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NUMERICAL MODELING OF THE MOVEMENT OF A RIGID

PARTICLE IN VISCOUS FLUID1

Josef Ježek, Stanislav Saic, Karel Segeth, Praha

Abstract. Modeling the movement of a rigid particle in viscous fluid is a problem physi-
cists and mathematicians have tried to solve since the beginning of this century. A general
model for an ellipsoidal particle was first published by Jeffery in the twenties. We exploit
the fact that Jeffery was concerned with formulae which can be used to compute numerically
the velocity field in the neighborhood of the particle during his derivation of equations of
motion of the particle. This is our principal contribution to the subject. After a thorough
check of Jeffery’s formulae, we coded software for modeling the flow around a rigid particle
based on these equations. Examples of its applications are given in conclusion. A practical
example is concerned with the simulation of sigmoidal inclusion trails in porphyroblast.
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1. Introduction

Modeling the movement of a rigid particle in viscous fluid was considered a fun-
damental problem physicists and mathematicians tried to solve as soon as at the

beginning of this century. One of the first publications is Einstein’s paper [1] where
a spherical particle is treated. A more general model for an ellipsoidal particle was

published by Jeffery [5] at the beginning of the twenties. The significance of the
equations of motion Jeffery derived was mostly theoretical in his time. They could

become the basis for numerical modeling only with the development of computers.

1 This research was partly supported by the Grant Agency of the Czech Republic under
Grants No. 102/96/0419 and 201/97/0217.
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Publications employing Jeffery’s equations of motion of an ellipsoidal particle to

modeling the origin of the preferred orientation of minerals in rocks began to appear
in the sixties (cf., e.g., [2], [3], [8], [11]).

The fact that Jeffery was concerned with formulae which can be used to compute
numerically the velocity field in the neighborhood of a particle during his deriva-

tion of the equations of motion of the particle, remained unnoticed. The reason
apparently was, on the one hand, the complexity of the formulae and minor errors,

possibly misprints, in them and, on the other hand, the necessity to apply an effi-
cient procedure for repeated evaluation of elliptic integrals. Our first task, therefore,

was to check the derivation published in [5]. The resulting corrected equations are
presented in Sec. 2. Further, we coded software for modeling the flow around a rigid

particle based on these equations. Examples of its application are given in Sec. 3. A
practical example is concerned with the computer simulation of sigmoidal inclusion

trails in crystallizing porphyroblast.

2. Derivation of Equations of Motion

Let us repeat briefly the course of derivation of the equations of motion as pre-
sented in [5]. It demonstrates the enormous intuition and experience of the author

who was able to guess in advance which terms have to be included in the formu-
lae and got the coefficients of these terms through the mutual comparison of the

formulae. We mostly use the original notation of Jeffery.

We asked our colleagues for help with the check in several places, e.g. when the
differentiation of integrals with respect to a parameter (appearing also in the limits

of integration), differentiation of implicit functions, and, in general, differentiation
of complicated functions was concerned. We even used the software package Mathe-

matica [12] in several extremely hard cases. Our thanks are due to J. Chleboun and
E. Vitásek of the Mathematical Institute of the Academy of Sciences of the Czech

Republic.

An ellipsoidal particle is described by the equation

(2.1)
x2

a2
+
y2

b2
+
z2

c2
= 1,

where x, y, and z are the Cartesian coordinates referred to the axes fixed in the
particle and a, b, and c are the semiaxes of the ellipsoid.
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Jeffery writes the equations of motion for the fluid without any particle (or at a

large distance from the particle) in the form

u0 = ax+ hy + gz + ηz − ζy,(2.2)

v0 = hx+ by + fz + ζx− ξz,

w0 = gx+ fy + cz + ξy − ηx,

where u0, v0, and w0 are components of the velocity that are equal to the prod-

uct of the tensor of the velocity gradient and the coordinates. The symmetric and
skewsymmetric parts of the tensor of the velocity gradient are



a h g
h b f
g f c


 and



0 ζ −η

−ζ 0 ξ

η −ξ 0


 .

It is the appropriate choice of components of the tensor of the velocity gradient that

allows us to describe various particular and practically important cases of the fluid
motion.

