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Abstract. The paper deals with a class of optimal shape design problems for elastic bodies
unilaterally supported by a rigid foundation. Cost and constraint functionals defining the
problem depend on contact stresses, i.e. their control is of primal interest. To this end,
the so-called reciprocal variational formulation of contact problems making it possible to
approximate directly the contact stresses is used. The existence and approximation results
are established. The sensitivity analysis is carried out.
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Introduction

The paper deals with shape optimization of structures which are in mutual con-

tact. In contrast to classical problems in which the governing relation describing
the state of the mechanical system is given by equations, in contact optimization

problems the state relation is represented by variational inequalities. Just this fact
makes the whole matter more involved. It is known that such problems are in gen-

eral non-smooth, i.e. the mapping: control variable −→ state is not continuously
differentiable, or better this mapping (under appropriate assumptions) is only di-

rectionally differentiable (see [12]). This phenomenon has to be taken into account
when solving optimization problems numerically and explains why classical gradient

type minimization methods may fail. One of typical problems arising in practice can
be formulated as follows: how to design contact surfaces in order to get properly

distributed contact stresses: for instance to avoid the contact stress concentration.
A natural question arises, namely how to choose a cost functional by means of which
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one can control the behaviour of contact stresses. One possibility, frequently used by

engineers, is to minimize the maximum of the contact pressure. Unfortunately this
choice of the cost functional excludes rigorous mathematical analysis, since there is
no reason to expect such high regularity of the solution of the state problem. [1]

introduced the total potential energy evaluated at the equilibrium state as a possible
candidate for the cost functional, yielding the constant distribution of the contact

pressure. This phenomenon was numerically verified in [6] and later mathematically
justified in [10]. Interpreting the optimality conditions it was shown that under the

usual hypothesis valid in the linear elasticity, the contact pressure is ‘almost’ con-
stant. This phenomenon is due to the constant volume constraint imposed on the

elements of the admissible family of domains. Another very nice property is that the
cost functional assumed to be a function of the shape is once continuously differen-

tiable. Thus classical optimization methods based on gradient informations can be
used. However, there are some drawbacks:

(a) if there is no volume constraint then one cannot expect the constant distribution

of contact stresses;

(b) the control of the contact pressure is passive: we do not have any influence on
its magnitude. The value of the contact pressure is related to the Lagrange

multiplier associated with the constant volume constraint.

In order to control actively contact stresses, a least square approach seems to be very
natural: one tries to adjust the contact zone in such a way that the resulting contact

pressure is as close as possible to a given distribution. To avoid the difficulties with
the regularity of the solution mentioned above, one has to be careful with the choice

of a norm when defining the least square functional. In [5] and [7] the dual norm
of functionals over the trace space was chosen. Since the numerical treatment of

such a norm is difficult, the authors used its equivalent expression in the form of the
classical H1(Ω)-norm of the solution of an auxiliary problem. This choice of the cost
functional has the following advantages:

(c) the active control of contact stresses is possible;

(d) in special cases, the optimization problem is smooth.

In both examples of the cost functionals presented, the following discrepancy appears:

in order to control quantities defined on the boundary, one has to solve problems in
the whole domain Ω. A natural question arises, namely if it would be possible

to use another variational formulation, which is adequate to the situation, i.e. the
formulation expressed in terms of the contact pressure. Such a formulation exists

and is known as the reciprocal variational formulation. It has been studied by [9] in
the frictionless case and by [8] in problems involving friction.
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The present paper gives mathematical analysis of a class of optimal shape design

problems for deformable bodies unilaterally supported by a rigid foundation by using
the reciprocal variational formulation of state problems. Such approach can be used
at any time when a cost functional or functionals defining technological constraints

depend on contact stresses. Besides, the reciprocal variational formulation seems to
be one of the most efficient methods for the numerical realization of state problems.

The paper is organized as follows: in Section 1, the reciprocal variational formula-
tion of contact problems with a given friction is briefly recalled. In Section 2 a class

of optimal shape design problems with functionals depending on contact stresses and
using the reciprocal formulation is defined and the existence of optimal shapes is es-

tablished. Section 3 is devoted to the approximation of the continuous problem. It is
proved that under appropriate assumptions, the discrete problem and the continuous

one are close on subsequences. Finally, in Section 4 the sensitivity analysis in finite
dimension is carried out.

1. Reciprocal variational formulation of contact problems

First we introduce notation and several definitions of functional spaces which will
be used in what follows.

Let Ω̂ = (a, b)× (0, γ), 0 < a < b, γ > 0 be a rectangle, the boundary ∂Ω̂ of which
is decomposed as follows:

(1.1) ∂Ω̂ = Γ̂ ∪ Γ̂u ∪ Γ̂P ,

where Γ̂ = (a, b)×{0} and Γ̂u is non-empty and open in ∂Ω̂. Denote by Fα : �2 �→ �2

a mapping defined by

Fα(x̂1, x̂2) = (x1, x2) with

x1 = x̂1,

x2 =
γ − α(x̂1)

γ
x̂2 + α(x̂1),

where α : [a, b] �→ �1 is a non-negative, Lipschitz continuous function in [a, b]. The

image of Fα(Ω̂), denoted by Ω(α), is given by

Ω(α) =
{
(x1, x2) ∈ �

2 | x1 ∈ (a, b), α(x1) < x2 < γ
}
.

In accordance with (1.1), the boundary of Ω(α) is decomposed as follows:

∂Ω(α) = Γ(α) ∪ Γu(α) ∪ ΓP (α),
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where Γ(α) = Fα(Γ̂), Γu(α) = Fα(Γ̂u), ΓP (α) = Fα(Γ̂P ). In particular, Γ(α) is the

graph of α:
Γ(α) = {(x1, x2) | x1 ∈ (a, b), x2 = α(x1)} .

Let

V (α) =
{
v ∈ H1

(
Ω(α)

)
| v = 0 on Γu(α)

}
,

V (Ω̂) =
{
v ∈ H1(Ω̂) | v = 0 on Γ̂u

}
,

�(α) = V (α)× V (α), �(Ω̂) = V (Ω̂)× V (Ω̂)

be the Sobolev spaces of functions defined in Ω(α) and Ω̂, respectively.
It is readily seen that

(1.2) v ∈ �(α) iff v ◦ Fα ∈ �(Ω̂).

From now on we shall suppose that the function α characterizing the mapping Fα
belongs to an admissible set Uad defined as follows:

Uad =
{
α ∈ C0,1([a, b]) | 0 � α � C0, | dα/ dx1| � C1 a.e. in (a, b)

}
,

i.e. Uad contains functions which are uniformly bounded and equi-Lipschitz contin-
uous in [a, b], C0, C1 are given positive constants. One can easily verify that there

exist positive constants c1, c2 which do not depend on α ∈ Uad, such that

(1.3) c1‖v‖1,Ω(α) � ‖v ◦ Fα‖1,Ω̂ � c2‖v‖1,Ω(α)

holds for any v ∈ �(α) and any α ∈ Uad.

Denote by

H1/2
(
Γ(α)

)
≡ traceΓ(α) V (α),

H1/2(Γ̂) ≡ traceΓ̂ V (Ω̂),

�
1/2

(
Γ(α)

)
≡ H1/2

(
Γ(α)

)
×H1/2

(
Γ(α)

)
,

�
1/2 (Γ̂) ≡ H1/2(Γ̂)×H1/2(Γ̂)

the trace spaces on Γ(α) and Γ̂, respectively. In view of (1.2) one has

(1.4) ϕ ∈ �
1/2

(
Γ(α)

)
iff ϕ ◦ Fα ∈ �

1/2 (Γ̂), α ∈ Uad.

By H−1/2(Γ̂) we denote the dual space to H1/2(Γ̂) with the duality pairing 〈 , 〉,
and by �−1/2 (Γ̂) ≡ H−1/2(Γ̂)×H−1/2(Γ̂) the dual space over � 1/2 (Γ̂). The duality
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pairing between �−1/2 (Γ̂) and � 1/2 (Γ̂) will be denoted by 〈 , 〉 again. If ϕ ∈
H1/2

(
Γ(α)

)
and µ ∈ H−1/2(Γ̂) then in view of (1.4) the value 〈µ, ϕ ◦ Fα〉 is well

defined for any α ∈ Uad. From now on, if ϕ ∈ H1/2
(
Γ(α)

)
and µ ∈ H−1/2(Γ̂) then

the value 〈µ, ϕ〉α is defined by

〈µ, ϕ〉α
def≡ 〈µ, ϕ ◦ Fα〉.

Now we introduce norms in � 1/2
(
Γ(α)

)
and � 1/2 (Γ̂). Let ϕ ∈ � 1/2

(
Γ(α)

)
with

α ∈ Uad. We define

‖ϕ‖1/2,α ≡ inf |||v|||1,Ω(α),

where inf is taken over all functions v ∈ �(α) satisfying v = ϕ on Γ(α) in the sense

of traces and

|||v|||21,Ω(α) =
(
Λε(v), ε(v)

)
0,Ω(α)

.

The symbol ε(v) =
{
εij(v)

}2
i,j=1

stands for the symmetric tensor of small deforma-

tions with εij(v) = 1
2 (∂vi/∂xj + ∂vj/∂xi) and Λ is a linear symmetric mapping from

the space of 2× 2 symmetric matrices into itself:

σ = Λε iff σij = cijklεkl,

where the elasticity coefficients cijkl ∈ L∞(Ω̂) satisfy the following symmetry and

ellipticity conditions:

(1.5) cijkl = cjikl = cklij a.e. in Ω̂,

(1.6)
∃α = const. > 0: cijklξijξkl � αξijξij a.e. in Ω̂

∀ξij = ξji ∈ �
1 .

It is easy to check that

‖ϕ‖1/2,α = |||v(ϕ)|||1,Ω(α),

where v(ϕ) ∈ �(α) is the unique solution to the following linear elasticity problem:

(1.7)

{(
Λε

(
v(ϕ)

)
, ε(ψ)

)
0,Ω(α)

= 0 ∀ψ ∈ �0(α)

v(ϕ) = ϕ on Γ(α),

where

�0(α) =
{
v ∈ �(α) | v = 0 on Γ(α)

}
.
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The norm in � 1/2 (Γ̂) is defined in a similar way. Notice that because of (1.3), (1.4)

and the definition of the fractional norm one also has

(1.8) c1‖ϕ‖1/2,α � ‖ϕ ◦ Fα‖1/2,Γ̂ � c2‖ϕ‖1/2,α

with the same c1, c2 as in (1.3) and, in particular, not depending on α ∈ Uad.
Next we shall introduce norms in �−1/2 (Γ̂) by setting

(1.9) ‖µ‖−1/2,α
def≡ |||v|||1,Ω(α), µ ∈ �

−1/2 (Γ̂),

where v ≡ v(µ) ∈ �(α) is the unique solution to the problem

(1.10)
(
Λε(v), ε(ψ)

)
0,Ω(α)

= 〈µ, ψ〉α ∀ψ ∈ �(α).

