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Abstract. In the case of the nonlinear regression model, methods and procedures have
been developed to obtain estimates of the parameters. These methods are much more
complicated than the procedures used if the model considered is linear. Moreover, unlike
the linear case, the properties of the resulting estimators are unknown and usually depend
on the true values of the estimated parameters. It is sometimes possible to approximate the
nonlinear model by a linear one and use the much more developed linear methods, but some
procedure is needed to recognize such situations. One attempt to find such a procedure,
taking into account the requirements of the user, is given in [4], [5], [3], where the existence
of an a priori information on the parameters is assumed. Here some linearization criteria are
proposed and the linearization domains, i.e. domains in the parameter space where these
criteria are fulfilled, are defined. The aim of the present paper is to use a similar approach
to find simple conditions for linearization of the model in the case of a locally quadratic
model with unknown variance parameter σ2. Also a test of intrinsic nonlinearity of the
model and an unbiased estimator of this parameter are derived.
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1. Linearization criteria

Let us consider the nonlinear regression model

(1) Y = f(β) + ε, ε ∼ Nn[0, σ2W ]

where f : �k → �
n is a known function with continuous second derivatives, β ∈ �k

and σ ∈ �
+ are unknown parameters and W is a known positively definite matrix.

In accordance with [4], it is further assumed that

(1) the true value β of the parameter β is known to lie in a neighbourhood O(β0)
of a given point β0 ∈ �k ,
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(2) the third derivatives of the function f can be neglected for β ∈ O(β0),
(3) the model is regular at the point β0, i.e. the matrix F = ∂f(β)

∂β′ |β=β0 has the
full rank.

It follows from the assumptions (1) and (2) that the parameter space of the model

can be restricted to the set O(β0) and model (1) has the form

(2) Y = f0 + F (β − β0) +
1
2
hij(βi − β0i)(βj − β0j) + ε

where f0 = f(β0), hij = ∂
∂βi∂βj

f(β)|β=β0 and the expression hijvivj denotes the sum

over the indices i and j; this convention will be used throughout the text. Without
loss of generality, we will assume that β0 = 0 and f0 = 0.

The linearization of model (2) at the point β = 0 usually means the approximation
of the function f by the linear part of its Taylor formula at this point, i.e. the model

is replaced by

(3) Y = Fβ + ε.

This means that the solution locus E = {f(β) : β ∈ O} is replaced by E∗ = {Fβ, β ∈
O}, i.e. a part of its tangent space at the point β = 0. But this may be inadequate

to the measured data, if the distance of the true mean value f(β) of Y from the set
E∗ is large. It is clear that this distance is caused only by the intrinsic curvature of
the model (see [1] for the definition of the Bates-Watts intrinsic and parameter effect
curvatures). Let us suppose that T is a test of the intrinsic linearity of the model

with significance level α, one such test will be given below. This test can then be
used to derive a linearization criterion.

Definition 1.1. Model (2) is (α, dα)-linearizable with respect to the adequacy

of the model to the measured data if

P{the test T rejects the hypothesis of intrinsic linearity of the model} � α+ dα

where dα � α.

Further, let the estimation of a linear functional h(β) = h′β of the parameter be
considered. It is known from the linear theory that the BLUE of this functional in

model (3) is given by h′β̂(Y, 0) = h′(F ′W−1F )−1F ′W−1Y . In the original model,
however, this estimator is biased, but this bias can be neglected, if it is small com-

pared to the square root of the variance of the estimator. Moreover, if the model is
linearized at a different point β, then the resulting estimator, denoted by h′β̂(Y, β),

and its properties may depend heavily on β. These considerations lead to the fol-
lowing linearization criteria.
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Definition 1.2. Model (2) is on the set O
(i) cb-linearizable with respect to the bias for the functional h if

