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Abstract. For open sets with a piecewise smooth boundary it is shown that a solution of
the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of
the single layer potential and the double layer potential with the same density, where this
density is given by a concrete series.
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1. Classical solutions

Suppose that G ⊂ �
m (m > 2) is an open set with a non-void compact boundary

∂G such that ∂G = ∂(clG). For a given g ∈ C (∂G) (= the space of all continuous
functions on the boundary of G equipped with the maximum modulus norm) we
formulate the Dirichlet problem for the Laplace equation with boundary condition g
as follows: Find u ∈ C (clG) ∩ C 2(G) such that

(1) ∆u ≡
m∑

i=1

∂2u

∂x2i
= 0 in G, u = g on ∂G.

If G is unbounded we add the condition

(2) lim
x∈G,x→∞

u(x) = 0.

* Supported by GAČR Grant No. 201/96/0431
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Looking for a solution in the form of the double layer potential is a classical
method. It was shown by J. Král (see [21]) and independently by Yu. D. Burago
and V. G. Maz’ya (see [7]) that it is possible to define the double layer potential on
G as a continuously extendable function on clG for each density f ∈ C (∂G) if and
only if the cyclic variation of G is bounded, where

(3) vG(x) = sup

{∫

G

∇ϕ · ∇hx dHm ; ϕ ∈ D , |ϕ| � 1, sptϕ ⊂ �
m \ {x}

}

is the cyclic variation of G at the point x ∈ �
m . Here

(4) hx(y) = (m− 2)−1A−1|x− y|2−m,

A is the area of the unit sphere in �m , D is the space of all compactly supported
infinitely differentiable functions in �m , Hk is the k-dimensional Hausdorff measure
normalized such that Hk is the Lebesgue measure in �k .
If z ∈ �

m and θ is a unit vector such that the symmetric difference of G and
the half-space {x ∈ �

m ; (x − z) · θ > 0} has m-dimensional density zero at z then
nG(z) = θ is termed the interior normal of G at z in Federer’s sense. (The symmetric
difference of B and C is equal to (B \ C) ∪ (C \ B).) If there is no interior normal
of G at z in this sense, we denote by nG(z) the zero vector in �m .
If the cyclic variation of G is bounded then for x ∈ clG and f ∈ C (∂G) the double

layer potential WGf(x) with density f at the point x has the form

(5) WGf(x) = (1− dG(x))f(x) +
∫

∂G

f(y)nG(y) · ∇hx(y) dHm−1(y),

where

dG(y) = lim
r→0+

Hm(U (y; r) ∩G)
Hm(U (y; r))

exists for each y ∈ �
m (see [20], Lemma 2.9). Here U (y; r) denotes the ball with

the centre y and the radius r. The operator ŴG which maps f onto the restriction
of WGf onto the boundary of G is a bounded operator on C (∂G) (see [20]).
If L is a bounded linear operator on the complex Banach space X we denote by

‖L‖ess the essential norm of L, i.e. the distance of L from the space of all compact
linear operators on X . The essential radius of L is defined by

ressL = lim
n→∞

(‖Ln‖ess)1/n.

Denote by X ′ the dual space of X and by L′ the adjoint operator of L.
In [26] the following theorem is proved:
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Theorem. If ress(ŴG − 1
2I) < 1/2, where I denotes the identity operator, and

the set �m \ G is unbounded and connected and g ∈ C (∂G) then the double layer
potential WGf is a solution of the Dirichlet problem for the Laplace equation with
the boundary condition g, where

f = g +
∞∑

j=0

(I − 2ŴG)j(2I − 2ŴG)g.

The condition that the set �m \ G is unbounded and connected is necessary for
expressing the solution of the Dirichlet problem for the Laplace equation in the form
of the double layer potential for each boundary condition. If we want to calculate
the solution for an open set with holes we must modify the double layer potential.
We will prove that we can express a solution of the Dirichlet problem in the form of
the sum of the single layer potential and the double layer potential with the same
density where the corresponding density is given by the concrete series. This method
was used in [29].
Fix a nonnegative element λ of C ′(∂G) (= the Banach space of all finite signed

Borel measures with support in ∂G with the total variation as a norm) and suppose
that the single layer potential U λ is bounded and continuous on ∂G. Here

U ν(x) =
∫

�m

hx(y) dν(y),

where ν ∈ C ′(∂G),
hx(y) = (m− 2)−1A−1|x− y|2−m,

A is the area of the unit sphere in �m . It was shown in [32] that U λ is bounded
and continuous on ∂G if and only if

lim
r→0+

sup
y∈∂G

∫

U (y;r)

hy(x) dλ(x) = 0,

where U (x; r) = {y ∈ �
m ; |y − x| < r}. According to [20], Lemma 2.18 this is

true if there are constants α > m− 2 and k > 0 such that λ(U (x; r)) � krα for all
x ∈ �

m and all r > 0.
We will look for a solution of (1) in the form of the sum of the double layer potential

with density f and the single layer potential corresponding to the sign measure fλ.
If f ∈ C (∂G) then U (fλ) is a continuous function in �m by [32],Proposition 6 and

(6) sup
x∈�m

|U (fλ)(x)| � sup
x∈�m

U λ(x) sup
x∈∂G

|f(x)|.
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So this sum of the double layer potential and the single layer potential is a continuous
function on clG if and only if the cyclic variation of G is bounded. The cyclic
variation of G is bounded if and only if V G <∞,where

V G = sup
x∈∂G

vG(x)

(see [20], Theorem 2.16). There are more geometrical characterizations of vG(x)
which ensure V G < ∞ for G convex or for G with ∂G ⊂ ∪ki=1Li, where Li are
(m− 1)-dimensional Ljapunov surfaces (i.e. of class C 1+α). Denote by

∂eG =
{
x ∈ �

m ; dG(x) > 0, d�m\G(x) > 0
}

the essential boundary of G where

dM (x) = lim sup
r→0+

Hm(M ∩U (x; r))
Hm(U (x; r))

is the upper density of M at x. Then

vG(x) =
1
A

∫

∂U (0;1)

n(θ, x) dHm−1(θ),

where n(θ, x) is the number of all points of ∂eG ∩ {x + tθ ; t > 0} (see [8]). This
expression is a modification of the similar expression in [20]. As a consequence we
see that V G � 1/2 if G is convex. Since vG(x) � V G + 1/2 by [20], Theorem 2.16
we see that if

∂G ⊂
n⋃

i=1

∂Gi

and G1, . . . , Gn are convex then V G � n.
If Hm−1(∂eG), the perimeter of G, is finite then

vG(x) =
∫

∂G

|nG(y) · ∇hx(y)| dHm−1(y)

for each x ∈ �
m (see [20], Lemma 2.15).

