x, �y in �n

and by |�x| = 〈�x, �x〉1/2 its norm.
For a square matrix A we define its matrix norm as

(6) |A| =
[
tr(AT A)

]1/2

and its spectral norm as

(7) ‖A‖ = sup
�x �=0

|A�x|
|�x| .

Lemma 1. Let Ω be a domain in �n and �ϕ ∈ C1(Ω,�n ), then

(8) |tr(D�ϕT D�ϕ− I)| � n‖D�ϕT D�ϕ− I‖

pointwise in Ω.

�����. From the definition of the spectral norm (7) we have

‖D�ϕT D�ϕ− I‖ = sup
�x �=0

|(U2 − I)�x|
|�x| = max

i=1,2,...,n
{|λ2i − 1|}.

Consequently,

|tr(D�ϕT D�ϕ− I)| =
∣∣∣∣

n∑

i=1

(λ2i − 1)
∣∣∣∣ �

n∑

i=1

|λ2i − 1| � n max
i=1,2,...,n

{|λ2i − 1|}

= n‖D�ϕT D�ϕ− I‖.

�

In what follows, we suppose that the deformation �ϕ(�x) of the reference configura-

tion Ω is given by the formula

(9) �ϕ(�x) = �x+ �u(�x),

where �u : Ω→ �
n is the displacement.

Lemma 2. Let Ω be a domain in �n , �ϕ : Ω → �
n a deformation which is

differentiable on Ω and �θ a unit vector in �n . Let us denote the derivative in the

direction �θ by Dθ. Then for every k � 1, the following estimate holds:

(10) |Dθ〈�u, �θ〉|k � c1[e1(�ϕ)k + 2e1(�ϕ)−Dθ〈�u, �θ〉].
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�����. According to (9) the derivative in the direction �θ satisfies

(11) Dθ〈�u, �θ〉 = Dθ〈�ϕ, �θ〉 − 〈�θ, �θ〉 � |〈D�ϕ, �θ〉| − 1 � (λn − 1)+ = e1(�ϕ).

Because Dθ〈�u, �θ〉 − e1(�ϕ) � 0, we have

(12) |Dθ〈�u, �θ〉| � |Dθ〈�u, �θ〉 − e1(�ϕ)|+ e1(�ϕ) = 2e1(�ϕ)−Dθ〈�u, �θ〉.

By the polar decomposition theorem we can consider the deformation gradientD�ϕ

in the form

D�ϕ = R̃U

where R̃ is some proper orthogonal matrix and U is the matrix (1).

Let c0 be a constant satisfying

(13) |R̃ − I| � c0.

We distinguish two cases:

a) If |Dθ〈�u, �θ〉| � 2c0, then

|Dθ〈�u, �θ〉|k � (2c0)k−1|Dθ〈�u, �θ〉|.

From (12) we have

(14) |Dθ〈�u, �θ〉|k � (2c0)k−1[2e1(�ϕ)−Dθ〈�u, �θ〉].

b) If |Dθ〈�u, �θ〉| � 2c0, then we can use the fact that

|Dθ〈�u, �θ〉| � |〈D�u �θ, �θ〉| � |〈D�uT D�u�θ, �θ〉|1/2 �
[
tr

(
(D�u)T D�u

)]1/2
= |D�u|,

|D�u| = |D�ϕ− I| = |R̃U − I| � |R̃ − I| |U − I|+ |R̃ − I|+ |U − I|
= (|R̃ − I|+ 1)|U − I|+ |R̃ − I|

and

|U − I| = {tr[(U − I)T (U − I)]}1/2 =
[ n∑

i=1

(λi − 1)2
]1/2

�
√

n e1(�ϕ).