Recall that 〈µ, ψ〉α ≡ 〈µ1, ϕ1 ◦Fα〉+ 〈µ2, ϕ2 ◦Fα〉, where ϕi ≡ traceΓ(α) ψi, i = 1, 2.
It is readily seen that (1.9) defines a norm in �−1/2 (Γ̂). Let ‖ ‖−1/2,Γ̂ stand for the
classical dual norm in �−1/2 (Γ̂):

‖µ‖−1/2,Γ̂ = sup
ψ �=0

〈µ, ψ〉
‖ψ‖1/2,Γ̂

.

We shall show that

(1.11)
1
c2
‖µ‖−1/2,α � ‖µ‖−1/2,Γ̂ � 1

c1
‖µ‖−1/2,α

holds for any µ ∈ �−1/2 (Γ̂) and any α ∈ Uad with the same constants c1, c2 as in

(1.8). Indeed, from (1.8), (1.9) and (1.10) one has

‖µ‖2−1/2,α = |||v(µ)|||21,Ω(α) = 〈µ, v(µ)〉α
� ‖µ‖−1/2,Γ̂‖v(µ) ◦ Fα‖1/2,Γ̂
� c2‖µ‖−1/2,Γ̂‖v(µ)‖1/2,α
� c2‖µ‖−1/2,Γ̂|||v(µ)|||1,Ω(α)
= c2‖µ‖−1/2,Γ̂‖µ‖−1/2,α,

which proves the first inequality in (1.11). Now let ψ ∈ � 1/2 (Γ̂). Then there is a

function v ∈ �(Ω̂) such that v = ψ on Γ̂. Denote w = v ◦ F−1α ∈ �(α). Then it
follows from (1.10) that

(1.12)
〈µ, ψ〉 = 〈µ,w ◦ Fα〉 =

(
Λε

(
v(µ)

)
, ε(w)

)
0,Ω(α)

� |||v(µ)|||1,Ω(α) |||w|||1,Ω(α)
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holds for any function w ∈ �(α) such that w ◦ Fα = ψ on Γ̂. Thus

〈µ, ψ〉 � ‖µ‖−1/2,α inf |||w|||1,Ω(α)
= ‖µ‖−1/2,α‖ψ ◦ F−1α ‖1/2,α
� 1
c1
‖µ‖−1/2,α‖ψ‖1/2,Γ̂,

where inf is taken over all functions w ∈ �(α) such that w ◦ Fα = ψ on Γ̂. This

implies the second inequality in (1.11).
Now we pass to the mathematical formulation of contact problems with a given

friction. For more details on this subject we refer to [4].
Let a plane deformable body be represented by the domain Ω(α) for some α ∈ Uad.

Recall that Ω(α) = Fα(Ω̂). The decomposition of ∂Ω(α) into Γu(α), Γ(α) and ΓP (α)
has been already described above. The body is subjected to body forces F , to surface

tractions P on ΓP (α) and supported by the rigid half-plane � ≡ �2− =
{
(x1, x2) |

x2 � 0
}
from below. On the contact part of ∂Ω(α), represented by the portion Γ(α),

the unilateral and friction conditions will be prescribed. We start with the primal
formulation of the problem.

Denote by

Jα(v) =
1
2

(
Λε(v), ε(v)

)
0,Ω(α)

+ jα(v)− Lα(v)

the total potential energy functional, where

(
Λε(v), ε(w)

)
0,Ω(α)

≡
∫

Ω(α)
cijklεij(v)εkl(w) dx,

jα(v) ≡
∫ b

a

g
∣∣v1

(
x1, α(x1)

)∣∣dx1 = (g, |v1 ◦ Fα|)0,Γ̂,

Lα(v) ≡
∫

Ω(α)
Fivi dx+

∫

ΓP (α)
Pivi ds.

The meaning of the symbols is the following:
– cijkl are the components of the linear Hooke’s law, satisfying (1.5) and (1.6);

– g ∈ L2(Γ̂) is a non-negative function defined in Γ̂ = (a, b)× {0};
– F ∈

(
L2(Ω̂)

)2
, P ∈

(
L2(∂Ω̂)

)2
are the given body forces and surface tractions,

respectively.

In the definition of Lα, the restrictions of Fi, Pi onto Ω(α) and ΓP (α), respectively,
are used.

Let K(α) ⊂ �(α) be the set of kinematically admissible functions defined as
follows:

K(α) =
{
v = (v1, v2) ∈ �(α) | v2

(
x1, α(x1)

)
� −α(x1) a.e. in (a, b)

}
.
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By the primal variational formulation to the Signorini problem with a given fric-

tion we mean the following minimization problem:

(
P(α)

)
{

Find u ∈ K(α) such that
Jα(u) � Jα(v) ∀v ∈ K(α)

or equivalently

(
P(α)

)′




Find u ∈ K(α) such that
(
Λε(u), ε(v − u)

)
0,Ω(α)

+ jα(v)− jα(u) � Lα(v − u)

∀v ∈ K(α).

It is well known that under our conditions
(
P(α)

)
has a unique solution u.

In order to release the kinematical constraint defining K(α) and to regularize the

non-smooth term jα, the duality approach will be used. To this end we introduce
the following convex subsets of H−1/2(Γ̂):

Λ1 =
{
µ1 ∈ L2(Γ̂) | |µ1| � 1 a.e. in Γ̂

}
,

Λ2 =
{
µ2 ∈ H−1/2(Γ̂) | µ2 � 0

}
,

Λ ≡ Λ1 × Λ2.

The ordering � is defined in the standard way:

µ2 � 0 iff 〈µ2, ϕ〉 � 0 ∀ϕ ∈ H1/2(Γ̂), ϕ � 0.

������ 1.1. In what follows we shall suppose the function g is positive a.e. in

(a, b). If g were equal to zero in a set with a positive Lebesgue measure, the functions
from Λ1 would be defined on Γ̂ \ supp g.

Next we make the following assumption concerning functions α from Uad. We
shall suppose that for any α ∈ Uad there exists a function α̃ ∈ V (α) such that α̃ = α
on Γ(α). This assumption slightly restricts the choice of Uad in the following sense:
if Γu(α) ∩ Γ(α) �= ∅ then α has to be equal to zero at the points of this intersection.
Using the Lagrange multiplier technique we have

inf
v∈K(α)

Jα(v) = inf
v∈�(α)

sup
µ∈Λ

Lα(v, µ),

where Lα : �(α) ×Λ→ �1 is the Lagrangean defined as follows:

Lα(v, µ) ≡ Jα(v)− 〈µg, v〉α − 〈µ2, α〉
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with the following meaning of notation:

〈µg, v〉α
def≡ (gµ1, v1)0,α + 〈µ2, v2〉α,
µ = (µ1, µ2) ∈ Λ,
v = (v1, v2) ∈ �(α),

where

(gµ1, v1)0,α ≡
∫ b

a

gµ1(x1)v1(x1, α(x1)) dx1 = (gµ1, v1 ◦ Fα)0,Γ̂.

By a mixed variational formulation of
(
P(α)

)
we mean the problem of finding a

saddle-point of Lα on �(α) ×Λ:

(
M (α)

)
{

Find (w, λ) ∈ �(α) ×Λ such that
Lα(w, µ) � Lα(w, λ) � Lα(v, λ) ∀v ∈ �(α), ∀µ ∈ Λ

or equivalently

(
M (α)

)




Find (w, λ) ∈ �(α) ×Λ such that
(
Λε(w), ε(v)

)
0,Ω(α)

= Lα(v) + 〈λg, v〉α ∀v ∈ �(α)

〈(µ− λ)g, w〉α + 〈µ2 − λ2, α〉 � 0 ∀µ ∈ Λ.

It is well-know that if (w, λ) is a saddle-point of Lα on �(α) ×Λ then

(1.13) Lα(w, λ) = min
v∈�(α)

sup
µ∈Λ

Lα(v, µ) = max
µ∈Λ

inf
v∈�(α)

Lα(v, µ).

The so-called reciprocal variational formulation is based on the elimination of the
displacement field v ∈ �(α) by using the second equality in (1.13):

Lα(w, λ) = max
µ∈Λ

S̃α(µ),

where

S̃α(µ) = inf
v∈�(α)

Lα(v, µ).

It is also well-known (see [3]) that the reciprocal variational formulation

(
R(α)

)
{

Find λ̃ ∈ Λ such that
S̃α(λ̃) = max

µ∈Λ
S̃α(µ)

has a solution provided there exists a saddle-point of Lα on �(α) × Λ. Moreover
λ̃ = λ, where λ is the second component of the corresponding saddle-point.
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The formulation
(
R(α)

)
was already studied in [8]. We briefly recall how to derive

the explicit form of S̃α and we will show directly that
(
R(α)

)
has a unique solution.

Let µ ∈ Λ be fixed. Then one has

(1.14) inf
v∈�(α)

Lα(v, µ) = Lα(u(µ), µ) = −
1
2
Lα

(
u(µ)

)
− 1
2
〈µg, u(µ)〉α − 〈µ2, α〉,

where u(µ) ∈ �(α) is the unique solution to

(1.15)
(
Λε

(
u(µ)

)
, ε(v)

)
0,Ω(α)

= Lα(v) + 〈µg, v〉α ∀v ∈ �(α).

In view of linearity of (1.15), one can split the solution u ≡ u(µ) and write u = q+ z
with q, z ∈ �(α) being the solutions to the linear elasticity problems

(
Λε(q), ε(v)

)
0,Ω(α)

= Lα(v) ∀v ∈ �(α),(1.16)
(
Λε(z), ε(v)

)
0,Ω(α)

= 〈µg, v〉α ∀v ∈ �(α),(1.17)

i.e. q, z are the displacement fields induced by the given forces F , P and the contact

tractions µ, respectively. From (1.14) one has

(1.18)
inf

v∈�(α)
Lα(v, µ) = − 1

2
Lα(q)−

1
2
Lα(z)−

1
2
〈µg, q〉α

− 1
2
〈µg, z〉α − 〈µ2, α〉.