∀β ∈ O |Eβ [h
′β̂(Y, 0)− h′β]| � cb

√
Var[h′β̂(Y, 0)],

(ii) cm-linearizable with respect to the mean for the functional h if

∀β, β ∈ O |Eβ [h
′β̂(Y, β)− h′β̂(Y, 0)]| � cm

√
Var[h′β̂(Y, 0)],

(iii) cd-linearizable with respect to the variance for the functional h if

∀β ∈ O |Var[h′β̂(Y, β)]−Var[h′β̂(Y, 0)]| � c2dVar[h
′β̂(Y, 0)],

(iv) cU -linearizable with respect to the estimator for the functional h if

∀β ∈ O Var[h′β̂(Y, β)− h′β̂(Y, 0)] � c2U Var[h
′β̂(Y, 0)].

The criterion parameters α, dα, cb, cm, cd and cU should be chosen by a statistician

according to the requirements of the user.

������ 1.1. Similar linearization criteria, based partially on slightly different

considerations, were given in [4], [5].

2. Linearization domains

Linearization criteria, defined in the previous section, can be now used to find
linearization domains, which are defined as sets on which linearization criteria are

satisfied for some choice of the criterion parameters. To do this easily, we will first
find a suitable parametrization of the model.

Let us consider the n-dimensional vector space �n with the inner product
〈x, y〉W−1 = x′W−1y. We denote by M = span{F.1, . . . , F.k} the tangent space to
the solution locus E at the point β = 0 and byM⊥ its orthogonal complement—the
ancillary space. Let P andM be the corresponding orthogonal projectors. We define

subspaces M1 = span{Phij , i, j = 1, . . . , k} ⊆ M and M2 = span{Mhij, i, j =
1, . . . , k} ⊆ M⊥. Let the columns of the n×k matrix J = (J1, J2) form an orthonor-

mal basis ofM, such that J1 = (p1, . . . , pd) is an orthonormal basis ofM1. Similarly,
let Ω = (Ω1,Ω2) be an orthonormal basis ofM⊥, such that Ω1 = (m1, . . . , mp) is an
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orthonormal basis ofM2. Let L be a k × k nonsingular matrix such that F = JL.

We introduce a new parameter θ = Lβ to obtain the model

(4) Y = Jθ +
1
2
gijθiθj + ε

where gij = hmlrmirlj , i, j = 1, . . . , k and {rij} = R = L−1. Since the vectors gij ,

i, j = 1, . . . , k are linear combinations of the vectors hij , we may write

gij = J1J
′
1W

−1gij +Ω1Ω′1W
−1gij = γij

α pα + δij
β mβ .

Hence the 3-dimensional arrays {γij
l } and {δ

ij
l } fully describe the nonlinearity of the

model on the set O. Let γij = (γij
1 , . . . , γij

d )
′ and δij = (δij

1 , . . . , δij
p )

′. Then we may

put

K int = sup
v

‖δijvivj‖
v′v

σ,

Kpar = sup
v

‖γijvivj‖
v′v

σ

for the intrinsic and parameter effect curvatures at the point β = 0. It is obvious

that this is equivalent to the definition of the curvatures given in [1] (for the case of
a known parameter σ). In what follows, the unknown parameter σ2 will be replaced

by its estimate s2, which will be specified later.

Now we may proceed to the determination of the linearization domains. First,

let us consider the criterion of adequacy of the model to the data. In [4], the sta-
tistic R20 = σ−2‖MY ‖2W−1 is used to obtain the required test. But not all of the

components of the residual vector MY are influenced by the intrinsic nonlinearity
of the model. Moreover, this test cannot be used unless the parameter σ is known.

Therefore we propose a test statistic

F =
‖Ω′1W−1Y ‖2

ps2

where s2 = 1
n−k−pY ′W−1Ω2Ω′2W

−1Y . It is easy to see that F has the noncentral

Fk,ν(δ) distribution with the noncentrality parameter δ = δ(θ) = 1
4σ

−2‖δijθiθj‖2,
where ν = n− k − p. It is also clear that under the assumptions of Section 1, s2 is

an unbiased estimator of the parameter σ2 with ν degrees of freedom, but it can be
used only if ν is sufficiently large. But p � dim{gij, i, j = 1, . . . , k} � k

2 (k+ 1), and

therefore this estimator can always be used if n 
 k + k
2 (k + 1).