Using the relation (13) we now obtain

(15) |Dθ〈�u, �θ〉| � (c0 + 1)
√

ne1(�ϕ) + c0.
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This inequality and the assumption b) imply

(c0 + 1)
√

n e1(�ϕ) � |Dθ〈�u, �θ〉| − c0 � 1
2
|Dθ〈�u, �θ〉|

and so

|Dθ〈�u, �θ〉|k � [2
√

n (c0 + 1)]ke1(�ϕ)k.

Putting

c1 = max{[2
√

n (c0 + 1)]k, (2c0)k−1},

we obtain from (14) and (15) the estimate (10). �

Lemma 3. If Ω ⊂ �
n is a bounded domain with a Lipschitz boundary, k � 1,

�ϕ ∈ W 1,k(Ω,�n ), �ϕ = �id on ∂Ω, then

(16)
∫

Ω
|tr(D�ϕ− I)|k d�x � c2

∫

Ω
[e1(�ϕ)k + 2e1(�ϕ)] d�x.

�����. Denote by lθ(x) the line which goes through the point �x and is parallel

with the directon �θ. From (10) we have

∫

lθ(x)∩Ω
|Dθ〈�u, �θ〉|k ds � c1

∫

lθ(x)∩Ω

(
e1(�ϕ)k + 2e1(�ϕ)− Dθ〈�u, �θ〉

)
ds

= c1

(∫

lθ(x)∩Ω
[e1(�ϕ)k + 2e1(�ϕ)] ds − |�u|

∣∣
lθ(x)∩∂Ω

)
.

If �ϕ
∣∣
∂Ω
= �id, then �u

∣∣
∂Ω
= 0 and

∫

lθ(x)∩Ω
|Dθ〈�u, �θ〉|k ds � c1

∫

lθ(x)∩Ω

(
e1(�ϕ)

k + 2e1(�ϕ)
)
ds.

The integration over �θ⊥ gives

(17)
∫

Ω
|Dθ〈�u, �θ〉|k d�x � c1

∫

Ω

(
e1(�ϕ)k + 2e1(�ϕ)

)
d�x.

Let now �θ1, . . . , �θn be an orthonormal base. From the inequality

(18)

( n∑

i=1

ai

)k

� nk−1
n∑

k=1

ak
i
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(which holds for all ai � 0, k � 1) and from (17) we conclude
∫

Ω
|tr(D�ϕ− I)|k d�x =

∫

Ω
|trD�u|k d�x =

∫

Ω

∣∣∣∣
n∑

i=1

D�θi
〈�u, �θi〉

∣∣∣∣
k

d�x

� nk−1
n∑

i=1

∫

Ω
|D�θi

〈�u, �θi〉|k d�x � c2

∫

Ω

(
e1(�ϕ)k + 2e1(�ϕ)

)
d�x,

where c2 = nkc1. �

In the proof of Lemma 3 we have formalized the heuristic idea from the intro-
duction. The line segments lθi(x) ∩ Ω represent the above mentioned elastic bands
pinned at lθi(x) ∩ ∂Ω.

Theorem 1 (Case �ϕ
∣∣
∂Ω
= �id).

Let Ω ⊂ �
n , n � 2, be a bounded domain with a Lipschitz boundary, p � 2,

�ϕ ∈ W 1,p(Ω,�n ), �ϕ
∣∣
∂Ω
= �id. Then

‖D�ϕ− I‖Lp(Ω) � K1

[(∫

Ω
e1(�ϕ)p/2 d�x

)1/p

(19)

+

(∫

Ω
e1(�ϕ) d�x

)1/p

+

(∫

Ω
‖D�ϕT D�ϕ− I‖p/2 d�x)1/p

]
.

�����. From (6), (18), (8) we have

|D�ϕ− I|p = {tr[(D�ϕ− I)T (D�ϕ− I)]}p/2

= tr(D�ϕT D�ϕ− I)− 2 tr(D�ϕ− I)]p/2

� 2
p
2−1| tr(D�ϕT D�ϕ− I)|p/2 + 2p−1|tr(D�ϕ− I)|p/2

� 2
p−2
2 n

p
2 ‖D�ϕT D�ϕ− I‖p/2 + 2p−1| tr(D�ϕ− I)|p/2.