Taking into account (1.16), (1.17) as well as the symmetry of Hooke’s law we get

Lα(z) =
(
Λε(q), ε(z)

)
0,Ω(α)

= 〈µg, q〉α.

Using this equality in (1.18) we finally arrive at

(1.19)
S̃α(µ) = inf

v∈�(α)
Lα(v, µ) = − 1

2
Lα(q)− 〈µg, q〉α

− 1
2
〈µg, z〉α − 〈µ2, α〉.

Let Gα : �′(α) �→ �(α) be Green’s operator corresponding to our linear elasticity
problem, i.e.

Gα(f) = u(f) ∈ �(α), f ∈ �
′(α),

where u(f) is the unique solution to

(
Λε

(
u(f)

)
, ε(v)

)
0,Ω(α)

= [f, v]α ∀v ∈ �(α),
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where [ , ]α stands for the duality pairing between �′(α) and �(α). Then the

solutions of (1.16) and (1.17) can be written as

q = Gα(Lα), z = Gα(µg).

Using this notation in (1.19) we finally obtain

(1.20) S̃α(µ) = −
1
2
bα(µ, µ) +Fα(µ) −

1
2
Lα

(
Gα(Lα)

)
,

where bα : Λ × Λ �→ �1 , Fα : Λ �→ �1 are a bilinear form and a linear form,

respectively, defined as follows:

bα(µ, ν) ≡ 〈µg, Gα(νg)〉α, µ, ν ∈ Λ;
Fα(µ) ≡ − 〈µg, Gα(Lα)〉α − 〈µ2, α〉, µ ∈ Λ.

Since the last term in (1.20) does not depend on µ one can neglect it and pass to a
more convenient form of the reciprocal energy functional:

Sα(µ) ≡ −S̃α(µ) −
1
2
Lα

(
Gα(Lα)

)
=
1
2
bα(µ, µ)−Fα(µ).

The equivalent expression for
(
R(α)

)
now reads as follows:

(
R(α)

)
{

Find λ ∈ Λ such that
Sα(λ) � Sα(µ) ∀µ ∈ Λ.

Before we prove that
(
R(α)

)
has a unique solution we need the following auxiliary

result:

Lemma 1.1. One has

bα(µ, µ) = |||u(µg)|||21,Ω(α) = ‖µg‖2−1/2,α,

where u(µg) ∈ �(α) is the unique solution to

(1.21)
(
Λε

(
u(µg)

)
, ε(v)

)
0,Ω(α)

= 〈µg, v〉α ∀v ∈ �(α).

�����. Inserting v := u(µg) into (1.21) one has

〈µg, u(µg)〉α = |||u(µg)|||21,Ω(α) = ‖µg‖2−1/2,α
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as follows from (1.9). On the other hand,

〈µg, u(µg)〉α = 〈µg, Gα(µg)〉α = bα(µ, µ)

if we take into account the definition of bα.

Since
lim

‖µ‖−1/2,α→∞
Sα(µ) = +∞,

Sα is coercive on Λ. Moreover, Sα is strictly convex and weakly lower semicon-
tinuous on Λ. Consequently,

(
R(α)

)
has a unique solution λ ≡ λ(α). The mixed

variational formulation
(
M (α)

)
has a unique solution (w, λ) as well, as follows from

[3], Proposition 2.4. The first component w solves
(
P(α)

)
, i.e. w = u, while λ solves(

R(α)
)
. �

Interpretation of λ

Let (u, λ) ∈ K(α)×Λ be the solution of
(
M (α)

)
. Then it follows from

(
M (α)

)
2

that

(1.22)
(
Λε(u), ε(v)

)
0,Ω(α)

= Lα(v) + 〈λg, v〉α ∀v ∈ �(α).

From Green’s formula applied to the left-hand side of (1.22) we have

〈T1, v1〉∂Ω + 〈T2, v2〉∂Ω = 〈λg , v〉α ∀v ∈ �(α),

where the symbol 〈 , 〉∂Ω stands for the duality pairing between H−1/2(∂Ω(α)
)
and

H1/2
(
∂Ω(α)

)
= trace∂Ω(α) V (α). If T1, T2 ∈ L2

(
∂Ω(α)

)
then

T1
√
1 + (α′)2 = gλ1,

T2
√
1 + (α′)2 = λ2 in (a, b).

2. Contact shape optimization based on the reciprocal
variational formulation

(
R(α)

)

Until now, the shape of Ω(α), determined by the function α ∈ Uad, has been
fixed. Next, the functions α will be considered to be design variables, variations

of which lead to a configuration with a-priori given properties. In many problems
arising in practice, the distribution of contact stresses along the contact part is of

primal interest. For this reason, optimal shape design problems with cost functionals
or functionals defining constraints in which contact stresses appear in the argument
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are important. Since the reciprocal variational formulation enables us to compute

contact stresses directly, it is natural to use it in such a type of problems.
In this section we will study the following class of optimal shape design problems:

(
�
)

{
Minimize E0

(
α, λ(α)

)

subject to Ej
(
α, λ(α)

)
� 0 j = 1, 2, . . . , s, α ∈ Uad,

where λ(α) ∈ Λ is the solution to
(
R(α)

)
and

{
Ej

}s
j=0
are given functionals defined

in Uad ×Λ.
Before we prove the existence of at least one solution to

(
�
)
we have to specify

what we mean by the convergence of the contact stresses with respect to boundary
variations.

Definition 2.1. Let αn ⇒ α (uniformly) in [a, b], αn, α ∈ Uad and let λ(n) ≡
λ(αn) ∈ Λ be solutions to

(
R(αn)

)
. We write

λ(n) ⇀ λ in �−1/2 (Γ̂)

iff

(2.1) 〈λ(n)g , ψ〉αn −→ 〈λg, ψ〉α, n→∞,

holds for any function ψ ∈ � 1 (Ω̂) such that ψ vanishes in a neighbourhood of Γu(α) ⊂
∂Ω̂.

������ 2.1. Let us recall that (2.1) has to be understood in the following sense:

(
gλ
(n)
1 , ϕ1n

)
0,Γ̂
+ 〈λ(n)2 , ϕ2n〉 −→

(
gλ1, ϕ1

)
0,Γ̂

+ 〈λ2, ϕ2〉, n→∞,

where λ(n) =
(
λ
(n)
1 , λ

(n)
2

)
, λ =

(
λ1, λ2

)
, ψ =

(
ψ1, ψ2

)
and ϕin ≡

(
traceΓ(αn) ψ

)
◦Fαn ,

ϕi ≡
(
traceΓ(α) ψ

)
◦ Fα, i = 1, 2.

To guarantee the existence of solutions to
(
�
)
, we need the following lower semi-

continuity property of Ej , j = 0, . . . , s:

(
�
)





αn ⇒ α in [a, b], αn, α ∈ Uad,

λ(αn)⇀ λ(α) (in the sense of Definition 2.1)

}
=⇒

=⇒ lim
n→∞

inf Ej
(
αn, λ(αn)

)
� Ej

(
α, λ(α)

)
, j = 0, . . . , s.

Finally, denote by Ũad the set of all admissible pairs, i.e.

Ũad =
{(
α, λ(α)

)
| α ∈ Uad, λ(α) solves

(
R(α)

)
, Ej

(
α, λ(α)

)
� 0,

j = 1, . . . , s
}
.
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The main result of this section is

Theorem 2.1. Let
(
�
)
be satisfied and Ũad �= ∅. Then

(
�
)
has at least one

solution.

Before we prove this theorem, we establish the following auxiliary result.

Lemma 2.1. Let αn ⇒ α in [a, b], αn, α ∈ Uad and let λ(n) ≡ λ(αn) ∈ Λ be
solutions to

(
R(αn)

)
. Then there exist a subsequence of {λ(n)} (denoted in the same

way as the original sequence) and an element λ ∈ Λ such that

λ(n) ⇀ λ in �−1/2 (Γ̂), n→∞

and λ ≡ λ(α) solves
(
R(α)

)
.

�����. Let un ∈ K(αn), λ(n) ∈ Λ be the solutions to
(
P(αn)

)
,

(
R(αn)

)
,

respectively. Then the couple
(
un, λ

(n)
)
solves

(
M (αn)

)
. Let ψ ∈ � 1 (Ω̂) be a given

function, vanishing in a neighbourhood of Γu(α). Since αn ⇒ α in [a, b] we have
also that Γu(αn) ⇒ Γu(α) and consequently, the restriction ψ on Ω(αn) belongs to
�(αn) provided n is sufficiently large. Such a function can be used as a test function
in

(
M (αn)

)
:

(2.2)
(
Λε(un), ε(ψ)

)
0,Ω(αn)

= Lαn(ψ) + 〈λ(n)g , ψ〉αn .

It is known (see Lemma 7.2 in [7]) that there exist a subsequence of {un} (denoted
by the same symbol) and a function û ∈ �

1 (Ω̂) such that

ũn ⇀ û (weakly) in � 1 (Ω̂),

where the symbol “∼” stands for the uniform extension of functions from the domain
of their definition onto Ω̂, and u ≡ û

∣∣
Ω(α)

solves
(
P(α)

)
.

Now (2.2) implies

(2.3)
lim
n→∞

〈λ(n)g , ψ〉αn = lim
n→∞

{(
Λε(un), ε(ψ)

)
0,Ω(αn)

− Lαn(ψ)
}

=
(
Λε(u), ε(ψ)

)
0,Ω(α)

− Lα(ψ)

again by virtue of the results from Section 7.3 in [7]. Since u ∈ K(α) is the solution
to

(
P(α)

)
and λ(α) ∈ Λ is the unique solution of

(
R(α)

)
(such a unique solution

exists for any α ∈ Uad), the couple
(
u, λ(α)

)
solves

(
M (α)

)
. Hence

(
Λε(u), ε(ψ)

)
0,Ω(α)

= Lα(ψ) + 〈λg, ψ〉α.

Compairing this with (2.3) we arrive at the assertion of Lemma. �
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����� �� 	
����� 2.1. Let {αn}, αn ∈ Ũad be a minimizing sequence:

q = inf
α∈Ũad

E0
(
α, λ(α)

)
= lim
n→∞

E0
(
αn, λ(αn)

)
.