Denote the viscosity coefficient by µ, the density by �, and the spins, i.e. the
angular velocities of the ellipsoid about its axes, by ω1, ω2, and ω3. A standard

derivation that assumes a small Reynolds number and is based on neglecting small
quantities in the Navier-Stokes equations

µ∇2u− ∂p

∂x
= �

(∂u
∂t

− ω3v + ω2w
)
, µ∇2v − ∂p

∂y
= �

(∂v
∂t

− ω1w + ω3u
)
,

µ∇2w − ∂p

∂z
= �

(∂w
∂t

− ω2u+ ω1v
)

finally leads to equations for the steady motion of fluid with a particle, i.e. to the
differential equations

µ∇2u = ∂p

∂x
, µ∇2v = ∂p

∂y
, µ∇2w = ∂p

∂z
,(2.3)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0(2.4)

for the velocity components u, v and w, and the pressure p. The first three equations

are the Stokes equations, the fourth is the continuity equation that expresses the
incompressibility of the fluid.

We then arrive at the equations

(2.5) u = ω2z − ω3y, v = ω3x− ω1z, w = ω1y − ω2x
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which have to be satisfied on the surface of the ellipsoid and describe the adhesion

of the fluid to the particle. The particle thus does not slip in the fluid. In this way,
we obtain the equations of motion of the particle from the equations of motion (2.3)
of the fluid via the conditions (2.5).

In this phase, Jeffery guesses the formulae for the velocity components and writes

u = u0 +
∂

∂x
(Rχ1 + Sχ2 + Tχ3) +W

∂χ3
∂y

− V
∂χ2
∂z

(2.6)

+A
(
x
∂2Ω

∂x2
− ∂Ω

∂x

)
+H

(
x
∂2Ω

∂x∂y
− ∂Ω

∂y

)
+G′

(
x
∂2Ω

∂x∂z
− ∂Ω

∂z

)

+ y
(
H ′ ∂

2Ω

∂x2
+B

∂2Ω

∂x∂y
+ F

∂2Ω

∂x∂z

)

+ z
(
G
∂2Ω

∂x2
+ F ′

∂2Ω

∂x∂y
+ C

∂2Ω

∂x∂z

)
,

v = v0 +
∂

∂y
(Rχ1 + Sχ2 + Tχ3) + U

∂χ1
∂z

−W
∂χ3
∂x

+ x
(
A
∂2Ω

∂x∂y
+H

∂2Ω

∂y2
+G′

∂2Ω

∂y∂z

)

+H ′
(
y
∂2Ω

∂x∂y
− ∂Ω

∂x

)
+B

(
y
∂2Ω

∂y2
− ∂Ω

∂y

)
+ F

(
y
∂2Ω

∂y∂z
− ∂Ω

∂z

)

+ z
(
G
∂2Ω

∂x∂y
+ F ′

∂2Ω

∂y2
+ C

∂2Ω

∂y∂z

)
,

w = w0 +
∂

∂z
(Rχ1 + Sχ2 + Tχ3) + V

∂χ2
∂x

− U
∂χ1
∂y

+ x
(
A
∂2Ω

∂x∂z
+H

∂2Ω

∂y∂z
+G′

∂2Ω

∂z2

)

+ y
(
H ′ ∂

2Ω

∂x∂y
+B

∂2Ω

∂y∂z
+ F

∂2Ω

∂z2

)

+G
(
z
∂2Ω

∂x∂z
− ∂Ω

∂x

)
+ F ′

(
z
∂2Ω

∂y∂z
− ∂Ω

∂y

)
+ C

(
z
∂2Ω

∂z2
− ∂Ω

∂z

)
,

where Ω, χ1, χ2 and χ3 are functions to be defined later while capital Latin letters
(possibly with primes) are coefficients to be found.

Let Λ be a nonnegative zero of the equation

(2.7)
x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
= 1.