The criterion from Definition 1.1 can now be restated as follows.
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Definition 2.1. Model (4) is (α, dα)-linearizable with respect to the adequacy

of the model to the measured data and for the test statistic F if for each θ ∈ O

Pθ{F � Fp,ν(α)} � α+ dα

where Fp,ν(α) is the critical value of the central Fp,ν distribution.

Let δt be the threshold value of the noncentrality parameter for which the criterion
from Definition 2.1 is satisfied. Then the linearization domain corresponding to this

criterion can be defined as the set satisfying the condition s−2‖δijθiθj‖2 � δt.

Proposition 2.1. Let the domain O be given by the condition

s−2θ′θ � 2
√

δt

K int
.

ThenO is the linearization domain corresponding to the criterion from Definition 2.1.

�����. The proof is analogous to that of Proposition 4.1 in [5]. �

Next, estimators of linear functionals h(θ) = h′θ will be considered. Using the

above mentioned orthogonal matrices, we obtain




J ′1
J ′2
Ω′1
Ω′2


 W−1Y =

(
I

0

)
θ +
1
2




γijθiθj

0

δijθiθj

0


+ ξ

where ξ ∼ Nn[0, σ2I]. If we denote η(θ) = f(Rθ) then the estimator h′θ̂(Y, θ) has

the form

ĥ′θ(Y, θ) = h′θ + h′
[
I +

(
∆p

0

)
+ (∆′p, 0) + ∆

′
p∆p +∆′m∆m

]−1

[
(I, 0) + (∆′p, 0,∆

′
m, 0)

](
J ′

Ω′

)
W−1(Y − η(θ))

where ∆p(θ) = (γi1θi, . . . , γ
ikθi) and ∆m(θ) = (δi1θi, . . . , δ

ikθi).

Lemma 2.1. If the estimator h′θ̂(Y, θ) is approximated by the linear part of its
Taylor expansion at the point θ = 0, then

h′θ̂(Y, θ)
.
= h′J ′W−1Y + θ′(Gh)′Ω′1W

−1Y − θ′KhJ ′W−1Y

where Kh is a k × k symmetric matrix with elements Kh
ij = hlγij

l and Gh is a p× k

matrix such that Gh
ij = δjl

i hl, i = 1 . . . , p, j = 1, . . . , k.
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�����. It follows easily from the equality ∂A−1 = −A−1∂AA−1 and from

linearity of the functions θ �→ ∆p(θ) and θ �→ ∆m(θ). �

Lemma 2.2. If the approximation from the previous lemma is used, then

Var[ĥ′θ(Y, θ)]
.
= σ2h′h+ σ2θ′(Gh)′Ghθ + σ2θ′KhKhθ − 2σ2θ′Khh

and

Var[ĥ′θ(Y, θ)− ĥ′θ(Y, 0)] = σ2θ′(Gh)′Ghθ + σ2θ′KhKhθ.

�����. The statement follows from the independence of the vectors Ω′1W
−1Y

and J ′W−1Y . �

For the case of model (4), the linearization criteria given in Definition 1.2 can
now be restated using these approximations. The resulting linearization domains

are given in the next proposition. Let A be a symmetric matrix with the spectral
decomposition A =

∑
i

µipip
′
i, then the matrix |A| is defined by |A| =

∑
i

|µi|pip
′
i.

Proposition 2.2. Let O be such that
(i) θ′|Kh|θ � 2cbs

√
h′h

(ii) θ′(Gh)′Ghθ � c2h′h

for all θ ∈ O. Let kh =
|λh|√
h′h

s, where λh is an eigenvalue of the matrix Kh with the

greatest absolute value. Then, for the functional h, the model is on O
(a) cb-linearizable with respect to the bias,

(b) cd-linearizable with respect to the variance, where c2d = c2 + 2cbkh + 2
√
2cbkh,

(c) cU -linearizable with respect to the estimator, where c2U = c2 + 2cbkh.