In view of the Ascoli-Arzelà theorem there is a subsequence of {αn} (denoted by the
same symbol) and an element α∗ ∈ Uad such that

αn ⇒ α∗ in [a, b]

and at the same time

λ(n) ⇀ λ(α∗) in �−1/2 (Γ̂)

in the sense of Definition 2.1 with λ(α∗) being the solution to
(
R(α∗)

)
. It follows

from
(
�
)
that

lim
n→∞

inf Ej
(
αn, λ(αn)

)
� Ej

(
α∗, λ(α∗)

)
, j = 1, . . . , s

so that

Ej
(
α∗, λ(α∗)

)
� 0 ∀j = 1, . . . , s,

i.e. α∗ ∈ Ũad. Since also

q = lim
n→∞

E0
(
αn, λ(αn)

)
� E0

(
α∗, λ(α∗)

)
� q

we see that α∗ solves
(
�
)
. �

Next, we present two examples of optimal shape design problems with functionals

satisfying
(
�
)
.

����
�� 2.1. Set

E0
(
α, λ(α)

)
= measΩ(α),

E1
(
α, λ(α)

)
= (gλ1(α), ϕ)0,Γ̂ + 〈λ2(α), ϕ〉 − d,

where d ∈ �1 and ϕ ∈ C∞0 ([a, b]) are given. Problem
(
�
)
with such a choice of

the functionals may be interpreted as the weight minimization under the additional
constraint, namely the average of the contact stresses does not exceed an apriori given

value d on a portion of Γ(α) determined by supp ϕ. From the previous analysis we
see that

(
�
)
is satisfied in this case.
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����
�� 2.2. Set s = 0 and

E0
(
α, λ(α)

)
=
1
2
‖λg(α)‖2−1/2,α.

We also slightly modify the definition of Uad:

Uad =

{
α ∈ C0,1([a, b]) | 0 � α � C0, | dα/ dx1| � C1,

∫ b

a

α(x1) dx1 = C2

}
,

where C0, C1 and C2 are chosen in such a way that Uad �= 0. Shape optimization
with respect to E0 corresponds to the minimization of energy of contact stresses

provided the weight of structures is prescribed. Recall that

E0
(
α, λ(α)

)
=
1
2
‖λg(α)‖2−1/2,α =

1
2
|||v(λg)|||21,Ω(α) =

1
2
〈λg , v(λg)〉α,

where v(λg) ∈ �(α) is the solution to

(2.4)

(
Λε

(
v(λg)

)
, ε(ψ)

)
0,Ω(α)

= 〈λg, ψ〉α =
(
Λε

(
u(α)

)
, ε(ψ)

)
0,Ω(α)

− Lα(ψ) ∀ψ ∈ �(α),

where u(α) ∈ K(α) solves
(
P(α)

)
. We shall show that E0 satisfies

(
�
)
. Indeed, let

αn ⇒ α in [a, b], αn, α ∈ Uad. Then one can find a subsequence of {un}
(
solutions

of
(
P(αn)

))
and a function û ∈ � 1 (Ω̂) such that

(2.5) ũn ⇀ û in � 1 (Ω̂),

where the meaning of “∼” is the same as in the proof of Lemma 2.1. Moreover,
u ≡ û

∣∣
Ω(α)

solves
(
P(α)

)
. Let us consider (2.4) on each Ω(αn):

(2.6)
(
Λε(vn), ε(ψ)

)
0,Ω(αn)

= 〈λ(n)g , ψ〉αn =
(
Λε(un), ε(ψ)

)
0,Ω(αn)

− Lαn(ψ)

holds for any ψ ∈ � 1 (Ω̂) vanishing in a neighbourhood of Γu(α) and for n sufficiently

large. Passing to the limit on the right-hand side of (2.6) we obtain

(2.7) lim
n→∞

{(
Λε(un), ε(ψ)

)
0,Ω(αn)

− Lαn(ψ)
}
=

(
Λε(u), ε(ψ)

)
0,Ω(α)

− Lα(ψ).

From (2.6) and the fact that the constant c in Korn’s inequality

(
εij(q), εij(q)

)
0,Ω(α)

� c‖q‖21,Ω(α) ∀q ∈ �(α),
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can be chosen independently of α ∈ Uad we see that also the sequence
{
|||vn|||1,Ω(αn)

}

is bounded. Using the same technique as in [7] one can find a subsequence of {vn}
(still denoted by the same symbol) such that

(2.8) ṽn ⇀ v̂ in � 1 (Ω̂)

and
lim
n→∞

(
Λε(vn), ε(ψ)

)
0,Ω(αn)

=
(
Λε(v̂), ε(ψ)

)
0,Ω(α)

holds for any function ψ ∈ � 1 (Ω̂) with the above mentioned property. From this,

(2.6) and (2.7) we see that the function v ≡ v̂
∣∣
Ω(α)

∈ �(α) satisfies

(2.9)

(
Λε(v), ε(ψ)

)
0,Ω(α)

=
(
Λε

(
u(α)

)
, ε(ψ)

)
0,Ω(α)

− Lα(ψ)

= 〈λg(α), ψ〉α,

where λ(α) ∈ Λ is the solution of the reciprocal formulation
(
R(α)

)
. From (2.9) we

get also
|||v|||1,Ω(α) = ‖λg(α)‖−1/2,α.

It is readily seen that E0 satisfies the assumption
(
�
)
. Indeed,

lim
n→∞

inf E0
(
αn, λ(αn)

)
= lim

n→∞
inf
1
2
|||vn|||21,Ω(αn)

� 1
2
|||v|||21,Ω(α) = E0

(
α, λ(α)

)

where we have made use of the fact that αn ⇒ α in [a, b] and (2.8).

������ 2.2. To see why the reciprocal variational formulation is more advan-
tageous in many situations, let us consider the functional E0 from Example 2.2. We

already know that

E0
(
α, λ(α)

)
≡ 1
2
‖λg(α)‖2−1/2,α =

1
2
|||v|||21,Ω(α),

where v ∈ �(α) is the solution of

(2.10)
(
Λε(v), ε(ψ)

)
0,Ω(α)

=
(
Λε

(
u(α)

)
, ε(ψ)

)
0,Ω(α)

− Lα(ψ) ∀ψ ∈ �(α).

In [5] the evaluation of E0 by means of the function v satisfying (2.10) was used.
However, before v is computed, one has to solve

(
P(α)

)
in order to get u(α) necessary

for the evaluation of the right-hand side in (2.10). On the other hand, taking into
account that

E0
(
α, λ(α)

)
≡ 1
2
‖λg(α)‖2−1/2,α =

1
2
〈λg(α), v〉α,
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we see that only the boundary data λg(α) and traceΓ(α) v are needed. The contact

stress λg(α) is directly available from the reciprocal variational formulation
(
R(α)

)
,

while
traceΓ(α) v = traceΓ(α) u− traceΓ(α) w,

where u ∈ K(α) solves
(
P(α)

)
and w ∈ �(α) is the solution of (1.16). Let us

note that traceΓ(α) u is usually available as a by-product, when conjugate gradi-
ent type methods are used for the numerical realization of

(
R(α)

)
since traceΓ(α) u

corresponds to the Lagrange multiplier associated with the constraint λ ∈ Λ.

3. Approximation of
(
�
)

The aim of this section is to describe the approximation of
(
�
)
. We shall define

appropriate discretizations of
(
�
)
which are close on subsequences to the original

continuous setting.

First we start with the approximation of the set Uad, characterizing the admissible
shapes.

Let {Dh}, h → 0+ be a family of partitions of [a, b], the norms of which tend to
zero. Let Dh : a = x01 < x11 < . . . < xD1 = b be the set of nodes of Dh and define

U h
ad =

{
αh ∈ C([a, b]) | αh piecewise linear over Dh

}
∩Uad.

Finally, let {DH}, H → 0+ be another family of partitions of [a, b], generally

different from {Dh}. With any {DH} the following sets will be associated:

LH =
{
µH ∈ L2(Γ̂) | µH piecewise constant over DH

}
,

ΛH1 =
{
µH1 ∈ LH | |µH1 | � 1 a.e. in (a, b)

}
,

ΛH2 =
{
µH2 ∈ LH | µH2 � 0 a.e. in (a, b)

}
,

ΛH = ΛH1 × ΛH2 .

For a given αh ∈ U h
ad, the approximation of the reciprocal energy functional is

defined as follows:

(3.1) Sαh
(µH) =

1
2
bαh
(µH , µH)−Fαh

(µH), µH ∈ ΛH ,

where

bαh
(µH , νH)

def≡
(
gµH1 ,

(
Gαh
(νH)

)
1

)
0,αh
+

(
µH2 ,

(
Gαh
(νH)

)
2

)
0,αh

Fαh
(µH)

def≡ −
(
gµH1 ,

(
Gαh
(Lαh

)
)
1

)
0,αh

−
(
µH2 ,

(
Gαh
(Lαh

)
)
2

)
0,αh

− (µH2 , αh)0,Γ̂,
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where Gαh
denotes an approximation of Green’s mapping Gα and

(
Gαh
(.)

)
j
, j = 1, 2

is the j-th component of the corresponding approximated displacement field in Ω(αh).
Here we use the similar convention as we did in the continuous setting: the scalar
product (µH , v)0,αh

, where µH ∈ LH , v ∈ V (αh) has to be read as (µH , ϕh)0,Γ̂, where
ϕh ≡

(
traceΓ(αh) v

)
◦ Fαh

. Below we describe one possible way of constructing Gαh

starting from a finite element approximation of the mixed formulation
(
M (α)

)
.

Since Ω(αh) is a polygonal domain for any αh ∈ U h
ad, one can construct its trian-

gulation denoted by T (h, αh). Next we shall consider only such families {T (h, αh)}
which are topologically equivalent and uniformly regular with respect to h → 0+,
αh ∈ U h

ad. This means:

(j) for any h > 0 fixed, the position of the nodes belonging to T (h, αh) depends

continuously on the variations of αh ∈ U h
ad;

(jj) for any h > 0, the number of the nodes from T (h, αh) is the same for all

αh ∈ U h
ad and the nodes have the same neighbours;

(jjj) there is ϑ0 > 0 such that

ϑ(h, αh) � ϑ0 ∀h > 0, αh ∈ U h
ad,

where ϑ(h, αh) is the minimal interior angle of all triangles from T (h, αh).

Finally, the only contact nodes, i.e. the nodes where the unilateral condition is pre-

scribed, are those with the coordinates Aj ≡
(
xj1, αh(x

j
1)

)
, αh ∈ U h

ad, such that
Aj ∈ Γ(αh) \ Γu(αh). The domain Ω(αh) with the triangulation T (h, αh) will be

denoted by Ωh in what follows.