Let us introduce the function

∆(λ) =
√
(a2 + λ)(b2 + λ)(c2 + λ).
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Comparing (2.7) with the definition of the ellipsoid (2.1), we find easily that Λ = 0

is also a zero of the equation (2.7). Through definite integrals we further introduce
several quantities that depend on Λ, namely

α =
∫ ∞

Λ

dλ
(a2 + λ)∆(λ)

, β =
∫ ∞

Λ

dλ
(b2 + λ)∆(λ)

, γ =
∫ ∞

Λ

dλ
(c2 + λ)∆(λ)

,

α′ =
∫ ∞

Λ

dλ
(b2 + λ)(c2 + λ)∆(λ)

, α′′ =
∫ ∞

Λ

λdλ
(b2 + λ)(c2 + λ)∆(λ)

,

β′ =
∫ ∞

Λ

dλ
(a2 + λ)(c2 + λ)∆(λ)

, β′′ =
∫ ∞

Λ

λdλ
(a2 + λ)(c2 + λ)∆(λ)

,

γ′ =
∫ ∞

Λ

dλ
(a2 + λ)(b2 + λ)∆(λ)

, γ′′ =
∫ ∞

Λ

λdλ
(a2 + λ)(b2 + λ)∆(λ)

.

Note that

α′ =
γ − β

b2 − c2
, α′′ =

b2β − c2γ

b2 − c2
, β′ =

α− γ

c2 − a2
, β′′ =

c2γ − a2α

c2 − a2
,

γ′ =
β − α

a2 − b2
, γ′′ =

a2α− b2β

a2 − b2
.

All these integrals can be expressed through Legendre elliptic integrals of the 1st and
2nd kinds

F (ϕ, k) =
∫ ϕ

0

dψ√
1− k2 sin2 ψ

, E(ϕ, k) =
∫ ϕ

0

√
1− k2 sin2 ψ dψ.

The corresponding formulae valid for various cases of mutual relations among the
semiaxes a, b, and c can be found in Sec. 3.13 of [4]. The evaluation of the elliptic

integrals was carried out with help of EL2 subroutine of [10] that computes the general
elliptic integral of the 2nd kind,

EL2(q, r, s, t) =
∫ q

0

(s+ tσ2) dσ

(1 + σ2)
√
(1 + σ2)(1 + r2σ2)

.

Then

F (ϕ, k) = EL2(tanϕ,
√
1− k2, 1, 1), E(ϕ, k) = EL2(tanϕ,

√
1− k2, 1, 1− k2).

Following [5], we can now define functions Ω, χ1, χ2, and χ3. We put

Ω =
∫ ∞

Λ

{ x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
− 1

} dλ
∆(λ)

,

χ1 = α′yz, χ2 = β′zx, χ3 = γ′xy.
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The first step of the procedure consists in the verification that all these functions

are harmonic. Recall that in the course of the verification we have to differentiate
Λ(x, y, z) defined implicitly as a zero of the equation (2.7). The result is

∂Λ

∂x
=
2xP 2

a2 + Λ
,

∂Λ

∂y
=
2yP 2

b2 + Λ
,

∂Λ

∂z
=
2zP 2

c2 + Λ
,

where

1
P 2
=

x2

(a2 + Λ)2
+

y2

(b2 + Λ)2
+

z2

(c2 + Λ)2
.

Mathematica [12] proved to be an indispensable tool in this phase of verification of

the formulae of [5].

The next step consists in the proof that the functions u, v, and w introduced in

(2.6) satisfy the continuity equation (2.4). This can really be proved due to the fact
that the relation

a+ b+ c = 0

follows from the equations of motion (2.2).

Let us now turn to fulfilling the equations of motion (2.3). Substituting the func-

tions u, v, and w introduced in (2.6) into (2.3), we conclude that the equations of
motion will be satisfied if we put

p = p0 + 2µ
(
A
∂2Ω

∂x2
+B

∂2Ω

∂y2
+ C

∂2Ω

∂z2
+ (F + F ′)

∂2Ω

∂y∂z

+ (G+G′)
∂2Ω

∂z∂x
+ (H +H ′)

∂2Ω

∂x∂y

)
,

where p0 is a constant mean pressure at a large distance from the ellipsoid. In
addition, we use the fact that the functions u0, v0, and w0 defined by (2.2) satisfy

the Stokes equations with the pressure p replaced by the constant pressure p0. These
functions are, therefore, harmonic.
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Before proceeding further, we explicitly substitute for the functions Ω, χ1, χ2, and

χ3, and their derivatives into (2.6). The result is

u = x{a+ γ′W − β′V − 2(α+ β + γ)A}(2.8)