Theorem 1. Suppose that V G <∞, ress(ŴG − 1
2I) <

1
2 , where I is the identity

operator. Denote C = �
m \ clG and suppose that λ(H) > 0 for each bounded

component H of clC. Denote on C (∂G) a bounded linear operator V

(7) V g(x) =WGg(x) +U (gλ)(x).
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Fix

(8) α >
1
2

(
1 + sup

x∈∂G
U λ(x)

)
.

Then there are constants dα ∈ 〈1,∞), qα ∈ (0, 1) such that for each g ∈ C (∂G) and
any positive integer number n

(9)

∥∥∥∥
(
V − αI

α

)n
g

∥∥∥∥
C (∂G)

� dαq
n
α‖g‖C (∂G).

If g ∈ C (∂G) then there is a unique solution of the Dirichlet problem (1) and this
solution has the form WGf +U (fλ), where

(10) f =
∞∑

n=0

(
−V − αI

α

)n
g

α
.

�����. The uniqueness of the solution of the problem (1) follows by the maxi-
mum principle.
Since ress(ŴG− 12I) < 1

2 the operator Ŵ
G−βI is Fredholm for each |β−1/2| � 1/2

by [17], Satz 51.8. Since V − ŴG is a compact operator by [32], Proposition 9 the
operators V −βI and V ′−βI are Fredholm for each |β−1/2| � 1/2 by [40], Chapter V,
Theorem 3.1, Chapter VII, Theorem 3.5. For each ν ∈ C ′(∂G) (= the Banach space
of all finite signed Borel measures with support in ∂G with the total variation as
a norm) and each Borel set M we have

V ′(ν) =
∫

M

(1− dG(x)) dν(x) +
∫

∂G

∫

(∂G∩M)

nG(y) · ∇hx(y) dHm−1(y) dν(x) +
∫

M

U ν dλ

=
∫

M

dC(x) dν(x) −
∫

∂C

∫

(∂C∩M)

nC(y) · ∇hx(y) dHm−1(y) dν(x) +
∫

M

U ν(x) dλ(x)

(see [35], Proposition 8), because the Lebesgue measure of ∂G is equal to 0 by [27],
Lemma 4. Since the Lebesgue measure of ∂G is equal to 0 we have V G = V C <∞.
Denote by σ(V ) the spectrum of the operator V . According to [17], Satz 51.1, [27],
Lemma 4, Lemma 5, Lemma 10, Lemma 11, Theorem 1, [42], Chapter VIII, §6,
Theorem 2 we have σ(V ) ∩ {β ∈ � ; |β − 1/2| � 1/2} ⊂ {β ∈ � ; β � 1/2}. Since
the spectral radius of WG − 1

2I is smaller or equal to 1/2 (see [26], Proposition 1)
and

‖WG − V ‖ � sup
x∈∂G

U λ(x)(≡ cλ)

by the maximum principle, the spectral radius of V − 1
2I is smaller than or equal to

1/2 + cλ. Thus σ(V ) ∩ {β ∈ � ; |β − 1/2| � 1/2} ⊂ {β ∈ � ; 1/2 � β � 1 + cλ}. If
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α > 1
2 (1 + cλ) then the spectrum of V is disjoint with the set {β ∈ � ; |β −α| � α}.

Since the spectral radius of the operator V −αI is smaller than α there are constants
dα ∈ 〈1,∞), qα ∈ (0, 1) such that (9) holds for each g ∈ C (∂G) and any positive
integer number n. Easy calculation yields that f given by (10) is a solution of the
equation V f = g. Since WGf + U (fλ) is a continuous function on the closure of
G which is harmonic on G and WGf + U (fλ) = V f on the boundary of G, the
function WGf +U (fλ) is a solution of the problem (1). �

������ 1. It is well-known that the condition ress(ŴG− 12I) < 1
2 is fulfilled for

sets with a smooth boundary (of class C1+α) (see [21]) and for convex sets (see [31]).
R. S. Angell, R. E. Kleinman, J. Král and W. L. Wendland proved that rectangular
domains (i.e. formed from rectangular parallelepipeds) in �3 have this property (see
[2], [22]). A. Rathsfeld showed in [38], [39] that polyhedral cones in �

3 have this
property. (By a polyhedral cone in �3 we mean an open set Ω whose boundary is
locally a hypersurface (i.e. every point of ∂Ω has a neighbourhood in ∂Ω which is
homeomorphic to �2 ) and ∂Ω is formed by a finite number of plane angles. By a
polyhedral open set with bounded boundary in �3 we mean an open set Ω whose
boundary is locally a hypersurface and ∂Ω is formed by a finite number of polygons.)
N. V. Grachev and V. G. Maz’ya obtained independently an analogous result for
polyhedral open sets with bounded boundary in �

3 (see [16]). (Let us note that
there is a polyhedral set in �3 which has not a locally Lipschitz boundary (see [27],
Example 2).) In [25] it was shown that the condition ress(ŴG − 1

2I) <
1
2 has a local

character. As a consequence we obtain that this condition is fulfilled for G ⊂ �
3

such that for each x ∈ ∂G there are r(x) > 0, a domain Dx which is polyhedral
or smooth or convex or a complement of a convex domain and a diffeomorphism
ψx : U (x; r(x)) → �

3 of class C1+α,where α > 0, such that ψx(G ∩ U (x; r(x))) =
Dx ∩ ψx(U (x; r(x))). V. G. Maz’ya and N. V. Grachev proved this condition for
several types of sets with “piecewise-smooth” boundary in the general Euclidean
space (see [13]–[15]).

Corollary 1. Suppose that V G < ∞, ress(ŴG − 1
2I) <

1
2 . Denote by H the

restriction of (m− 1)-dimensional Hausdorff measure onto ∂G. Then H (∂G) <∞.
Fix c > 0. Suppose that K is such a constant that H (U (x; r)) � Krm−1 for each
x ∈ �

m , r > 0. (This condition is true for K = Am(m + 2)m(V G + 1/2).) Put
λ = cH . Then U λ is a continuous function in �m and

(11) sup
x∈∂G

U λ(x) � cK2m−1A−1(m− 2)−1 diam ∂G,

where

diam∂G = sup
x,y∈∂G

|x− y|.
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If

α >
1
2

(
1 + sup

x∈∂G
U λ(x)

)

then there are constants dα ∈ 〈1,∞), qα ∈ (0, 1) such that for each g ∈ C (∂G) and
any positive integer number n

∥∥∥∥
(
V − αI

α

)n
g

∥∥∥∥
C (∂G)

� dαq
n
α‖g‖C (∂G).

If g ∈ C (∂G) then there is a unique solution of the Dirichlet problem (1) and this
solution has the form WGf +U (fλ), where

f =
∞∑

n=0

(
−V − αI

α

)n
g

α
.