Moreover, if sup
O

s−1‖δij θ̄iθ̄j‖ =Mδ < ∞ and sup
O

s−1‖γij θ̄iθ̄j‖ =Mγ < ∞, then the
model is on O
(d) cm-linearizable with respect to the mean, where cm = 1

2cMδ+ 12
√
2cbkhMγ+2cb.

�����. The statement (a) follows from the fact that |Eθ[h′θ̂(Y, 0) − h′θ]| =
|θ′Khθ| � θ′|Kh|θ. (c) is proved similarly as (b). (b) From Schwarz inequality and
Lemma 2.2, it is clear that it suffices to prove that

θ′(Gh)′Ghθ + θ′KhKhθ + 2
√

θ′KhKhθ
√

h′h � c2h′h.

Let Kh =
∑
i

λifif
′
i be the spectral decomposition of the matrix Kh and let O1 be

the ellipsoid given by condition (i). Let θ ∈ O1 and θ =
∑
i

xifi. Then

θ′KhKhθ =
∑

i

x2i λ
2
i � |λh|

∑

i

x2i |λi| = khθ′|Kh|θ
√

h′h
s

� 2khcbh
′h.
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The rest of the proof is obvious.

(d) From Lemma 2.1, we have

|Eθ̄[ĥ′θ(Y, θ)− ĥ′θ(Y, 0)]| =
∣∣∣1
2
θ′(Gh)′δij θ̄iθ̄j − θ′Kh

(
θ̄ − 1
2
γij θ̄iθ̄j

)∣∣∣

� 1
2
s
√

θ′(Gh)′Ghθs−1‖δij θ̄iθ̄j‖+
1
2
s
√

θ′KhKhθs−1‖γij θ̄iθ̄j)‖

+ ss−1θ′|Kh|θ̄.

The proof is completed by using the proof of (b) and Lemma 2.3 below. �

Next we will find domains on which the linearization criteria are satisfied for all
linear functionals h(θ) = h′θ. We prove some auxiliary statements first. The domains

are given in Proposition 2.3. The proof of the following lemma can be found e.g. in
[2], p. 180.

Lemma 2.3. Let A be an arbitrary symmetric matrix. Then

‖A‖ = sup
‖x‖=‖y‖=1

|y′Ax| = sup
‖x‖=1

|x′Ax|.

Lemma 2.4. Let {tijl } be a 3-dimensional array such that tijl = tji
l ∀i, j, l and

suppose that C is a p.d. matrix. Then

sup
‖v‖=‖u‖=1

‖tijviuj‖C = sup
‖v‖=1

‖tijvivj‖C .

�����. Let Rx be a matrix with elements Rx
ij = x′Ctij , ‖x‖C = 1. Then Rx is

a symmetric matrix and ‖tijuivj‖C = sup
x
|u′Rxv|. According to Lemma 2.3 we have

sup
x

(
sup

‖u‖=‖v‖=1
|u′Rxv|

)
= sup

x

(
sup
‖v‖=1

|v′Rxv|
)

= sup
‖v‖=1

(
sup

x
|v′Rxv|

)
= sup

‖v‖=1
‖tijvivj‖C .

�

Lemma 2.5. If O is given by s−2θ′θ � M2, then

Mγ � KparM2, Mδ � K intM2.

�����. It is easy to prove that ([6]) s−1‖γijθiθj‖ � Kpars−2θ′θ. The statement
for Mδ is proved analogously. �

151



Proposition 2.3. Let

O = {θ : s−2‖θ‖2 � M2}.