+ y{h− ζ + γ′T − 2βH + 2αH ′}
+ z{g+ η + β′S − 2γG′ + 2αG}

− 2xP 2

(a2 + Λ)∆(Λ)

[
{R+ 2(b2 + Λ)F + 2(c2 + Λ)F ′}yz/{(b2 + Λ)(c2 + Λ)}

+ {S + 2(c2 + Λ)G+ 2(a2 + Λ)G′}zx/{(c2 + Λ)(a2 + Λ)}
+ {T + 2(a2 + Λ)H + 2(b2 + Λ)H ′}xy/{(a2 + Λ)(b2 + Λ)}
− {V − 2(c2 + Λ)C + 2(a2 + Λ)A}z2/(c2 + Λ)2

+ {W − 2(a2 + Λ)A+ 2(b2 + Λ)B}y2/(b2 + Λ)2
]
,

v = x{h+ ζ + γ′T + 2βH − 2αH ′}
+ y{b+ α′U − γ′W − 2(α+ β + γ)B}
+ z{f− ξ + α′R− 2γF + 2βF ′}

− 2yP 2

(b2 + Λ)∆(Λ)

[
{R+ 2(b2 + Λ)F + 2(c2 + Λ)F ′}yz/{(b2 + Λ)(c2 + Λ)}

+ {S + 2(c2 + Λ)G+ 2(a2 + Λ)G′}zx/{(c2 + Λ)(a2 + Λ)}
+ {T + 2(a2 + Λ)H + 2(b2 + Λ)H ′}xy/{(a2 + Λ)(b2 + Λ)}
+ {U − 2(b2 + Λ)B + 2(c2 + Λ)C}z2/(c2 + Λ)2

− {W − 2(a2 + Λ)A+ 2(b2 + Λ)B}x2/(a2 + Λ)2
]
,

w = x{g− η + β′S − 2αG+ 2γG′}
+ y{f+ ξ + α′R+ 2γF − 2βF ′}
+ z{c+ β′V − α′U − 2(a+ β + γ)C}

− 2zP 2

(c2 + Λ)∆(Λ)

[
{R+ 2(b2 + Λ)F + 2(c2 + Λ)F ′}yz/{(b2 + Λ)(c2 + Λ)}

+ {S + 2(c2 + Λ)G+ 2(a2 + Λ)G′}zx/{(c2 + Λ)(a2 + Λ)}
+ {T + 2(a2 + Λ)H + 2(b2 + Λ)H ′}xy/{(a2 + Λ)(b2 + Λ)}
− {U − 2(b2 + Λ)B + 2(c2 + Λ)C}y2/(b2 + Λ)2

+ {V − 2(c2 + Λ)C + 2(a2 + Λ)A}x2/(a2 + Λ)2
]
.

It now remains to fulfil the conditions (2.5) on the ellipsoid surface, i.e. for Λ = 0.
To this aim, we put Λ = 0 in these equations as well as in the definition of the

functions α, β, γ and the derived functions denoted by one prime or two primes.
Therefore, the lower limit of integration in the integrals defining the functions α, β,
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γ, etc. will equal 0. These functions will be denoted by α0, β0, γ0, etc. Finally, we

arrive at the formulae for the sought coefficients in (2.8) that read

A = 1
6{2α′′0a− β′′0b− γ′′0 c}/(β′′0 γ′′0 + γ′′0α′′0 + α′′0β′′0 ),

B = 1
6{2β′′0b− γ′′0 c− α′′0a}/(β′′0 γ′′0 + γ′′0α′′0 + α′′0β′′0 ),

C = 1
6{2γ′′0 c− α′′0a− β′′0b}/(β′′0 γ′′0 + γ′′0α′′0 + α′′0β′′0 ),

F =
β0f− c2α′0(ξ − ω1)
2α′0(b2β0 + c2γ0)

, F ′ =
γ0f+ b2α′0(ξ − ω1)
2α′0(b2β0 + c2γ0)

,

G =
γ0g− a2β′0(η − ω2)
2β′0(c2γ0 + a2α0)

, G′ =
α0g+ c2β′0(η − ω2)
2β′0(c2γ0 + a2α0)

,

H =
α0h− b2γ′0(ζ − ω3)
2γ′0(a2α0 + b2β0)

, H ′ =
β0h+ a2γ′0(ζ − ω3)
2γ′0(a2α0 + b2β0)

,

R = − f
α′0
, S = − g

β′0
, T = − h

γ′0
,

U = 2b2B − 2c2C,
V = 2c2C − 2a2A,
W = 2a2A− 2b2B.