�����. H (∂G) < ∞ by [27], Corollary 1. The function U λ is continuous
and (11) is true by [27], Remark 6. For K = Am(m + 2)m(V G + 1/2) we have
H (U (x; r)) � Krm−1 for each x ∈ �

m , r > 0 by [20], Corollary 2.17. The rest is a
consequence of Theorem 1. �

Corollary 2. Suppose that V G < ∞, ress(ŴG − 1
2I) <

1
2 . Fix c > 0. Put

λ = cH . Let

α >
1
2

(
1 + sup

x∈∂G
U λ(x)

)
.

For x, y ∈ G we define

fx =
∞∑

n=0

(
−V − αI

α

)n
hx
α
,(12)

G (x, y) = hx(y)−WGfx(y)−U (fxλ)(y).(13)

Then G is the Green function for G.

	
����� 1. Put G = {x ∈ R3 ; 1/2 < |xj | < 1, j = 1, 2, 3}. Let f ∈ C (∂G),
g ∈ C (clG). We want to solve the following problem: Find u ∈ C (clG) ∩ C 2(G)
such that

∆u = g in G,

u = f on ∂G.

Since ∂G is a subset of 12 planes we have H (U (x; r)) � 12�r2 for each r > 0,
x ∈ ∂G. Fix c > 0. Put λ = cH . Then U λ is a continuous function in R3 and

sup
x∈∂G

U λ(x) � 50c
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by Corollary 1. Put, for example, c = 0.1. Fix α > 3. Put

h =
∞∑

n=0

(
−V − αI

α

)n
f

α
.

Then WGh + U (hλ) is a classical solution of the problem ∆v = 0 in G, v = f in
∂G. If we define for x, y ∈ G the function fx by (12) and G (x, y) by (13) then G is
a Green function for G. The solution u of our problem has the form

u(x) = −
∫

G

G (x, y)g(y) dHm(y) +WGh(x) +U (hλ)(x).

2. Generalized solution

Let g be an arbitrary extended real-valued function defined on ∂G. We denote by

U
G

g the set of all hyperharmonic functions u on G which are lower bounded on G,
non-negative outside the trace on G of a compact set of �m and such that for any
y ∈ ∂G

lim inf
x→y

u(x) � g(y).

The function u on G is hyperharmonic if it is lower-semicontinuous and for each
x ∈ G and r > 0 such that clU (x; r) ⊂ G it satisfies u(x) > −∞ and

u(x) � 1
Hm(U (x; r))

∫

U (x;r)

u(y) dHm(y).

We put UGg = −UG(−g) and denote by H
G

g (resp. H
G
g ) the greatest (resp. least upper)

bound of U
G

g (resp. U
G
g ). (Compare [6], [18].)

A function g on ∂G is said to be resolutive (relative to G), if H
G

g = HG
g and

|HG

g (x)| < ∞ for any x ∈ G. We set HG
g = H

G

g , the generalized solution of the
Dirichlet problem for the Laplace equation with the boundary condition g, provided
g is resolutive. If g ∈ C (∂G) and u is a classical solution of the Dirichlet problem
for the Laplace equation with the boundary condition g then g is resolutive and
HG
g = u. It is worth noting that any bounded Baire function on ∂G is resolutive
([6], Theorem 6 and the text on p. 94).
For fixed x ∈ G there is a unique Borel measure µGx on ∂G such that

(14) HG
g (x) =

∫
g dµGx
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for each g ∈ C (∂G). The relation (14) holds for each resolutive g (see [18], Satz 1,2).
Let us note that we have tacitly used the fact that �m is a strong harmonic space

in the sense of the theory of harmonic spaces (see [3], p. 61).
In the rest of the paper we will suppose that V G <∞. Denote by Ĥ the restriction

of the (m−1)-dimensional Hausdorff measure onto ∂eG. Fix c � 0 and suppose that
if c = 0 then �m \G is unbounded and connected. Put λ = cĤ . Then the single layer
potential U λ is bounded and continuous on ∂G (see [20], Lemma 2.17, Lemma 2.18)
and λ(H) > 0 for each bounded componentH of clG. Note that if ress(ŴG− 12I) < 1

2

then H = Ĥ (see [27], Corollary 1).

Theorem 2. Suppose ress(ŴG − 1
2I) <

1
2 . Fix

α >
1
2

(
1 + sup

x∈∂G
U λ(x)

)
.

Then for each g ∈ C (∂G)
HG
g =W

Gf +U (fλ),

where

(15) f =
∞∑

n=0

(
−V − αI

α

)n
g

α
.

Define on L1(H ) a bounded operator T by

Tg(x) =
1
2
g(x) +

∫

∂G

g(y)nG(x) · ∇hy(x) dH (y) + cg(x)
∫

∂G

hx dH .

Then there are constants dα ∈ 〈1,∞), qα ∈ (0, 1) such that for each g ∈ L1(H ) and
any positive integer number n

(16)

∥∥∥∥
(
T − αI

α

)n
g

∥∥∥∥
L1(H )

� dαq
n
α‖g‖L1(H ).

For fixed x ∈ G put

gx(y) = n
G(y) · ∇hx(y) + chx(y),

kx =
∞∑

n=0

(
−T − αI

α

)n
gx
α
.(17)

Then µGx = kxH . If c = 0 then there are constants d ∈ 〈1,∞), q ∈ (0, 1) such that
for each g ∈ L1(H ) and any positive integer number n

(18)
∥∥(I − 2T )n2(I − T )g

∥∥
L1(H )

� dαq
n
α‖g‖L1(H )
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and

(19) kx = gx +
∞∑

j=0

(I − 2T )j(2I − 2T )gx.

�����. Since V is invertible, V ′ is invertible as well and (V ′)−1 is the adjoint
operator of V −1. Let x ∈ G, g ∈ C (∂G), ε > 0, f being given by (15). Then

WGf +U (fλ) + ε ∈ UGg and WGf +U (fλ)− ε ∈ UGg . Thus HG
g =W

Gf +U (fλ)
and

∫
g dµx = HG

g (x) =W
G(V −1g)(x) +U

[
c(V −1g)H

]
(x)

=
∫

∂G

(
V −1g

)
(y)gx(y) dH (y) =

∫

∂G

g d
[
(V ′)−1(gxH )

]
.

According to [27], Corollary 1, T is a bounded invertible operator on L1(H ),
(V ′)−1(gxH ) = (T−1gx)H , (16) holds and

T−1gx =
∞∑

n=0

(
−T − αI

α

)n
gx
α
= kx.