With any αh ∈ U h
ad and any T (h, αh), the following sets of piecewise-linear func-

tions defined in Ωh will be associated:

Vh(αh) =
{
vh ∈ C(Ωh) | vh

∣∣
T
∈ P1(T ) ∀T ∈ T (h, αh),

vh = 0 on Γu(αh)
}
;

�h(αh) = Vh(αh)× Vh(αh);

Kh(αh) =
{
vh = (vh1 , v

h
2 ) ∈ �h(αh) | vh2

(
xj1, αh(x

j
1)

)
� −αh(xj1), ∀j

such that Aj ∈ Γ(αh) \ Γu(αh)
}
.

The approximation of the mixed formulation
(
M (α)

)
now reads as follows:

(
M (αh)

)H
h





Find (uh, λH) ∈ �h(αh)×ΛH such that
Lαh
(uh, µH) � Lαh

(uh, λH) � Lαh
(vh, λH)

∀vh ∈ �h(αh), ∀µH ∈ ΛH ,
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where

Lαh
(vh, µH) ≡ Jαh

(vh)− (gµH1 , vh1 )0,αh
− (µH2 , vh2 )0,αh

− (µH2 , αh)0,Γ̂

with vh ∈ �h(αh), µH ∈ ΛH .
An equivalent expression of

(
M (αh)

)H
h
is given by:

(
M (αh)

)H
h





Find (uh, λH) ∈ �h(αh)×ΛH such that(
Λε(uh), ε(vh)

)
0,Ωh
= Lαh

(vh) + (gλH1 , v
h
1 )0,αh

+(λH2 , v
h
2 )0,αh

∀vh ∈ �h(αh),(
g(µH1 − λH1 ), u

h
1

)
0,αh
+

(
µH2 − λH2 , u

h
2

)
0,αh

+
(
µH2 − λH2 , αh

)
0,Γ̂

� 0 ∀µH ∈ ΛH .

It is well-known (see [4]) that if the stability condition

(3.2) (gµH1 , v
h
1 )0,αh

+ (µH2 , v
h
2 )0,αh

= 0 ∀vh ∈ �h(αh) =⇒ µH ≡ 0 in Γ̂

holds, then
(
M (αh)

)H
h
has a unique solution (uh, λH).

������ 3.1 (the validity of (3.2)). The stability condition (3.2) holds for exam-

ple if g is a piecewise constant function over the partition DH used for the construc-
tion of ΛH and, moreover, if the ratio H/h is sufficiently large (see [4]). In other
words, the partition DH has to be coarser then the triangulation T (h, αh) defining
�h(αh). If g is not piecewise constant over DH then it can be approximated by its

projection to LH . Next we shall suppose that (3.2) is valid for any αh ∈ U h
ad.

Using exactly the same approach as we did in Section 1, we can derive the discrete

version of
(
R(α)

)
. Indeed, if (uh, λH) ∈ �h(αh)×ΛH is the solution of

(
M (αh)

)H
h

then

(3.3) Lαh
(uh, λH) = min

�h(αh)
sup
ΛH

Lαh
(vh, µH) = max

ΛH

inf
�h(αh)

Lαh
(vh, µH).

Eliminating the displacement field vh ∈ �h(αh) one obtains the formulation in terms

of µH ∈ ΛH . The approximation Gαh
of Green’s operator Gα is now defined as

follows:

(3.4)

{
Gαh
: �′h(αh) �→ �h(αh),

Gαh
(fh) = uh; fh ∈ �′h(αh),

where uh ∈ �h(αh) is the unique solution of

(3.5)
(
Λε(uh), ε(vh)

)
0,Ωh
= fh(vh) ∀vh ∈ �h(αh).

340



In what follows, the approximation Gαh
used in the definition of Sαh

will be given

by (3.4).
Let (uh, λH) ∈ �h(αh) × ΛH be the solution of

(
M (αh)

)H
h
. Then, using the

classical duality theory we obtain that λH ∈ ΛH is the solution of the approximated
reciprocal variational formulation

(
R(αh)

)
H

{
Find λH ∈ ΛH such that

Sαh
(λH) � Sαh

(µH) ∀µH ∈ ΛH ,

while the first component uh solves the unilateral boundary value problem

(
P(αh)

)H
h





Find uh ∈ KH
h (αh) such that(

Λε(uh), ε(vh − uh)
)
0,Ωh
+ jHαh

(vh)− jHαh
(uh)

� Lαh
(vh − uh) ∀vh ∈ KH

h (αh),

where

KH
h (αh) =

{
vh ∈ �h(αh) | (vh2 , µH2 )0,αh

+ (αh, µH2 )0,Γ̂ � 0 ∀µH2 ∈ ΛH2
}
,

jHαh
(vh) = sup

µH
1 ∈ΛH

1

{
−(gµH1 , vh1 )0,αh

}
.

������ 3.2. The convex set KH
h (αh) is the external approximation of K(αh).

The unilateral condition on Γ(αh) for vh ∈ KH
h (αh) is satisfied in the following weak

sense:

(3.6)

xi
1∫

xi−1
1

vh ◦ Fαh
dx1 � −

xi
1∫

xi−1
1

αh dx1, i = 1, . . . ,m(H),

where a ≡ x01 < x11 < . . . < x
m(H)
1 ≡ b are the nodes of DH , i.e. the unilateral

condition is satisfied in the sense of the integral mean value on any interval [xi−11 , xi1].

The sublinear term jα characterizing the friction is approximated by jHαh
.

In what follows we will study how the solution (uh, λH) of
(
M (αh)

)H
h
depends on

the variations of αh, h and H . To this end we will use an alternative formulation of(
M (αh)

)H
h
by satisfying the unilateral constraint (3.6) a-priori, i.e. the formulation

in terms of uh, λH1 only:

(
M̃ (αh)

)H
h





Find (uh, λH1 ) ∈ KH
h (αh)× ΛH1 such that(

Λε(uh), ε(vh − uh)
)
0,Ωh

� Lαh
(vh − uh)

+(gλH1 , v
h
1 − uh1)0,αh

∀vh ∈ KH
h (αh),(

g(µH1 − λH1 ), u
h
1

)
0,αh

� 0 ∀µH1 ∈ ΛH1 .
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In what follows we will suppose that the mesh sizes h, H characterizing {T (h, αh)},
{DH}, respectively satisfy

h→ 0 + iff H → 0 + .

In order to prove the counterpart of Lemma 2.1 we shall slightly modify Defini-
tion 2.1.

Definition 3.1. Let αh ⇒ α in [a, b], αh ∈ U h
ad, α ∈ Uad and let λH(αh) ∈ ΛH

be a solution of
(
R(αh)

)
H
. We write

λH(αh)⇀ λ in �−1/2 (Γ̂), h,H → 0+

iff
(gλH1 , ψ

h
1 )0,αh

+ (λH2 , ψ
h
2 )0,αh

−→ (gλ1, ψ1)0,α + 〈λ2, ψ2〉α
holds for any sequence {ψh}, ψh = (ψh1 , ψh2 ) ∈ �h(αh) such that

‖ψh − ψ‖1,Ω(αh) → 0 as h→ 0+,

where ψ ∈ � 1 (Ω̂) has the same property as in Definition 2.1.

Recall that
(gλH1 , ψ

h
1 )0,αh

≡ (gλH1 , ϕh1 )0,Γ̂,

where ϕh1 ≡
(
traceΓ(αh) ψ

h
1

)
◦ Fαh

. Similarly for the other terms.

Now we prove the following continuity result:

Lemma 3.1. Let αh ⇒ α in [a, b], αh ∈ U h
ad, α ∈ Uad and let (uh, λH) be

the unique solution of
(
M (αh)

)H
h
. Then there exist a subsequence of

{
(uh, λH)

}

(denoted by the same symbol) and elements û ∈ � 1 (Ω̂), λ̂ ∈ Λ such that

ũh ⇀ û in � 1 (Ω̂), h→ 0+;
λH ⇀ λ̂ in �−1/2 (Γ̂), H → 0+

(in the sense of Definition 3.1). Moreover, the function u ≡ û
∣∣
Ω(α)

solves
(
P(α)

)

and λ̂ ≡ λ(α) solves the corresponding reciprocal variational formulation
(
R(α)

)
.

�����. It will be done in several steps.

(i) Using the fact that the constant of Korn’s inequality can be chosen indepen-
dently of αh ∈ U h

ad (see Example 2.2) we see that there exists a constant c > 0

such that
‖uh‖1,Ω(αh) � c
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so that the sequence of the uniform extensions ũh of uh from Ω(αh) onto Ω̂ is

bounded as well:

‖ũh‖1,Ω̂ � c.

Therefore there exist a subsequence of
{
ũh

}
(denoted by the same symbol) and

a function û ∈ � 1 (Ω̂) such that

ũh ⇀ û in � 1 (Ω̂), h→ 0 + .

(ii) Here we show that u ≡ û
∣∣
Ω(α)

belongs to K(α). The fact that u = 0 on Γu(α) is
obvious. To show that u satisfies the unilateral condition on Γ(α) it is sufficient

to verify that

(u2, µ2)0,α + (α, µ2)0,Γ̂ � 0

holds for any µ2 � 0, µ2 ∈ L2(Γ̂). Let such a µ2 be given. Then there exists a
sequence {µH2 }, µH2 ∈ ΛH2 such that

µH2 → µ2 in L2(Γ̂), H → 0 + .

Using exactly the same technique as in Lemma 1.1 in [7] one can prove that

(3.7)

{
(uh2 , µ

H
2 )0,αh

−→ (u2, µ2)0,α;
(αh, µH2 )0,Γ̂ −→ (α, µ2)0,Γ̂, h,H → 0 + .

Since the sum of the terms on the left-hand side of (3.7) is non-negative in view
of the fact that uh ∈ KH

h (αh), the limit sum is non-negative as well. Thus

u ∈ K(α).
(iii) Now we prove that u solves

(
P(α)

)
. Let v̂ ∈ � 1 (Ω̂) be such that v ≡ v̂

∣∣
Ω(α)

belongs to K(α). Then there exists a subsequence of {αh} (still denoted by the
same symbol) and a sequence {vh}, vh ∈ Kh(αh) such that

(3.8) ‖vh − v̂‖1,Ω(αh) → 0, h→ 0 + .

The construction of such a sequence is described in Lemmas 7.3 and 7.4 in [7].

Since Kh(αh) ⊂ KH
h (αh), the function vh can be used as a test function in(

M̃ (αh)
)H
h
.