Then the model (4) is for all functionals h′θ

(a) cb-linearizable with respect to the bias, where cb = 1
2M

2Kpar,

(b) cd-linearizable with respect to the variance, where c2d =M2((K int)2+(Kpar)2)+

2MKpar,

(c) cU -linearizable with respect to the estimator, where c2U = M2((K int)2 +

(Kpar)2),

(d) cm-linearizable with respect to the mean, where cm =M3 1
2 ((K

int)2+(Kpar)2)+

M2Kpar.

�����. (a) Can be found in [4].

(b) According to (a) |θ′Khθ| � M2Kpars‖h‖ holds for all h. From the proof of
Proposition 2.2 (b) and using the fact that

kh =
|λh|s√

h′h
= sup

θ

|hlγij
l θiθj |
θ′θ

s√
h′h

� sup
θ

‖γijθiθj‖
θ′θ

s = Kpar

we get

θ′KhKhθ � M2(Kpar)2h′h.

Further, it is clear from the definition of the matrixGh that θ′(Gh)′Ghθ = ‖δijhiθj‖2.
According to Lemma 2.4, ‖δijhiθj‖ � K int‖h‖s−1‖θ‖. It follows that for θ ∈ O and
∀h,

θ′(Gh)′Ghθ � (K int)2M2‖h‖2.

(c) The same as (b).

(d) From part (b) and Lemma 2.5 we get

s
√

θ′(Gh)′GhθMδ � sK intM
√

h′hK intM2

and

s
√

θ′KhKhθMγ � (Kpar)2M3s
√

h′h.

It is easy to prove, using Lemmas 2.3 and 2.5, that |θ′Khθ̄| � M2Kpars‖h‖ for all
h ∈ �k and θ ∈ O. �
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Propositions 2.2 and 2.3 allow us to find a linearization domain for any set of

criterion parameters. These domains have the following interpretation. If the lin-
earization approach is to be used in a given model and the error caused by the
nonlinearity of the model should be less than the tolerance of the user, specified by

given criterion parameters, then the a priori information domain should be contained
in the corresponding linearization domain. As was pointed out in [3], this approach

leads to certain natural restrictions on the model as well as on the values of the cri-
terion parameters. The idea here is that the information on the parameters yielded

from the estimation procedure, which is given by the confidence region based on the
estimator, is required to be more precise that the a priori information given by O.
These restrictions will be stated in the next section.

3. Criterion parameters and linearization conditions

Let us now suppose that the true value of the parameter β lies in the domain O
from Proposition 2.3. Then it is clear that

C =
{

θ : s−2
(
θ̂(Y, 0)− θ

)′(
θ̂(Y, 0)− θ

)
�

(1
2
M2Kpar +

√
kFk,ν(1− α)

)2}

is a 1−α confidence region for θ. As was said at the end of the previous section, we

now require that

(5)
1
2
M2Kpar +

√
kFk,ν(1− α) � M.

Solving this equation, we easily get the restriction on M .

Proposition 3.1. Let

Kpar =
ω2

2
√

kFk,ν(1− α)
, ω2 � 1

and

1−
√
1− ω2 � MKpar � 1 +

√
1− ω2 if ω2 > 0,

√
kFk,ν(1− α) � M otherwise.

Then the condition (5) is satisfied.
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Let us now assume that Kpar > 0. The bounds on M = sup
O

s−2θ′θ, given by

Proposition 3.1, may be compared to the results of Propositions 2.1 and 2.3. We get
√

δt

q2
Kpar � K int

√
kFk,ν(1− α) �

√
δt

q1
Kpar

and
q1 =

1
ω2
[1−

√
1− ω2]2 � qb � 1

ω2
[1 +

√
1− ω2]2 = q2

where qb = cb√
kFk,ν(1−α)

. Similar inequalities are obtained for the parameters c2d, c
2
U

and cm.
If Kpar = 0, the condition (5) becomes

√
kFk,ν(1 − α) � M , thus

K int � 2
√

δt

kFk,ν(1− α)
.