If c = 0 then (18), (19) hold by [27], Corollary 1. �


�������. For a bounded Ĥ -measurable function f on ∂G define the double
layer potentialWGf on clG by formula (5). The functionWGf+U (fλ) is harmonic
on G. Denote V f(x) = WGf(x) + U (fλ)(x) for x ∈ ∂G. Then V f is a bounded
Ĥ -measurable function on ∂G. Denote by f̃ the class in L∞(Ĥ ) corresponding
to f (i.e. f̃ = {g ; Ĥ ({x ∈ ∂G ; f(x) �= g(x)}) = 0}). Since for g ∈ f̃ we have
WGf+U (fλ) =WGg+U (gλ) on G we denoteWGf̃+U (f̃λ) ≡WGf+U (fλ) on
G. Since for g ∈ f̃ we have Ṽ f = Ṽ g we define on L∞(Ĥ ) a bounded operator Ṽ by
Ṽ f̃ = Ṽ f . Let B(∂G) we denote the Banach space of all bounded Baire functions
on ∂G equipped with the supremum norm. If f ∈ B(∂G) then V f ∈ B(∂G) and
‖V f‖ � ‖f‖(1 + V G + ‖U λ‖) on ∂G.

Lemma 1. Let x ∈ ∂G, f ∈ B(∂G), f being continuous in x. Then

lim
y∈G,y→x

[WGf(y) +U (fλ)(y)] = V f(x).

�����. U (fλ) is a continuous function in �m by [32], Proposition 6. The rest
is a consequence of [10], Proposition 1.1 and [20], Theorem 2.16. �
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Definition. For x ∈ ∂G, β > 0 denote by Γβ(x) = {y ∈ G ; (1+β) dist(y, ∂G) >
|x − y|} the nontangential region of opening β at the point x. Here dist(y, ∂G) =
sup{|y − z| ; z ∈ ∂G} is the distance of y from ∂G. If f is a function on G, x ∈ ∂G
and there is α > 0 such that x ∈ cl(Γα(x)) we say that c is the nontangential limit
of f in x if

lim
y∈Γβ(x),y→x

f(y) = c

for each β > 0 such that x ∈ cl(Γβ(x)).

Let us note that if S ⊂ G, x ∈ S and S is a set such that for each series xn of points
of ∂G \ {x} and each series yn of points of S such that lim

n→∞
xn = x, lim

n→∞
yn = x,

lim
n→∞

(xn − x)/|xn − x| = θ1, lim
n→∞

(yn − x)/|yn − x| = θ2 we have θ1 �= θ2, then there
are β > 0, δ > 0 such that S ∩U (x; δ) ⊂ Γβ(x) (see [10], Proposition 0.1).
The following lemma is a moderate modification of Lemma 2.1 in [10]. Let us note

that Ĥ
(
U (x; δ)

)
> 0 for each x ∈ ∂G and δ > 0 (see Isoperimetric Lemma in [20],

p. 50).

Lemma 2. Let x ∈ ∂G, let f be an Ĥ -measurable bounded function on ∂G,

(20) lim
δ→0+

1

Ĥ
(
U (x; δ)

)
∫

∂G∩U (x;δ)

|f(y)− f(x)| dĤ (y) = 0.

If there is α > 0 such that x ∈ cl(Γα(x)) then V f(x) is the nontangential limit of
WGf +U (fλ) at x.

�����. Fix α > 0 such that x ∈ cl(Γα(x)). Fix ε > 0. Since U (fλ)
is a continuous function in �

m by [32], Proposition 6, there is r1 > 0 such that
|U (fλ)(x) − U (fλ)(y)| < ε/4 for y ∈ Γα(x) ∩ U (x; r1). According to [20], Corol-
lary 2.17 there is a positive constant C such that

Ĥ
(
U (x; r)

)
� Crm−1

for each r > 0. Since

vG(x) =
1
A

∫

∂G

∣∣∣∣nG(y) ·
x− y

|x− y|m
∣∣∣∣dĤ (y) <∞

there is R ∈ (0, r1) such that

1
A

∫

∂G∩U (x;R)

∣∣∣∣nG(y) ·
x− y

|x− y|m
∣∣∣∣|f(y)− f(x)| dĤ (y) < ε

4(2 + α)m + 4
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and ∫

∂G∩U (x;r)

|f(y)− f(x)| dĤ (y) � ε

C2m+3(2 + α)m
Ĥ

(
U (x; r)

)

for each r ∈ (0, 2R). Put

f1(y) =

{
f(x) on ∂G ∩U (x;R),

f(y) on ∂G \U (x;R),

f2(y) =

{
f(y)− f(x) on ∂G ∩U (x;R),

0 on ∂G \U (x;R).

Since f1 is continuous in x there is r2 ∈ (0, R) such that |WGf1(x)−WGf1(y)| < ε/4
for each y ∈ Γα(x) ∩U (x; r2) (see [10], Proposition 1.1 and [20], Theorem 2.16). If
y ∈ Γα(x) ∩U (x; r2) then

|WGf2(y)−WGf2(x)|

=
1
A

∣∣∣∣
∫

∂G∩U (x;R)

(f(z)− f(x))nG(z) ·
[
z − x

|z − y|m +
x− y

|z − y|m − z − x

|z − x|m
]
dĤ (z)

∣∣∣∣.

If z ∈ ∂G then |y−x| � (1+α)|z−y| and thus |x−z| � |x−y|+|y−z| � (2+α)|y−z|.
Thus

|WGf2(y)−WGf2(x)|

�
[
1 + (2 + α)m

]

A

∫

∂G∩U (x;R)

|f(z)− f(x)|
∣∣∣∣nG(z) ·

z − x

|z − x|m
∣∣∣∣ dĤ (z)

+
(2 + α)m

A

∫

∂G∩U (x;R)\U (x;|x−y|)

|f(z)− f(x)| |y − x|
|z − x|m dĤ (z)

+
(1 + α)m

A

∫

∂G∩U (x;|x−y|)

|f(z)− f(x)||y − x|1−m dĤ (z).

Fix an integer k such that 2k−1|x− y| < R � 2k|x− y|. Then

|WGf2(y)−WGf2(x)|

� ε

4
+
(2 + α)m

A

k∑

j=1

|x− y|1−m
2(j−1)m

∫

U (x;2j|x−y|)

|f(z)− f(x)| dĤ (z)

+
C(1 + α)m

AĤ (U (x; |x− y|))

∫

U (x;|x−y|)

|f(z)− f(x)| dĤ (z) � ε

4
+
ε

8

k∑

j=1

2−j +
ε

8
� ε

2
.
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Thus

|WGf(y) +U (fλ)(y) − V f(x)| < ε

for y ∈ Γα(x) ∩U (x; r2). �

Lemma 3. Let x ∈ ∂G, dG(x) > 0. Suppose that there are positive constants
R,C such that if y ∈ ∂G ∩ U (x;R), r ∈ (0, R) then Ĥ (U (y; r)) � Crm−1. Then
there is α > 0 (depending only on C, m, dG(x), V G) such that x ∈ cl Γα. Moreover,

lim
γ→∞

dG\Γγ
(x) = 0.