Let µ1 ∈ Λ1 be given. Then there exists a sequence
{
µH1

}
, µH1 ∈ ΛH1 such

that

(3.9) µH1 → µ1 in L2(Γ̂), H → 0 + .
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Since
{
λH1

}
is bounded, one may assume that there exists λ1 ∈ Λ1 such that

(3.10) λH1 ⇀ λ1 in L2(Γ̂), H → 0 + .

Using exactly the same technique as in [7] Section 7.4 we have

lim
h→0+

sup
(
Λε(uh), ε(vh − uh)

)
0,Ωh

�
(
Λε(u), ε(v̂ − u)

)
0,Ω(α)

;

lim
h→0+

Lαh
(vh − uh) = Lα(v̂ − u);

lim
h,H→0+

(
gλH1 , v

h
1 − uh1

)
0,αh
=

(
gλ1, v̂1 − u1

)
0,α
;

lim
h,H→0+

(
g(µH1 − λH1 ), u

h
1

)
0,αh
=

(
g(µ1 − λ1), u1

)
0,α
,

where we have made use of (3.8), (3.9) and (3.10). Passing to the limit in(
M̃ (αh)

)H
h
and using the previous limit processes we see that

(3.11)

{ (
Λε(u), ε(v̂ − u)

)
0,Ω(α)

� Lα(v̂ − u) + (gλ1, v̂1 − u1)0,α,
(
g(µ1 − λ1), u1

)
0,α

� 0

holds for any v̂ ∈ � 1 (Ω̂) such that v̂
∣∣
Ω(α)

∈ K(α) and any µ1 ∈ Λ1. It follows
from (3.11) that

(
Λε(u), ε(v − u)

)
0,Ω(α)

+ jα(v)− jα(u) � Lα(v − u)

holds for any v ∈ K(α), i.e. u solves
(
P(α)

)
.

(iv) It remains to verify that the sequence {λH} tends weakly to λ(α) in the sense of
Definition 3.1. Let {ψh} be a sequence with the properties required by Definition
3.1. These functions can be inserted into the first equation in

(
M (αh)

)H
h
.

Passing there to the limit with h,H → 0+, we obtain

(3.12)

lim
h,H→0+

{
(gλH1 , ψ

h
1 )0,αh

+ (λH2 , ψ
h
2 )0,αh

}

= lim
h→0+

{(
Λε(uh), ε(ψh)

)
0,Ω(αh)

− Lαh
(ψh)

}

=
(
Λε(u), ε(ψ)

)
0,Ω(α)

− Lα(ψ).

Since u solves
(
P(α)

)
, the right hand side of the last equality in (3.12) is equal

to (gλ1, ψ1)0,α + 〈λ2, ψ2〉α as follows from
(
M (α)

)
. Let us also mention that

for any function ψ ∈ � 1 (Ω̂) vanishing in a neighbourhood of Γu(α) one can
construct a sequence {ψh} with the properties mentioned in Definition 3.1. �
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Let Ehj : U h
ad×ΛH → �1 be an approximation of the functional Ej , j = 0, . . . , s.

The approximation of the optimal shape design problem
(
�
)
introduced in Section 2

reads as follows:

(
�
)H
h

{
Minimize Eh0

(
αh, λH(αh)

)

subject to Ehj
(
αh, λH(αh)

)
� 0, j = 1, . . . , s, αh ∈ U h

ad,

with λH(αh) ∈ ΛH being the solution of
(
R(αh)

)
H
.

In what follows we will analyze:

(k) the existence of at least one solution of
(
�
)H
h
;

(kk) the relation between
(
�
)H
h
and

(
�
)
when h,H → 0+.

In order to prove (k) one has to suppose that
{
Ehj

}s
j=0
are lower semicontinuous

in the following sense:

(
�
)H
h





α
(n)
h → αh as n→∞; α

(n)
h , αh ∈ U h

ad

λ
(n)
H → λH as n→∞; λ

(n)
H , λH ∈ ΛH

}
=⇒

=⇒ lim
n→∞

inf Ehj
(
α
(n)
h , λ

(n)
H

)
� Ehj (αh, λH)

∀j = 0, . . . , s; ∀h,H > 0.

Using the same approach as in Lemma 3.1 and making use of the assumptions

concerning the family
{
T (h, αh)

}
, αh ∈ U h

ad one can prove that the mapping
αh �→ λH(αh) with αh ∈ U h

ad and λH(αh) being the solution of
(
R(αh)

)
H
is contin-

uous. From this we directly obtain

Theorem 3.1. Let the assumption
(
�
)H
h
be satisfied. Then

(
�
)H
h
has a solution

for any h,H > 0.

To establish a relation between
(
�
)
and

(
�
)H
h
when h,H → 0+ we restrict our-

selves to the case when there are no state constraints, i.e. s = 0. We need the
following assumption relating Eh0 to E0:

(
�
)





αh ⇒ α in [a, b]; αh ∈ U h
ad, α ∈ Uad

λH(αh)⇀ λ(α) in �−1/2 (Γ̂); h,H → 0+
(in the sense of Definition 3.1)




=⇒

=⇒ lim
h,H→0+

Eh0
(
αh, λH(αh)

)
= E0

(
α, λ(α)

)
.

Now we have

Theorem 3.2. Let the assumption
(
�
)
be satisfied. Let α∗h ∈ U h

ad be a solution

of
(
�
)H
h
and λH(α∗h) ∈ ΛH the solution of

(
R(α∗h)

)
H
. Then there exist subsequences
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of {α∗h} and {λH(α∗h)} (still denoted by the same symbols, respectively) and elements
α∗ ∈ Uad, λ ∈ Λ such that

α∗h ⇒ α∗ in [a, b], h→ 0+;
λH(α∗h)⇀ λ in �−1/2 (Γ̂), h,H → 0+,

(in the sense of Definition 3.1). Moreover, α∗ is a solution of
(
�
)
and λ ≡ λ(α∗)

solves
(
R(α∗)

)
.

�����. Since Uad is compact in the C-norm, one can find a subsequence of
{α∗h} (still denoted by the same symbol) and an element α∗ ∈ Uad such that

α∗h ⇒ α∗ in [a, b], h→ 0 + .

At the same time we may assume that

λH(α∗h)⇀ λ(α∗) in �−1/2 (Γ̂), h,H → 0+,

as follows from Lemma 3.1.

Let α ∈ Uad be given. One can find a sequence {αh}, αh ∈ U h
ad such that

αh ⇒ α in [a, b], h→ 0+

and at the same time

λH(αh)⇀ λ(α) in �−1/2 (Γ̂), h,H → 0 + .

It follows from the definition of
(
�
)H
h
that

(3.13) Eh0
(
α∗h, λH(α

∗
h)

)
� Eh0

(
αh, λH(αh)

)
.

Passing to the limit with h,H → 0+ in (3.13) and using
(
�
)
we arrive at

E0
(
α∗, λ(α∗)

)
� E0

(
α, λ(α)

)
,

i.e. α∗ ∈ Uad solves
(
�
)
. �

������ 3.3. If state constraints were presented, the problem would be more in-

volved. Besides
(
�
)
, an additional assumption concerning the constraint functionals

would have to be satisfied:

(3.14)

{
for any {αh}, {λH(αh)} such as in

(
�
)
one has

lim
h,H→0+

inf Ehj
(
αh, λH(αh)

)
� Ej

(
α, λ(α)

)
, j = 1, . . . , s.
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Moreover, the following density result has to be satisfied:

(3.15) Ũad =
⋃

Ũ h
ad,

where

Ũad =
{
α ∈ Uad | Ej

(
α, λ(α)

)
� 0, j = 1, . . . , s

}
,

Ũ h
ad =

{
αh ∈ U h

ad | Ehj
(
αh, λH(αh)

)
� 0, j = 1, . . . , s

}

and the closure in (3.15) is taken with respect to the C-norm. If
(
�
)
, (3.14) and (3.15)

were satisfied, then Theorem 3.2 would hold again. Nevertheless, the verification of

(3.15) in concrete examples is difficult.

����
�� 3.1. Define

Eh0
(
αh, λH(αh)

)
=
1
2
‖λH(αh)‖2−1/2,αh,h

,

where

(3.16) ‖λH(αh)‖−1/2,αh,h ≡ |||vh|||1,Ωh
,

with vh ≡ vh(uh) ∈ �h(αh) being the solution of

(3.17)
(
Λε(vh), ε(ψh)

)
0,Ωh
=

(
Λε(uh), ε(ψh)

)
0,Ωh

− Lαh
(ψh) ∀ψh ∈ �h(αh).

The pair
(
uh, λH(αh)

)
is the solution of

(
M (αh)

)H
h
. We shall show that the system

{Eh0 }, h→ 0+ satisfies
(
�
)
. Indeed, from (3.16) and (3.17) it follows that

2Eh0
(
αh, λH(αh)

)
=

(
Λε(uh), ε(vh)

)
0,Ωh

− Lαh
(vh)

=
(
Λε(vh), ε(uh)

)
0,Ωh

− Lαh
(vh)

=
(
Λε(uh), ε(uh)

)
0,Ωh

− Lαh
(uh)− Lαh

(vh).

Arguing in the same way as in Lemma 3.1 one can prove that

(3.18)

{
Lαh
(uh)→ Lα(u), h→ 0+;

Lαh
(vh)→ Lα(v), h→ 0+,

where u ∈ K(α) solves
(
P(α)

)
and v ∈ �(α) satisfies

(
Λε(v), ε(ψ)

)
0,Ω(α)

=
(
Λε(u), ε(ψ)

)
0,Ω(α)

− Lα(ψ) ∀ψ ∈ �(α).
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Assume for the moment that we have already proved that

(3.19)
(
Λε(uh), ε(uh)

)
0,Ωh

−→
(
Λε(u), ε(u)

)
0,Ω(α)

, h→ 0 + .

From this and (3.18) we have

lim
h,H→0+

2Eh0
(
αh, λH(αh)

)
=

(
Λε(u), ε(u)

)
0,Ω(α)

− Lα(u)− Lα(v)

=
(
Λε(v), ε(u)

)
0,Ω(α)

− Lα(v)

=
(
Λε(u), ε(v)

)
0,Ω(α)

− Lα(v)

=
(
Λε(v), ε(v)

)
0,Ω(α)

= |||v|||21,Ω(α)
= ‖λ(α)‖2−1/2,α ≡ 2E0

(
α, λ(α)

)
.