In this case cb = 0, which means that the criterion with respect to the bias is satisfied

for any value of the parameter cb. Clearly, q1 → 0 and q2 →∞ as ω2 → 0.
If the estimation of only one linear functional h′θ is of interest, we use, for θ̄ in

the domain O defined in Proposition 2.2, the 1− α confidence interval

I =
{
x : |ĥ′θ(Y, 0)− x| � (1 + qb)tν

(α

2

)
s
√

h′h
}

where tν(α2 ) is a critical value of Student’s t-distribution with ν degrees of freedom
and qbtν(α2 ) = cb. The a priori interval, given by O, will be, as in [3], defined by
Ih = {x : |x| � maxO h′θ}.

Lemma 3.1. Ih = {x : |x| � min{MK , MG}}, where

MK =

{√
2cbs

√
h′hh′[Kh]+h if h ∈M(Kh)

∞ otherwise,

MG =

{
c
√

h′hh′[(Gh)′Gh]+h if h ∈M((Gh)′Gh)

∞ otherwise

where A+ :=
∑
i

µ−1i fif
′
i denotes the Moore-Penrose generalized inverse of the sym-

metric matrix A with the spectral decomposition A =
∑
i

µifif
′
i .

�����. It is clear that

max
O

h′θ = min
{

max
θ′Khθ�2cbs

√
h′h

h′θ, max
θ′(Gh)′Ghθ�c2h′h

h′θ
}

.

The proof of the statement for Kh can be found in [3], the proof for Gh is exactly
the same. �
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Comparing intervals I and Ih we get the conditions

(6) (1 + qb)tν
(α

2

)
�

√
2qbtν(α2 )h

′[Kh]+h

s
√

h′h

and

(7) (1 + qb)tν
(α

2

)
� c

√
h′[(Gh)′Gh]+h

s
.

Proposition 3.2. Let

Cparh =

{ √
h′h

h′[Kh]+h
s if h ∈ M(Kh)

0 otherwise,

C inth =

{ s√
h′[(Gh)′Gh]+h

if h ∈ M((Gh)′Gh)

0 otherwise.

Let

Cparh =
ω2h
2tν(α2 )

, ω2h � 1

and

q1 =
1
ω2h

[
1−

√
1− ω2h

]2
� qb � 1

ω2h

[
1 +

√
1− ω2h

]2
= q2,

C inth tν

(α

2

)
� c

1 + qb
.

Then the conditions (6) and (7) are satisfied.

From this, restrictions on all criterion parameters follow.

������ 3.1. The values of Cparh and C inth can be considered as some measures

of nonlinearity of the model for the functional h. It is easy to see that in the case
of k = 1, we have Cparh = Kpar and C inth = K int for all h ∈ �. In general, these are
different from K inth and Kparh .

������ 3.2. According to [3], the smallest ratio of the confidence region to
the linearization domain is attained for cb equal to

√
kFk,ν(α) or cb = tν(α2 ), and is

equal to ω or ωh, respectively. From this we see that we should require more than
in Proposition 3.1 or 3.2, for example, ω � 0.5.
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The conditions stated in this section allow us to decide whether a given model can

be linearized with a given set of criterion parameters, before the a priori information
is specified. These conditions can be used as a characterization of models that allow
the use of linear methods. If some values of the criterion parameters are given by

the user to specify the tolerance of the error caused by the nonlinearity of the model,
and if the conditions are fulfilled, it means that on some subset of the parameter

space the model can be treated as linear with the errors within the tolerance, and
the estimation still makes sense. Further, the intervals given by the restrictions on

the criterion parameters indicate which criteria are influenced by the nonlinearity. If
the linearization domain is sufficiently large, so that the required a priori information

can be achieved, then the linear methods can be used.

4. An application

To illustrate our results, we will use the Michaelis-Menten model

Yi =
β1xi

β2 + xi
+ εi, i = 1, . . . , n

where ε ∼ Nn[0, σ2I], with the design points xi and realizations yi given in [1].