If f is an Ĥ -measurable bounded function on ∂G,

lim
δ→0+

1

Ĥ
(
U (x; δ)

)
∫

∂G∩U (x;δ)

|f(y)− f(x)| dĤ (y) = 0

then V f(x) is the nontangential limit of WGf +U (fλ) at x and

lim
δ→0+

1

Hm

(
U (x; δ) ∩G

)
∫

G∩U (x;δ)

|WGf(y) +U (fλ)(y)− V f(x)| dHm(y) = 0.

�����. Fix β ∈ (0, 1). We show that there is a positive constant K such that

(21)
∫

U (x;r)∩G

dist(y, ∂G)β−1 dHm(y) � KHm(U (x; r))r
β−1

for r ∈ (0, R/3). Fix r ∈ (0, R/3). Put

En = {y ∈ G ∩U (x; r) ; dist(y, ∂G) < 21−nr}

for a positive integer n. Fix n. Compactness of ∂G ∩ clU (x; 2r) yields that there
are points z1, . . . , zk in ∂G∩ clU (x; 2r) such that |zi− zj| > 21−nr for i �= j and for
each y ∈ ∂G ∩ clU (x; 2r) there is j ∈ {1, . . . , k} such that |zj − y| � 21−nr. Since
U (z1; 2−nr), . . . ,U (zk; 2−nr) are disjoint and

En ⊂
k⋃

j=1

U (zj ; 22−nr)
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we have

Hm(En) � k2m(2−n)Hm(U (x; r)) � Hm(U (x; r))C
−1r1−m22m−n

k∑

j=1

Ĥ (U (zj ; 2
−nr))

� Hm(U (x; r))C−1r1−m22m−nĤ (∂G ∩U (x; 3r))

� Am(m+ 2)m
(
1
2
+ V G

)
3m−1Hm(U (x; r))C−122m−n

by [20], Corollary 2.17 and

∫

U (x;r)∩G

dist(y, ∂G)β−1 dHm(y) �
∞∑

n=1

2−n(β−1)rβ−1H (En \ En+1)

�
∞∑

n=1

2−nβ+2mAm(m+ 2)m
(
1
2
+ V G

)
3m−1C−1Hm(U (x; r))r

β−1 .

Relation (21) holds with

K = Am(m+ 2)m
(
1
2
+ V G

)
33mC−1

∞∑

n=1

(2β)−n.

If r ∈ (0, R/3) then

KHm(U (x; r))rβ−1 �
∫

G∩U (x;r)\Γα(x)

[dist(y, ∂G)]β−1 dHm(y)

� (1 + α)1−β
∫

G∩U (x;r)\Γα(x)

|x− y|β−1 dHm(y)

� (1 + α)1−βrβ−1Hm(G ∩U (x; r) \ Γα(x)).

If α >
(

K
dG(x)

) 1
1−β then

Hm(G ∩U (x; r) \ Γα(x))
Hm(U (x; r))

� K

(1 + α)1−β
< dG(x)

and x ∈ cl Γα. Moreover,
lim
γ→∞

dG\Γγ
(x) = 0.

The rest is a consequence of this fact, the boundedness of WGf + U (fλ) and
Lemma 2. �
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Lemma 4. Let f be an Ĥ -measurable bounded function on ∂G. Then there is
M ⊂ ∂G with Ĥ (M) = 0 such that if x ∈ ∂G \M and there is α > 0 such that
x ∈ cl(Γα(x)) then V f(x) is the nontangential limit of WGf +U (fλ) at x.

�����. We use Lemma 2 and the fact that the relation (20) holds at Ĥ -a.a.
points of ∂G. This fact is a moderate modification of results of A. S. Besicovitch
and A. P. Morse and is in fact proved in the proof of Theorem 1.3.8 in [43]. �

������ 2. Denote

vGr (x) =
∫

∂G∩U (x;r)

|nG(y) · ∇hx(y)| dHm−1(y)

for x ∈ �
m , r > 0. Suppose that

lim
r→0+

sup
x∈∂G

vGr (x) <
1
2
.

(This condition is stronger then the condition ress(ŴG − 1
2I) < 1/2.) Denote ∂̂G =

{y ∈ ∂G ; nG(y) �= 0}. Then Hm−1(∂G \ ∂̂G) = 0 (see [20], Isoperimetric Lemma
on page 50). According to [21], Lemma 3.10 and [28], Theorem 5.6 (compare [21],
Theorem 3.13) there exists a positive constant c such that the following holds: For
each y ∈ ∂̂G there is a positive number δ, a neighbourhood U of y in {x ∈ �

m ;
(x − y) · nG(y) = 0} and a Lipschitz function f on U with the Lipschitz constant c
such that ∂G∩ clU (y; δ) = {u+ f(u)nG(y) ; u ∈ U}. The suppositions of Lemma 3
are satisfied for each x ∈ ∂̂G with C which depends only on the set G. If g is an
Ĥ -measurable bounded function on ∂G then V g(x) is the nontangential limit of
WGg +U (gλ) at x for Ĥ a.a. points x ∈ ∂G.

	
����� 2. The following example shows that the condition

lim
r→0+

1

Ĥ (U (x; r))

∫

U (x;r)∩∂G

f(y) dĤ (y) = f(x)

is not sufficient for the existence of the nontangential limit of WGf(y) +U (fλ)(y)
at x. Put G = {[z1, z2, z3] ; max |zj | � 1}, x = [0, 0, 1], f(z1, z2, z3) = z1/|z1| for
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z1 �= 0, z3 = 1, f(z1, z2, z3) = 0 elsewhere. Fix a ∈ (0, 1). Then

lim
t→0+

[
WGf

(
[ta, 0, 1− t(1− a)]

)
+U (fλ)([ta, 0, 1− t(1− a)])

]

= U (fλ)(x) + lim
t→0+

1
A

∫ 1

−1

{∫ 0

−1

t(1− a)
[
(z1 − ta)2 + z22 + t2(1 − a)2

]3/2 dz1

−
∫ 1

0

t(1− a)
[
(z1 − ta)2 + z22 + t2(1 − a)2

]3/2 dz1
}
dz2

= U (fλ)(x) + lim
t→0+

1
A

∫ 1
t(1−a)

−1
t(1−a)

{∫ −a
1−a

−1−ta
t(1−a)

1
[
z21 + z

2
2 + 1

]3/2 dz1

−
∫ 1−ta

t(1−a)

−a
1−a

1
[
z21 + z

2
2 + 1

]3/2 dz1
}
dz2

= U (fλ)(x) + lim
t→0+

1
A

∫ 1
t(1−a)

−1
t(1−a)

{∫ 1+ta
t(1−a)

1−ta
t(1−a)

1
[
z21 + z

2
2 + 1

]3/2 dz1

−
∫ a

1−a

−a
1−a

1
[
z21 + z

2
2 + 1

]3/2 dz1
}
dz2

= U (fλ)(x) − 2
A

∫ ∞

−∞

∫ a
1−a

0

1
[
z21 + z

2
2 + 1

]3/2 dz1 dz2.