Mathematica [12] was again used in this phase of the verification. Our conclu-

sion now is that the formulae (2.6) and (2.8) have been checked and the coefficients
appearing in them have been uniquely determined. We have corrected several er-

rors (obviously misprints) in the formulae (26) of Jeffery’s paper [5] that define the
coefficients F , F ′, G, G′, H , and H ′.

According to [5], expressing now the moment of forces acting on the ellipsoid and
taking into account that the resulting moment vanishes if there are no external forces,

we arrive at the equations of motion of the ellipsoid in the form

(b2 + c2)ω1 = b2(ξ + f) + c2(ξ − f),(2.9)

(c2 + a2)ω2 = c2(η + g) + a2(η − g),
(a2 + b2)ω3 = a

2(ζ + h) + b2(ζ − h).

476



3. Computer Implementation and Examples

of the Results of Modeling

The flow around a rotating ellipsoidal particle can be modeled in such a way that

we solve the equations of rotation of the particle (2.9) and evaluate the velocity field
(2.8) simultaneously. For this purpose, we coded the VIFLAP program in Fortran

(see [7]) that extends the published software [6]. The user of VIFLAP specifies the
form of the rigid particle (the size of semiaxes), its initial position (Euler angles), and

the tensor of the velocity gradient. The user further gives the initial coordinates of a
chosen number of points (called markers) and the information whether the markers

are fixed in space during the computation or move together with the fluid flowing
around the particle.

After the program is initiated, the position of the rigid particle and the markers,

as well as the components of velocity of the fluid at marker positions are output in
time intervals given. These results are then visualized by a module coded in the

MATLAB language. An example of computation of the velocity field in the vicinity
of a rotating particle is shown in Fig. 1. It is a prolate ellipsoid with the axis ratio

1 : 1.5 : 3 that is subject to simple shear. The velocity field is presented in a set of
markers moving together with the fluid.

In Figs. 2 and 3, we compare the result of computer simulation of sigmoidal in-

clusion trails in ellipsoidal porphyroblast with a rock sample found in nature. The
classical explanation of these structures says that they are a manifestation of synkine-

matic growth during which a relative rotation of porphyroblast and the surrounding
material containing foliations takes place. The foliations are then being caught by

the crystallizing porphyroblast. One can use the geometry of inclusion trails in de-
termining the kinematics of the deformation. This was the reason for many authors

to study this subject.

Porphyroblasts are, as compared with the surrounding material, relatively rigid
particles often of approximately spherical or ellipsoidal form. They thus offer a pos-

sibility to employ Jeffery’s model of the motion of a rigid particle in viscous flow.
However, such a work has not appeared in literature yet. Classical papers con-

cerned with the modeling of the origin of inclusion trails in rotating porphyroblast
were either purely experimental or exploited a geometrical approach. The first at-

tempt to use the hydrodynamical approach is paper [9] of 1989 in which Masuda
and Mochizuki were concerned with a computer simulation of the origin of inclusion

trails in porphyroblasts based on the computation of the velocity field in the viscous
fluid surrounding a rotating rigid spherical particle. They, however, did not em-

ploy the equations of motion of an ellipsoidal particle nor those of the velocity field
around it derived by Jeffery and confined themselves to a simplified two dimensional
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Fig. 1. Velocity field in the vicinity of an ellipsoidal
particle that rotates in simple shear.

Fig. 2. Sigmoidal inclusion trails in ellip-

soidal porphyroblast. Section of natural
porphyroblast.

Fig. 3. Sigmoidal inclusion trails in el-

lipsoidal porphyroblast. The result of
computational treatment.
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description of the rotation of a spheric particle in simple shear. They used their own

formulae to describe the velocity field around the spherical particle.
The approach based on Jeffery’s model that is the subject of this paper offers

much more general possibilities: triaxial (i.e. asymmetric) particles and a general

type of flow. We can thus expect that a more extensive comparison of results of the
computer simulation with samples of rocks taken in nature will bring a new insight

into the subject studied.
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