This model will be linearized at the point β0 = (0.10579, 1.7007) (the least squares
estimate of β). It should be said here that a quadratic approximation of the model

at this point will be used; the assumption (2) of Section 1 might be violated if the
domain O is too large. We will find the linearization domains for the estimators of
the parameters β1 and β2 as well as for the whole parameter β. The domains will be
given in the original coordinates. As in [3], the ellipses will be written in the form

{p; a, b}, where p is the direction of the semiaxis with length a.
First, let θ = L(β − β0) be the reparametrization from Section 2. We have

L =

(−0.9168 0.0353
0.2551 0

)
,

d = 2, p = 1 and s = 0.004725. Let us consider the functionals h′1θ = β1 − β01,

h′2θ = β2 − β02, then u1 = h1/‖h1‖ = (0, 1)′ and u2 = h2/‖h2‖ = (0.268, 0.963)′ and

γ..
1 = −

(
22.2 42.7244
42.7244 20.399

)
,

γ..
2 = −

(
5.674 20.391

20.391 73.273

)
= −kh1

s
u2u

′
2,

δ..
1 = −

(
0.735 2.641
2.641 9.49

)
= −K int

s
u2u

′
2.
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We see that no linear functional can be unbiasedly estimated. Moreover, the intrinsic

curvature of the model is caused only by the parameter β2. The curvature measures
are given in the next table.

Kpar (Cparh ) K int (C inth ) ω2 kh

whole par 0.444 0.0483 2.5919 –
h = h1 0 0 0 0.3730
h = h2 0.2119 0.0483 0.9591 0.4186

Let us now find the linearization domains. Using the above expression for δ.., we

obtain a linearization domain for the adequacy criterion, given by

|β2 − β02| = |h′2θ| �

√ √
δt

K int
s‖h2‖ = 2.2725δ

1
4
t

where the values of δt for α = 0.05 and some values of dα are given in Table 1.

dα 0.001 0.005 0.01 0.015 0.02 0.025 0.03 0.04
ν = 9 0.0108 0.0539 0.1076 0.1610 0.2141 0.267 0.3197 0.4245

Table 1. Values of δt for F1,ν-distribution.

Let now h = h1. The linearization domain from Proposition 2.2 has the form

E11 = {β | |β2 − β02| � 1.1567
√

cb} and E12 = {β | |β2 − β02| � 10.7286c}

where E11 and E12 are the sets given by the conditions (i) and (ii), respectively. If we
put O1 = E11 then c2 = 0.0116cb and we see that

(8) c2d = 0.7576cb + 1.727
√

cb, c2U = 0.7576cb,

but, as the norm of γij(Lβ)i(Lβ)j is not bounded on this strip, the model is on O1
not linearizable with respect to the mean for any value of cm.
If the estimator of β2 − β02 = h′2θ is considered, then the domains are

E21 = {(0.0794, 0.9968)′; 1.5393
√

cb, 0.0686
√

cb},
E22 = {β | |β2 − β02| � 10.3375c}.

Compute sup
E21
|β2 − β02| = MK = 1.5287

√
cb, so that if we put O2 = E21 , we have

c = 0.1484
√

cb. Further, s−1‖δijθiθj‖ = s−2‖h2‖−2K int(h′2θ)2, so that

Mδ = ‖h2‖−2
K int

s2
M2

K = 0.4557cb.
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To getMγ using an iteration algorithm, we compute sup
θ

‖γijθiθj‖
θ′|Kh2 |θ ‖h2‖ = 8.1837, thus

Mγ = 16.3674cb.
We get

(9) c2d = 0.8592cb + 1.8300
√

cb, cm = 7.5219c
3
2
b + 2cb

where the value of c2U was omitted because it is always equal to the first summand
of the expression for c2d.