Since

lim
t→0+

[
WGf

(
[0, 0, 1− t]

)
+U (fλ)([0, 0, 1− t])

]
= U (fλ)(x),

the nontangential limit of WGf +U (fλ) in x does not exist.

	
����� 3. The following example shows that the condition

lim
r→0+

1

Ĥ (U (x; r))

∫

U (x;r)∩∂G

|f(y)− f(x)| dĤ (y) = 0

is not sufficient for the existence of the limit of WGf(y) + U (fλ)(y) over G at x.
Put G = {[z1, z2, z3] ; max |zj | � 1}, λ ≡ 0, x = [0, 0, 1], f(z1, z2, z3) = 1 for z3 = 1,
2−n − 2−2n < z21 + z

2
2 < 2

−n and an integer n, f(z1, z2, z3) = 0 elsewhere. Lemma 2
yields that the nontangential limit of WGf at x is equal to 0 and the nontangential
limit of WGf at [2−n − 2−3n, 0, 1] is equal to 1/2. Thus there are yn ∈ G such that
yn tend to x and limWGf(yn) = 1/2. Therefore the limit of WGf over G in x does
not exist.
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Lemma 5. Denote by VC the operator V considered as an operator on C (∂G)
and by VB the operator V mentioned as an operator on B(∂G). Then

ress

(
ŴG − 1

2
I

)
= ress

(
VC − 1

2
I

)
= ress

(
VB − 1

2
I

)
= ress

(
Ṽ − 1

2
I

)
.

�����. Since VC − ŴG is a compact operator (see [32], Proposition 9),
ress(ŴG − 1

2I) = ress(VC − 1
2I). Since ress(VB − 1

2I) = ress(V ′C − 1
2I) by [25],

Lemma 1.5, we have ress(VB − 1
2I) = ress(VC − 1

2I) by [40], Chapter IX, Theo-
rem 2.1, Theorem 1.3 and Chapter VII, Theorem 3.5. Define an operator j from
C (∂G) to L∞(Ĥ ) by j(g) = g̃. Since Ĥ (U (x; δ) ∩ ∂G) > 0 for each x ∈ ∂G, δ > 0
by Isoperimetric Lemma (see [20], p. 50) we have ‖j(g)‖ = ‖g‖ for each g ∈ C (∂G).
Thus

ress

(
VC − 1

2
I

)
= ress

([
Ṽ − 1

2
I

]
/j (C (∂G))

)
� ress

(
Ṽ − 1

2
I

)

by [19], Lemma 15. If α ∈ � , |α − 1/2| > ress(VB − 1
2I) then VB − αI is a Fredholm

operator by [17], Satz 51.8 and thus (VB − αI)(B(∂G)) has a finite codimension in
B(∂G). Since L∞(Ĥ ) = {f̃ ; f ∈ B(∂G)}, the subspace (Ṽ − αI)(L∞(Ĥ )) has
a finite codimension in L∞(Ĥ ). Since Ṽ − αI is semi-Fredholm it is a Fredholm
operator because the index is constant on each component of the semi-Fredholmness
(see [12], Theorem 2.2, Theorem 8.1). Thus ress(Ṽ − 1

2I) � ress(VB − 1
2I) by [17],

Satz 51.8. �

Lemma 6. Suppose that ress(ŴG − 1
2I) <

1
2 . Fix α such that

α >
1
2

(
1 + sup

x∈∂G
U λ(x)

)
.

Then there are constants dα ∈ 〈1,∞), qα ∈ (0, 1) such that for each g ∈ B(∂G) and
each positive integer number n

(22)

∥∥∥∥
(
V − αI

α

)n
g

∥∥∥∥
B(∂G)

� dαq
n
α‖g‖B(∂G).

If g ∈ B(∂G) then there is a unique f ∈ B(∂G) such that V f = g and this f is
given by the series

(23) f =
∞∑

n=0

(
−V − αI

α

)n
g

α
.

If the set �m \G is unbounded and connected and c = 0 then there are constants
d ∈ 〈1,∞), q ∈ (0, 1) such that for each g ∈ B(∂G) and each positive integer number
n,

(24)
∥∥(
I − 2V

)n
(2I − 2V )g

∥∥
B(∂G)

� dqn‖g‖B(∂G).
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If g ∈ B(∂G) then there is a unique f ∈ B(∂G) such that V f = g and this f is
given by the series

(25) f = g +
∞∑

j=0

(I − 2V )j(2I − 2V )g.

�����. Denote by VC the operator V considered as an operator on C (∂G)
and by VB the operator V considered as an operator on B(∂G). Lemma 5 and
[27], Theorem 2 yield that the spectral radius of the operator V ′C − αI is smaller
than |α| and thus the spectral radius of the operator V ′′C − αI is smaller than |α| by
[42], Chapter VII, § 1, Theorem 2’. Since VB is the restriction of the operator V ′′C

onto B the operator VB − βI is injective for each β ∈ � such that |β − α| � |α|.
Since VB − βI is a Fredholm operator with index 0 by Lemma 5, [17], Satz 51.8,
Satz 51.1, the spectral radius of the operator VB −αI is smaller than |α|. Therefore
there are constants dα ∈ 〈1,∞), qα ∈ (0, 1) such that the relation (22) holds for each
g ∈ B(∂G) and an integer number n. Since V is invertible in B there is a unique
f ∈ B(∂G) such that V f = g for each g ∈ B(∂G). Easy calculation yields that f
given by the series (23) fulfils V f = g.

Suppose now that �m\G is unbounded and connected. We can suppose that λ ≡ 0.
Then the operator V ′C −βI is invertible for each β ∈ � such that |β−1/2| � 1/2, β �=
0, β �= 1 by Lemma 5, [42], Chapter VII, § 1, Theorem 2’, [17], Satz 51.8, Satz 51.1,
[26], Proposition 1, and the operator V ′′C − βI is invertible by [42], Chapter VIII,
§ 6, Theorem 1. Since VB is the restriction of the operator V ′′C onto B the operator
VB−βI is injective. Since VB−βI is a Fredholm operator with index 0 by Lemma 5,
[17], Satz 51.8, Satz 51.1, the operator VB − βI is invertible. The operator VC is
invertible by [17], Satz 51.8, Satz 51.1, [26], Theorem 2 and the operator VC ′′ is
invertible by [42], Chapter VIII, § 6, Theorem 1. Since VB is the restriction of the
operator V ′′C onto B the operator VB is injective. Since VB is a Fredholm operator
with index 0 by Lemma 5, [17], Satz 51.8, Satz 51.1, the operator VB is invertible.
Since Ker(V ′C − I)2 = Ker(V ′C − I) by [26], Proposition 2, we have Ker(VC − I)2 =
Ker(VC − I) by [17], Satz 51.8, Satz 51.1. Since Ker(V ′′C − I) = Ker(VC − I),
Ker(V ′′C − I)2 = Ker(VC − I)2 by [40], Chapter VII, Theorem 3.1, Theorem 3.2
and VB is the restriction of the operator V ′′C onto B we have Ker(VB − I)2 =
Ker(V ′′C − I)2 = Ker(V ′′C − I) = Ker(VB − I). The space B(∂G) is the direct sum of
Ker(VB− I) and (VB− I)(B(∂G)) by [17], Satz 50.2. Denote by V̆ the restriction of
VB onto (VB−I)(B(∂G)). Since V̆ −βI is invertible for each β ∈ � , |β−1/2| � 1/2,
the spectral radius of V̆ − 1