In order to verify (3.19) we first prove an auxiliary result. Recall that

jα(v) =
∫ b

a

g|v1 ◦ Fα| dx1 = sup
µ1∈Λ1

{
−(gµ1, v1)0,α

}
;

jHαh
(vh) = sup

µH
1 ∈ΛH

1

{
−(gµH1 , vh1 )0,αh

}
,

where v = (v1, v2) ∈ �(α), vh = (vh1 , v
h
1 ) ∈ �h(αh).

Lemma 3.2. Let αh ⇒ α in [a, b], αh ∈ U h
ad, α ∈ Uad and

ṽh ⇀ v in H1(Ω̂), h→ 0+,

where ṽh stands for the uniform extension of vh ∈ Vh(αh) from Ω(αh) onto Ω̂. Then1

(3.20) jHαh
(vh)→ jα(v) as h,H → 0 + .

�����. We have

jHαh
(vh) � sup

µ1∈Λ1

{
−(gµ1, vh)0,αh

}
=

∫ b

a

g
∣∣vh

(
x1, αh(x1)

)∣∣ dx1 ≡ jαh
(vh).

It is an easy exercise to show that jαh
(vh) → jα(v) as h → 0+ (see Lemma 7.10 in

[7]) so that

(3.21) lim
h,H→0+

sup jHαh
(vh) � jα(v).

1 Scalar functions vh, v are used as the arguments of jHαh
, jα, respectively.
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Let µ1 ∈ Λ1 be such that

jα(v) = −(gµ1, v)0,α.

Then one can find a sequence {µH1 }, µH1 ∈ ΛH1 such that µH1 → µ1 in L
2(Γ̂), H → 0+.

However,

jHαh
(vh) � −(gµH1 , vh)0,αh

−→ −(gµ1, v)0,α = jα(v).

Hence

lim
h,H→0+

inf jHαh
(vh) � jα(v),

which together with (3.21) yields (3.20). �

Corollary 3.1. It follows from Lemma 3.2 that

jHαh
(uh)→ jα(u), h,H → 0+,

where uh is the same as in Lemma 3.1.

����� �� (3.19). Let (uh, λH) ∈ �h(αh) ×ΛH be the solution of
(
M (αh)

)H
h
.

Then the first component uh ∈ KH
h (αh) solves the problem

(
P(αh)

)H
h
which can be

equivalently expressed as follows:

(3.22)

{
Find uh ∈ KH

h (αh) such that

JH
h (uh) � JH

h (vh) ∀vh ∈ KH
h (αh),

where

JH
h (vh) ≡ Jαh

(vh) + j
H
αh
(vh).

Since (
Λε(uh), ε(uh)

)
0,Ωh
= 2JH

h (uh) + 2Lαh
(uh)− 2jHαh

(uh),

then taking into account (3.18) and Corollary 3.1 we conclude that (3.19) holds if

and only if

(3.23) JH
h (uh)→ Jα(u), h,H → 0 + .

Let us prove (3.23). The inequality

(3.24) lim
h,H→0+

infJH
h (uh) � Jα(u)
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is obvious by virtue of Lemma 3.1, (3.18) and Corollary 3.1. Arguing in the same way

as in Step (iii) in the proof of Lemma 3.1 one can find a sequence {vh}, vh ∈ Kh(αh)
such that

(3.25) ‖vh − ũ‖1,Ω(αh) → 0, h→ 0+,

where ũ is the uniform extension of u from Ω(α) onto Ω̂. Since at the same time
vh ∈ KH

h (αh), it follows from (3.22) that

(3.26) JH
h (uh) � JH

h (vh).

It is again very easy to verify that

JH
h (vh)→ Jα(u),

making use of (3.25) and the fact that αh ⇒ α in [a, b], h→ 0+ (see [7]). From this
and (3.26) we obtain that

lim
h,H→0+

supJ H
h (uh) � Jα(u),

which together with (3.24) proves (3.19). �

������ 3.4. It follows from (3.16) that the equivalent expression of Eh0 from

the previous example reads as follows:

Eh0
(
αh, λH(αh)

)
=
1
2
(gλH1 , v

h
1 )0,αh

+
1
2
(λH2 , v

h
2 )0,αh

,

i.e. only the boundary data are necessary when evaluating Eh0 . This fact can be used

in the practical realization of
(
�
)H
h
(see also Remark 2.2).

������ 3.5. Until now functionals defined on Uad × Λ, i.e. depending on the
design variable α and the contact stress λ, were considered. It is readily seen that

the previous analysis can be extended to the more general case, namely when the
functionals in addition to α, λ depend also on the solution u(α) itself. In this case

the mixed variational formulation
(
M (α)

)
and its discretization

(
M (αh)

)H
h
will be

used for the numerical realization of the Signorini problem. After an appropriate

modification of assumptions, all our results remain valid.
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4. Sensitivity analysis

In this section we will study the differentiability of the mapping αh �→ uh(αh),

λH(αh), where the couple
(
uh(αh), λH(αh)

)
is the solution of

(
M (αh)

)H
h
. We shall

show that this mapping is directionally differentiable and the corresponding deriva-

tives are given by another quadratic programming problem. For the sake of simplicity
of the presentation we restrict ourselves to the frictionless case, i.e. g ≡ 0 on Γ̂ and
consequently, only one set defining the Lagrange multipliers is present, namely ΛH2 .
The sensitivity analysis will be done for the matrix formulation of

(
M (αh)

)H
h
.

Let �h(αh), ΛH2 and U h
ad be isometrically isomorphic to �

n , �d+ and U , respec-
tively. The elements 
α ∈ U ⊆ �D+1 will be called discrete design variables. Then

using the standard approach, problem
(
M (αh)

)H
h
takes the following algebraic form:

(

M (
α)

)




Find
(

x(
α), 
λ(
α)

)
∈ �n × �d+ such that

� (
α)
x(
α) = 
F (
α) + �T (
α)
λ(
α)
(
� (
α)

(

x(
α) + 
α∼

)
, 
µ− 
λ(
α)

)
� 0 ∀
µ ∈ �d+ .

Here � (
α) is the stiffness matrix of the problem, 
F (
α) is the right hand side arising

from the discretization of the applied forces and � (
α) is the so-called kinematic
transformation matrix characterizing the unilateral contact condition along Γ̂. All

data depend on the discrete design variable 
α. Taking into account our special
geometry of Ω(αh), the components of the vector 
α ∈ U are given by the values of

αh ∈ U h
ad at the nodal points, i.e.


α = (α0, . . . , αD), where αi = αh(xi1), i = 0, . . . , D,

while the components of 
α∼ ∈ �n used in
(

M (
α)

)
3
are copies of the components of 
α ∈

�
D+1 corresponding to the contact nodes and completed by zeros at the remaining
positions. The nodal displacement field 
x ∈ �n can be arranged in the following
way: 
x = (
x0, 
xc), where 
xc is the subvector the components of which are the x2-

coordinates of the displacement field 
x at the contact nodes. Since the unilateral
conditions concern the subvector 
xc only, we will suppose that the kinematic matrix

� (
α) ∈ L (�n ,�d) is such that

� (
α)
x = 
0 for any 
x = (
x0, 
xc) with 
xc = 
0.

Moreover, we will suppose that the stability condition

(4.1) �
T (
α)
µ = 
0 =⇒ 
µ = 
0

is satisfied for any 
α ∈ U .
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Finally, we will suppose that the mappings

(4.2) 
α �−→ � (
α), 
F (
α), � (
α)

are once continuously differentiable in an open set Ũ ⊃ U and the matrix � (
α) is
uniformly positive definite with respect to 
α ∈ U .

We start with

Lemma 4.1. The mappings


α �→ 
x(
α)


α �→ 
λ(
α), 
α ∈ U ,

where
(

x(
α), 
λ(
α)

)
solves

(

M (
α)

)
are Lipschitz continuous.

�����. Due to (4.1), problem
(

M (
α)

)
has a unique solution

(

x(
α), 
λ(
α)

)
for

any 
α ∈ U . First we prove the Lipschitz continuity of the mapping 
α �→ 
λ(
α). From(

M (
α)

)
2
we have

(4.3) 
x(
α) = �
−1 (
α)

(

F (
α) + �

T (
α)
λ(
α)
)
.

Substituting (4.3) into
(

M (
α)

)
3
we see that 
λ(
α) ∈ �d+ solves the variational in-

equality

(4.4)

(
� (
α)
λ(
α), 
µ− 
λ(
α)

)
� −

(
� (
α)� −1 (
α)
F (
α), 
µ− 
λ(
α)

)

−
(
� (
α)
α∼ , 
µ− 
λ(
α)

)
∀
µ ∈ �

d
+ ,

where � (
α) ≡ � (
α)� −1 (
α)�T (
α). The inequality (4.4) is nothing else than the

algebraic representation of the reciprocal variational formulation
(
R(αh)

)
H
. The

fact that the mapping 
α �→ 
λ(
α) is Lipschitz continuous now easily follows from (4.4)

by virtue of (4.2) and the positive definiteness of � (
α). The Lipschitz continuity of

α �→ 
x(
α) now follows from (4.3). �

Let 
β ∈ �D+1 be a fixed direction and let
(

x(
α + t
β), 
λ(
α + t
β)

)
, t → 0+ be a

solution to
(

M (
α+ t
β)

)
. It follows from Lemma 4.1 that the finite differences

{

x(
α+ t
β)− 
x(
α)

t

}
,

{

λ(
α+ t
β)− 
λ(
α)

t

}
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are bounded for t → 0+. Thus there exist a sequence {tn} and elements 
̇x ∈ �n ,

̇λ ∈ �d+ such that

(4.5)






x(
α+ tn
β)− 
x(
α)
tn

−→ 
̇x,


λ(
α+ tn
β)− 
λ(
α)
tn

−→ 
̇λ, as n→∞.

Next we shall show that the elements 
̇x, 
̇λ are uniquely determined and do not depend

on the specific choice of {tn}. They will be called the directional derivatives of 
x, 
λ,
respectively at the point 
α and the direction 
β.

Writing down problems
(

M (
α)

)
and

(

M (
α+tn
β)

)
, subtracting them and dividing

by tn → 0+ we arrive at the relation

(4.6)
.
� (
α)
x(
α) + � (
α)
̇x(
α) = 
̇F (
α) +

.
�
T (
α)
λ(
α) + �

T (
α)
̇λ.