Return now to the linearization domain for h = h1. If the criterion with respect
to the mean is to be satisfied, consider the expression

Eθ̄[u
′
1(θ̂(Y, θ)− θ̂(Y, 0))] =

1
2

(K int

s

)2
u′1u2(u

′
2θ)(u

′
2θ̄)
2 +

ku1

s
u′2θ

(
u′2θ̄ +

1
2
θ̄′Ku2 θ̄

)

obtained from Lemma 2.1 and the expressions for γ..
2 and δ... We see that it is

sufficient to use a domain where θ̄′Ku2 θ̄ is bounded, i.e. a linearization domain for

the functional h′2θ for some value cb2 of the criterion parameter cb. Take the domain
E21 with cb2 such that δE21 ∩ δE11 �= ∅, where δE denotes the boundary of the domain
E , i.e. cb2 � 0.5725cb. Then it is easy to see that if O1 = E11 ∩ E21 then O1 is also
a linearization domain for h = h1 with the values of criterion parameters as in (8)
and, moreover

(10) cm = 0.9129
√

cbcb2 + 2cb.

Finally, let us find the linearization domain for the whole vector β for some value

of cb. According to Proposition 2.3,

O3 = {β : β′L′Lβ � s2M2 = 0.0001cb}
= {(0.0357, 0.9994)′; 1.0608√cb, 0.0105

√
cb}

and

(11) c2d = 0.8992cb + 1.8854
√

cb, cm = 0.9546c
3
2
b + 2cb.

Let us now consider the linearization conditions. We see that if the domain E11
is used as the linearization domain, linearization is possible and no restrictions on
the parameter occur. As for the domain E11 ∩ E21 , it will again be compared to the
confidence interval for β1 and a linearization condition follows, as in Section 3, with

ω2h1 = 2

√
h′1h1

cb2
cb

h′1|Ku2 |h1
stν

(α

2

)
= 0.3264
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if cb2 = 0.5725cb. For the criterion parameters, we get the restrictions

0.2228 � cb � 22.9759, 0.9840 � c2d � 25.6852,
0.1688 � c2U � 17.4070, 0.5006 � cm � 103.5048.

We see that in this case, linearization is possible and the values of the criterion

parameters are reasonable. Moreover, with respect to the relatively small standard
deviation of the estimator, greater values of the criterion parameters might be tol-

erated, to obtain greater domains.

In the case of the functional h = h2, we get

1.4890 � cb � 3.4160, 3.5191 � c2d � 6.3173,
1.2793 � c2U � 2.9350, 16.6444 � cm � 54.3206.

In this case, the conditions are much more restrictive and the domains obtained
are very small. Moreover, the value of ωh2 is still very large, indicating that the

linearization domain is small compared to the confidence interval (see Remark 3.2).

As for the estimator of the whole vector β, we see that linearization is impossible.

Appendix. The computation of orthonormal bases

In this section we will indicate the procedure to find the orthonormal matrices

J = (J1, J2) and Ω = (Ω1,Ω2) and the arrays {γij
l } and {δ

ij
l }.

Let X be a matrix with columns xij = (F ′W−1F )−
1
2F ′W−1hij , i � j, j = 1, . . . , k

and let X = U

(
T

0

)
be the QR decomposition of the matrixX , i.e. U is orthonormal

and T upper triangular. Let J = F (F ′W−1F )−
1
2U and J

(
T

0

)
= J1T . Then it is

easy to see that J = (J1, J2) is the orthonormal matrix defined in Section 2. Further,

if R = L−1 = (J ′W−1F )−1 , then γij = T mlrmirlj , where T ml = T lm is the column
of T corresponding to the vector xij .

Similarly as above, let now Z be a matrix with columns W− 1
2Mhij and let Z =

Q

(
S

0

)
be its QR decomposition. Let Q1 be such that Q

(
S

0

)
= Q1S. Then

Ω1 = W
1
2Q1 and δij = Smlrmirlj . The matrix Ω2 can be found by completing the

vectors (J1, J2,Ω1) to an orthonormal basis of �n .
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