2I is smaller than
1
2 and there are constants d ∈ 〈1,∞),

q ∈ (0, 1) such that the relation (24) holds. Easy calculation yields that f given by
the series (25) fulfils V f = g. �
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Theorem 3. Suppose that ress(ŴG − 1
2I) <

1
2 . Fix α such that

α >
1
2

(
1 + sup

x∈∂G
U λ(x)

)
.

Let g be a bounded H -measurable function. Then

HG
g =W

Gf̃ +U (f̃λ),

where

(26) f̃ =
∞∑

n=0

(
− Ṽ − αI

α

)n
g̃

α
.

There is M ⊂ ∂G with H (M) = 0 (depending on g) such that if x ∈ ∂G \M and
there is β > 0 such that x ∈ cl(Γβ(x)) then g(x) is the nontangential limit of HG

g at
x. Further,

sup
y∈∂G

HG
g (y) � ‖g‖L∞(H ).

If g ∈ B(∂G) then
HG
g =W

Gf +U (fλ),

where

(27) f =
∞∑

n=0

(
−V − αI

α

)n
g

α
.

If the set �m \G is unbounded and connected and c = 0 then

(28) f = g +
∞∑

j=0

(2I − V )j(2I − 2V )g.

�����. Let g ∈ B(∂G). Then f given by the series (27) is a solution of the
equation V f = g by Lemma 6. If the set �m \G is unbounded and connected then
the relation (28) holds by Lemma 6. Let us denote by S the set of g ∈ B(∂G) for
which HG

g =W
Gf +U (fλ). Theorem 2 yields that C (∂G) ⊂ S .

Let f, g ∈ B(∂G), V f = g, let {gn} be a uniformly bounded sequence of elements
of S , lim gn = g pointwise on ∂G. Let {fn} be a sequence of elements of B(∂G)
such that V fn = gn, HG

gn
=WGfn +U (fnλ). Fix z ∈ G and observe that

lim
n→∞

HG
gn
(z) = lim

n→∞

∫
gn dµGz = H

G
g (z)
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by the Lebesgue dominated convergence theorem. Put

νz = nG(y) · ∇hz(y)H + hzλ.

Denote by VC the operator V considered as an operator on C (∂G) and by VB the
operator V considered as an operator on B(∂G). There is µ ∈ C ′(∂G) such that
V ′Cµ = νz by [27], Theorem 1. Since V ′C is the restriction of V

′
B onto C ′(∂G) (see

[35], Proposition 8) the Lebesgue dominated convergence theorem yields that

HG
g (z) = lim

n→∞
[WGfn(z) +U (fnλ)(z)] = lim

n→∞

∫
fn dνz = lim

n→∞

∫
fn dV ′Bµ

= lim
n→∞

∫
gn dµ =

∫
g dµ =

∫
V f dµ =

∫
f dV ′Bµ =

∫
f dνz

=WGf(z) +U (fλ)(z).

Therefore S = B(∂G).
Let now g be a bounded H -measurable function. Then there is h ∈ B(∂G) such

that h = g at H -a.a. points of ∂G. Since µGx is absolutely continuous with respect
to H for each x ∈ G by Theorem 2, we have HG

g = HG
h and relation (26) holds.

Lemma 4 yields that there is M ⊂ ∂G with H (M) = 0 such that if x ∈ ∂G \M
and there is β > 0 such that x ∈ cl(Γβ(x)) then g(x) is the nontangential limit of
HG
g = WGf +U (fλ) at x. Fix y ∈ G, put ϕ identically equal to ‖g‖L∞(H ). Using
the maximum principle for HG

ϕ and the fact that µ
G
y is absolutely continuous with

respect to H , we conclude

|HG
g (y)| =

∣∣∣∣
∫
g dµGy

∣∣∣∣ �
∫
ϕdµGy = H

G
ϕ (y) � ‖g‖L∞(H ).

�

Lemma 7. Let x ∈ ∂G, R > 0, let ψ : U (x; 2R) → �
m be a diffeomorphism of

class C1+α, where α > 0 and Dψ(x) = I, where Dψ(x) is the total differential of ψ
at the point x. Denote H = ψ (G ∩U (x;R)), u = ψ(x). Suppose that if f ∈ B(∂G)
and

(29) lim
δ→0+

1

Ĥ
(
U (x; δ)

)
∫

∂G∩U (x;δ)

|f(y)− f(x)| dĤ (y) = 0

then

(30) lim
δ→0+

1

Ĥ
(
U (x; δ)

)
∫

∂G∩U (x;δ)

|ŴGf(y)− ŴGf(x)| dĤ (y) = 0.
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Denote by H̃ the restriction of the (m − 1)-dimensional Hausdorff measure onto
∂eH . If f ∈ B(∂H) and

(31) lim
δ→0+

1

H̃
(
U (u; δ)

)
∫

∂H∩U (u;δ)

|f(y)− f(u)| dH̃ (y) = 0

then

(32) lim
δ→0+

1

H̃
(
U (u; δ)

)
∫

∂H∩U (u;δ)

|ŴHf(y)− ŴHf(u)| dH̃ (y) = 0.

�����. Let f ∈ B(H) and let the relation (31) hold. Fix ε > 0. Then there is
r > 0 such that for each y ∈ ∂H ∩U (u; r) we have

∣∣∣∣∣

∫

U (u;r)∩∂H

[f(z)− f(u)]∇hψ(y)(z) · nH(z) dH̃ (z)

−
∫

ψ−1(U (u;r))∩∂G

[f(ψ(z))− f(u)]∇hy(z) · nG(z) dĤ (z)
∣∣∣∣∣ <

ε

4

(see [25], Lemma 2.1). Put

f1(y) =

{
f(u) on ∂H ∩U (u; r),

f(y) on ∂H \U (u; r),

f2(y) =

{
f(y)− f(u) on ∂H ∩U (u; r),

0 on ∂H \U (u; r).