Hence using (16), (18) we obtain

‖D�ϕ− I||Lp(Ω) =

(∫

Ω
|D�ϕ(x) − I|p d�x

)1/p

� [2
p
2−1 np/2

(∫

Ω
‖D�ϕT D�ϕ− I‖p/2 d�x

)
+ c22p−1

∫

Ω

(
e1(�ϕ)p/2 + 2e1(�ϕ)

)
d�x]1/p

� 3
1−p

p

[
2−1/p(2n)1/2

(∫

Ω
‖D�ϕT D�ϕ− I‖p/2 d�x

)1/p

+ c
1/p
2 2

p−1
p

(∫

Ω
e1(�ϕ)p/2 d�x

)1/p

+ c
1/p
2 2

(∫

Ω
e1(�ϕ) d�x

)1/p]
.

If we denoteK1 = 3
1−p

p max
{
2−1/p(2n)1/2, c

1/p
2 2

p−1
p , 2c1/p

2

}
, we obtain the assertion

of the theorem. �
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3. The estimate in the case �ϕ
∣∣
∂Ω

�= �id

Definition 1. Let Ω ⊂ �
n be a domain. The map �ϕ : Ω → �

n is said to be
bi-Lipschitzian if there is an inverse map �ϕ−1 : �ϕ(Ω)→ Ω such that both �ϕ and �ϕ−1

are Lipschitzian.

Theorem 2 (R.V. Kohn). Let Ω be a bounded, Lipschitzian domain in �n

(n � 2) and let 1 � p (p �= n). There is a constant c(Ω, p) such that, for any
bi-Lipschitzian map �ϕ : Ω→ �

n , there exists a rigid motion �γ satisfying

(i) if 1 � p < n, then

(20) ‖�ϕ− �γ‖Lq(Ω) + ‖�ϕ− �γ‖Lp(∂Ω) � c(Ω, p)‖e(�ϕ)‖Lp(Ω) with q =
np

n− p
;

(ii) if p > n, then

sup
x∈Ω

|�ϕ(x)− �γ(x)| � c(Ω, p)‖e(�ϕ)‖Lp(Ω).

�����. See [3]. �

It is evident from the theorem that there is an approximating rigid motion �γ for
the deformation �ϕ. Let us denote D�γ = R and compare it with the deformation

gradient D�ϕ.

Theorem 3 (Case �ϕ
∣∣
∂Ω

�= �id).
If Ω ⊂ �

n , n � 2, is a bounded domain with a Lipschitzian boundary, p � 2, then
there is a constant K2 such that for any bi-Lipschitzian map �ϕ : Ω→ �

n there exists

an orthogonal matrix R satisfying

‖D�ϕ−R‖Lp(Ω) � K2

[(∫

Ω
e1(�ϕ)p/2 d�x

)1/p

+

(∫

Ω
e(�ϕ) d�x

)1/p

(21)

+

(∫

Ω
‖D�ϕT D�ϕ− I‖p/2 d�x

)1/p]
.

�����. Let �γ be a rigid motion from Theorem 2. We can put

(22) �u(�x) = �γ−1 · �ϕ(�x)− �x.

Then

D�u(�x) = R−1D�ϕ(�x)− I,
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where R−1 = D�γ−1 is an orthogonal matrix independent of x, and

|D�ϕ−R| � √
n ‖D�ϕ−R‖ = √

n ‖R−1D�ϕ− I‖ �
√

n |R−1D�ϕ− I|.

In the same way as in Theorem 1 we show that

|R−1D�ϕ− I|p = {tr[(R−1D�ϕ− I)T (R−1D�ϕ− I)]}p/2

= [tr (D�ϕT D�ϕ− I)− 2 tr(R−1D�ϕ− I)]p/2

� 2
p−2
2 np/2‖D�ϕT D�ϕ− I‖p/2 + 2p−1| tr(R−1D�ϕ− I)|p/2.