It follows from (4.2) that

.
� (
α) = lim

tn→0+

� (
α + tn
β)− � (
α)
tn

= �
′ (
α, 
β) =

(
∇α� (
α), 
β

)

is the directional derivative of � at the point 
α and the direction 
β. Here the symbol

∇α stands for the gradient of � with respect to 
α. The symbols 
̇F (
α),
.
� (
α) have

a similar meaning and can be computed in a similar way. Below we prove that 
̇x

belongs to a certain convex set.

The solution 
x(
α) satisfies d linear inequality constraints

fi(
α) � 0 ∀i = 1, . . . , d,

where

fi(
α) ≡ bij(
α)
(
xj(
α) + α∼ j

)

with bij(
α), i = 1, . . . , d; j = 1, . . . , n being the elements of � (
α) and α∼ j the j-th

component of 
α∼ .

The index set I = {1, . . . , d} will be splitted into 3 disjoint subsets as follows:

I+(
α) =
{
i ∈ I | fi(
α) > 0

}
,

I0,+(
α) =
{
i ∈ I | fi(
α) = 0 & λi(
α) > 0

}
,

I0,0(
α) =
{
i ∈ I | fi(
α) = 0 & λi(
α) = 0

}
.
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Let the i-th constraint be non-active, i.e. i ∈ I+(
α). Then it remains non-active for
small changes of t due to the continuity of the mapping 
α �→ 
x(
α). Then λi(
α+t
β) =
0 for any t � 0 sufficiently small and consequently λ̇i(
α) = 0 for any i ∈ I+(
α).
Let the i-th constraint be strongly active, i.e. i ∈ I0,+(
α). Then it remains strongly

active for small perturbations of t > 0 due to the continuity of the mapping 
α �→ 
λ(
α).
Thus

fi(
α+ t
β) = 0

for t > 0 sufficiently small so that

(4.7) ḟi(
α) = 0 ∀i ∈ I0,+(
α)

or

(4.8) bij(
α)ẋj(
α) = −ḃij(
α)
(
xj(
α) + α∼ j

)
− bij(
α)β

∼
j ≡ di

holds for any i ∈ I0,+(
α). Here 
β
∼
= (β

∼
1, . . . , β

∼
n) ∈ �n is the extension of 
β ∈ �D+1

constructed in the same way as 
α∼ from 
α. In other words, at the points where the

constraint is strongly active, the equality constraint (4.8) is satisfied.

Finally, let the i-th constraint be semi-active, i.e. i ∈ I0,0(
α). Since at the same
time fi(
α + t
β) � 0 for any t � 0, one has

(4.9) ḟi(
α) � 0⇐⇒ bij(
α)ẋj(
α) � di ∀i ∈ I0,0(
α),

i.e. the linear inequality constraint is satisfied at any point where the semi-active

constraint is realized.
From (4.8) and (4.9) one has

Lemma 4.2. The element 
̇x belongs to the convex set K (
α, 
β), where

K (
α, 
β) =
{

z ∈ �

n | bij(
α)zj = di ∀i ∈ I0,+(
α), bij(
α)zj � di ∀i ∈ I0,0(
α)
}
.

Moreover, we have

λ̇i(
α) � 0 ∀i ∈ I0,0(
α),(4.10)
(
bij(
α)ẋj(
α)− di

)
λ̇i(α) = 0 ∀i ∈ I (no sum in i).(4.11)

�����. It remains to verify (4.10) and (4.11). For any i ∈ I0,0(
α) we have

λ̇i(
α) = lim
tn→0+

λi(
α+ tn
β)− λi(
α)
tn

= lim
tn→0+

λi(
α+ tn
β)
tn

� 0,
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since 
λ(
α) ∈ �d+ for any 
α ∈ U . Let us prove (4.11). If i ∈ I+(
α), then λ̇i(
α) = 0.
If i ∈ I0,+(
α) then the equality constraint (4.8) holds. Finally, let i ∈ I0,0(
α) and
λ̇i(
α) > 0. Then λi(
α + tn
β) > 0 for n sufficiently large so that fi(
α + tn
β) = 0.
Thus

bij(
α)ẋj(
α) = di

and (4.11) is verified. �

Denote by

H�α(
z) =
1
2

(

z, � (
α)
z

)
−

(

̇F (
α) +

.
�
T (
α)
λ(
α)− .

� (
α)
x(
α), 
z
)

the quadratic functional. In what follows we shall prove that the element 
̇x is a

minimizer ofH�α overK (
α, 
β) and 
̇λ is the corresponding Lagrange multiplier. First
of all, the quadratic programming problem

(4.12)

{
Find 
s ∈ K (
α, 
β) such that

H�α(
s) � H�α(
z) ∀
z ∈ K (
α, 
β)

has a unique solution 
s which due to (4.2) does not depend on a particular choice
of {tn}. Using the Lagrange multiplier technique, (4.12) can be formulated as a
saddle-point problem:

(4.13)

{
Find (
s,
κ) ≡ (
s,
κ1, 
κ2) ∈ �

n × �
q1 × �

q2
+ such that

E�α(
s, 
µ) � E�α(
s,
κ) � E�α(
z,
κ) ∀(
z, 
µ) ∈ �n × �q1 × �
q2
+ ,

where

E�α(
z, 
µ) =H�α(
z)−
(
� (
α)
z − 
d, 
µ

∼

)
,

q1 = card I0,+(
α), q2 = card I0,0(
α),


d = (d1, . . . , dd)

and 
µ
∼
∈ �d is the extension of 
µ ∈ �q1 ×�

q2
+ by zeros at the components correspond-

ing to i ∈ I+(
α). The equivalent form of (4.13) is

(4.14)





Find (
s,
κ) ∈ �n × �q1 × �
q2
+ such that

� (
α)
s = 
̇F (
α) +
.
�
T (
α)
λ(
α)− .

� (
α)
x(
α) + �T (
α)
κ∼
(
� (
α)
s− 
d; 
µ

∼
−
κ∼

)
� 0 ∀
µ ∈ �q1 × �

q2
+ .
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Notice that (4.14) has a unique solution (
s,
κ) because of (4.1). Moreover, this

solution again does not depend on a particular choise of {tn}. From (4.11) we have

(4.15)
(
bij(
α)ẋj(
α)− di

)
(µi − λ̇i) � 0

for any 
µ ∈ �d such that µi = 0 if i ∈ I+(
α), µi ∈ �1 if i ∈ I0,+(
α) and µi � 0 if
i ∈ I0,0(
α). Comparing (4.6), (4.15) with (4.14) and taking into account that λ̇i = 0
for any i ∈ I+(
α) we see that 
̇x = 
s, 
̇λ = 
κ∼ .
Summarizing the previous analysis we obtain

Theorem 4.1. The mapping

(4.16) 
α �→
(

x(
α), 
λ(
α)

)
,

where
(

x(
α), 
λ(
α)

)
is the unique solution of

(

M (
α)

)
, is directionally differentiable

at any point 
α ∈ U and any direction 
β ∈ �D+1 . The directional derivative


x′ ≡ 
x′(
α, 
β) = lim
t→0+


x(
α+ t
β)− 
x(
α)
t

is the solution of the quadratic programming problem (4.12), while the directional
derivative 
λ′ ≡ 
λ′(
α, 
β) is the vector of the corresponding Lagrange multipliers.

������ 4.1. Using the duality approach in (4.13) one can derive the variational

formulation for the Lagrange multiplier 
κ. Such formulation is useful when only the

derivative 
̇λ is needed.

Since the mapping 
α �→
(

x(
α), 
λ(
α)

)
is not continuously differentiable, in general,

one cannot expect the differentiability of cost functionals depending on 
x(
α), 
λ(
α)
and considered as the function of the discrete design variable 
α. In some special

cases, however, the cost functional is continuously differentiable regardless of the
fact that the mapping 
α �→

(

x(
α), 
λ(
α)

)
is not. We will illustrate this phenomenon

for the cost functional Eh0 introduced in Example 3.1. Again we restrict ourselves to

the frictionless case only, i.e. g ≡ 0 on Γ̂. In this case (since λH1 ≡ 0) one has

Eh0
(
αh, λ

H
2 (αh)

)
=
1
2
‖λH2 (αh)‖2−1/2,αh,h

≡ 1
2
|||vh|||21,Ωh

,

where vh ≡ vh(αh) ∈ �h(αh) is the unique solution of

(
Λε(vh), ε(ψh)

)
0,Ωh
=

(
λH2 (αh), ψh

)
0,αh

∀ψh ∈ �h(αh).
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From this and the definition of Eh0 we see that

(4.17) Eh0
(
αh, λ

H
2 (αh)

)
=
1
2

(
λH2 (αh), vh(αh)

)
0,αh

.

The algebraic representation of (4.17) is given by

(4.18) E
(

α,
λ(
α)

)
=
1
2

(

λ(
α), � (α)
v(
α)

)
,

where 
λ(
α) ∈ �d+ solves (4.4), � (α) is the kinematic transformation matrix and

v(
α) ∈ �n is the solution of

� (
α)
v(
α) = �
T (α)
λ(
α).

Using this in (4.18) we obtain that

E
(

α,
λ(
α)

)
=
1
2

(
� (
α)
λ(
α), 
λ(
α)

)
,

where � (
α) = � (
α)� −1 (
α)� T (
α). The vector 
λ(
α) is the unique minimizer of the

quadratic functional
1
2

(
� (
α)
µ, 
µ

)
−

(

Q(
α), 
µ

)

over �d+ , where

Q(
α) ≡ −� (
α)� −1 (
α)
F (
α)− � (
α)
α∼

(see (4.4)). Thus

E
(

α,
λ(
α)

)
= − min

�µ∈�d
+

{1
2

(
� (
α)
µ, 
µ

)
−

(

Q(
α), 
µ

)}

= − min
�µ∈�d

sup
�ω∈�d

+

{1
2

(
� (
α)
µ, 
µ

)
−

(

Q(
α), 
µ

)
− (
µ, 
ω)

}
.

Using the classical results on the differentiability of min max functions (see [2]) we
have

E ′(
α, 
β) = lim
t→0+

E (
α+ t
β)− E (
α)
t

= −
{1
2

(
�
′ (
α)
λ(
α), 
λ(
α)

)
−

(

Q′(
α), 
λ(
α)

)}

where

�
′ (
α) ≡ �

′ (
α, 
β) =
(
∇α� (
α), 
β

)
,


Q′(
α) = 
Q′(
α, 
β) =
(
∇α


Q(
α), 
β
)
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are the directional derivatives of � and 
Q. As the mappings 
α �→ � (
α), 
α �→ 
Q(
α)

are continuously differentiable as follows from (4.2), the cost functional E is of the
class C1.
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