It means that
∫

Ω
|D�ϕ−R|p d�x � np/2

∫

Ω
|R−1D�ϕ− I|p d�x(23)

� c3

[∫

Ω
‖D�ϕT D�ϕ− I‖p/2 d�x+

∫

Ω
|tr(R−1D�ϕ− I)|p/2 d�x

]
,

where

c3 = max
{
2

p
2−1np, 2p−1np/2

}
.

We need to estimate
∫
Ω|tr(R−1D�ϕ− I)|p/2 d�x. According to (10) we have

|Dθ〈�u, �θ〉|p/2 � c1[e1(�γ
−1 � �ϕ)p/2 + 2e1(�γ

−1 � �ϕ)−Dθ〈�u, �θ〉]
� c1[e1(�ϕ)p/2 + 2e1(�ϕ)−Dθ〈�u, �θ〉].

If we integrate along the line lθ(x), we obtain

∫

lθ(x)∩Ω
|Dθ〈�u, �θ〉|p/2 ds � c1

{∫

lθ(x)∩Ω

(
e1(�ϕ)p/2 + 2e1(�ϕ)

)
ds+ |�u|

∣∣
lθ(x)∩∂Ω

}
.

Integration over �θ⊥ gives

(24)
∫

Ω
|Dθ〈�u, �θ〉|p/2 d�x � c1

[∫

Ω

(
e1(�ϕ)p/2 + 2e1(�ϕ)

)
d�x+

∫

∂Ω
|�u| d�a

]
.

Let θ1, . . . , θn be an orthonormal basis in �n . From the definition of the trace,

from (18) and (24) we have

∫

Ω
|tr(R−1D�ϕ− I)|p/2 d�x =

∫

Ω
| trD�u|p/2 d�x � n

p−2
2

n∑

i=1

∫

Ω
|Dθi〈�u, �θi〉|p/2 d�x

� c1n
p/2

[∫

Ω

(
e1(�ϕ)

p/2 + 2e1(�ϕ)
)
d�x+

∫

∂Ω
|�u| d�a

]
.(25)
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Because

‖�ϕ− �γ‖Lq(Ω) � 0,

we have from (20) setting p = 1 that

‖�ϕ− �γ‖L1(∂Ω) � c‖e(�ϕ)‖L1(Ω).

It means that
∫

∂Ω
|�u| d�a =

∫

∂Ω
|�γ−1 · �ϕ(�x)− �x| d�a � c4

∫

Ω
e(�ϕ) d�x.

From here and from (25) we see that

∫

Ω
|tr(R−1D�ϕ− I)|p/2 d�x � c1n

p/2

[∫

Ω

(
e1(�ϕ)p/2 + 2e1(�ϕ)

)
d�x+ c4

∫

Ω
e(�ϕ) d�x

]

� c5

∫

Ω

(
e1(�ϕ)

p/2 + e(�ϕ)
)
d�x,

where c5 = c1n
p/2max{2, c4 + 2}.

We substitute this result into (23). We have

∫

Ω
|D�ϕ−R|p d�x � c3

[∫

Ω
‖D�ϕT D�ϕ− I‖p/2 d�x+ c5

∫

Ω

(
e1(�ϕ)p/2 + e(�ϕ)

)
d�x

]
.

If we use the inequality (18) and denote K2 = 3
1−p

p c
1/p
3 max{1, c1/p

5 }, we obtain

‖D�ϕ−R‖Lp(Ω) =

(∫

Ω
|D�ϕ−R|p d�x

)1/p

� K2

[(∫

Ω
‖D�ϕT D�ϕ− I‖p/2 d�x

)1/p

+

(∫

Ω
e1(�ϕ)p/2 d�x

)1/p

+

(∫

Ω
e(�ϕ) d�x

)1/p]
.

�
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