Since ψ(∂eG∩U (x;R)) = ∂eH ∩ψ(U (x;R)) and Dψ(x) = I, for each δ > 0 there is
r1 > 0 such that if E is a Borel subset of U (x; r1) then (1− δ)Ĥ (E) � H̃ (ψ(E)) �
(1 + δ)Ĥ (E). Easy calculation yields that (31) implies

lim
δ→0+

1

Ĥ
(
U (x; δ)

)
∫

∂G∩U (x;δ)

|f2(ψ((y)) − f2(ψ((x))| dĤ (y) = 0.
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Since |WHf2(y)− ŴG(f2 ◦ψ)(ψ−1(y))| < ε/4 for y ∈ ∂H ∩U (u; r) we obtain using
the fact that Dψ(x) = I

lim
δ→0+

1

H̃
(
U (u; δ)

)
∫

∂H∩U (u;δ)

|WHf2(y)−WHf2(u)| dH̃ (y)

� lim
δ→0+

∫

U (u;δ)

|WHf2(y)−WHf2(u)− ŴGf2 ◦ ψ(ψ−1(y)) + ŴGf2 ◦ ψ(x)|
H̃

(
U (u; δ)

) dH̃ (y)

+ lim
δ→0+

1

H̃
(
U (u; δ)

)
∫

∂H∩U (u;δ)

|ŴG(f2 ◦ ψ)(ψ−1(y))− ŴG(f2 ◦ ψ)(x)| dH̃ (y)

� ε

2
+ 2 lim

δ→0+

1

Ĥ
(
U (x; δ)

)
∫

U (x;δ)

|ŴG(f2 ◦ ψ)(y)− ŴG(f2 ◦ ψ)(x)| dĤ (y) =
ε

2
.

Since f1 is continuous at u there is r1 > 0 such that |WHf1(y)−WHf1(u)| < ε/4
for y ∈ ∂H ∩U (u; r1). The relation (32) holds. �

Lemma 8. Suppose that ress(ŴG − 1
2I) <

1
2 , g, f ∈ B(∂G), V f = g, x ∈ ∂G.

Then g is continuous at x if and only if f is continuous at x. If g is continuous at x
then

lim
y∈G,y→x

HG
g (y) = g(y).

Suppose that ψ(∂G ∩ U (x;R)) is a subset of the union of finite number of hyper-
planes, where ψ : U (x;R) → �

m is a diffeomorphism of class C1+β (R, β > 0).
Then

(33) lim
δ→0+

1

H
(
U (x; δ)

)
∫

∂G∩U (x;δ)

|f(y)− f(x)| dH (y) = 0

if and only if

(34) lim
δ→0+

1

H
(
U (x; δ)

)
∫

∂G∩U (x;δ)

|g(y)− g(x)| dH (y) = 0.

If relation (34) holds then g(x) is the nontangential limit of HG
g at x and

(35) lim
δ→0+

1

Hm

(
U (x; δ) ∩G

)
∫

G∩U (x;δ)

|HG
g (y)− g(x)| dHm(y) = 0.
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�����. Suppose that f is continuous at x. Fix ε > 0. Then there is δ > 0 such
that |f(x)− f(y)| < ε/[6(‖V ‖+ 1)] for y ∈ ∂G, |y − x| < δ. Put

f1(y) = f(x) for y ∈ ∂G,

f2(y) =

{
f(y)− f(x) if y ∈ ∂G, |y − x| > δ,

0 if y ∈ ∂G, |y − x| � δ,

f3(y) =

{
0 if y ∈ ∂G, |y − x| > δ,

f(y)− f(x) if y ∈ ∂G, |y − x| � δ.

Since V f1, V f2 are continuous at x, there is r ∈ (0, δ) such that |V f1(y)−V f1(x)| <
ε/3, |V f2(y) − V f2(x)| < ε/3 for y ∈ ∂G, |x − y| < r. For such y we have
|V f(x)− V f(y)| � |V f1(x)−V f1(y)|+ |V f2(x)−V f2(y)|+ |V f3(x)|+ |V f3(y)| < ε.
Therefore g = V f is continuous at x.
Suppose now that g is continuous at x. Lemma 6 yields that

(36) f =
∞∑

n=0

(
−V − αI

α

)n
g

α

and

(37)

∥∥∥∥
(
V − αI

α

)n
g

∥∥∥∥
B(∂G)

� dαq
n
α‖g‖B(∂G),

where qα ∈ (0, 1). Fix ε > 0. Then there is n0 such that

(38)
∞∑

n=n0

∥∥∥∥
(
−V − αI

α

)n
g

α

∥∥∥∥
B(∂G)

< ε.

We have proved that
n0∑

n=0

(
−V − αI

α

)n
g

α

is continuous at x. Therefore f is continuous at x, too. Lemma 1 and Theorem 3
yield that

lim
y∈G,y→x

HG
g (y) = g(y).

(This assertation is known (see [18], Satz 3).)
Suppose that ψ(∂G ∩ U (x;R)) is a subset of the union of a finite number of

hyperplanes, where ψ : U (x;R)→ �
m is a diffeomorphism of class C1+β (R, β > 0).

Suppose that relation (33) holds. With respect to Lemma 7 and the fact that U (fλ)
is continuous, we can suppose that

∂G ∩U (x;R) ⊂
n⋃

j=1

Lj,
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where Lj are different hyperplanes intersecting x. Put

f0(y) =

{
f(x) for y ∈ ∂G ∩U (x;R),

f(y) for y ∈ ∂G \U (x;R),

fj(y) =

{
f(y)− f(x) for y ∈ Lj ∩ ∂G ∩U (x;R),

0 elsewhere.

Since f0 is a continuous fuction the function V f0 is continuous, too. If y ∈ Lj then
V fj(y) − V fj(x) = (1 − dG(y))(f(y) − f(x)) + U (fjλ)(y) − U (fjλ)(x) and thus
relation (33) yields

lim
δ→0+

1

H
(
U (x; δ)

)
∫

∂G∩U (x;δ)∩Lj

|V fj(y)− V fj(x)| dH (y) = 0,

because U (fjλ) is a continuous function. Let now i �= j. Let M be a component of
U (x;R) \ Lj, let H̃ be the restriction of Hm−1 onto ∂M . Put

hj(y) =





fj(y)− fj(x) if y ∈ ∂G ∩ ∂M, nG(y) = nM (y),

fj(x)− fj(y) if y ∈ ∂G ∩ ∂M, nG(y) = −nM (y),
0 elsewhere.

If y ∈M∩Li then V fj(y)−V fj(x) =WMhj(y)−WMhj(x)+U (fjλ)(y)−U (fjλ)(x).
Since U (fjλ), U (hjH̃ ) are continuous functions, Lemma 2 yields that

lim
y∈Li∩M,y→x

V fj(y) = V fj(x).

Therefore (34) holds.
Suppose now that (34) holds. Then f is given by the series (36) by Lemma 6 and

relation (37) holds, where qα ∈ (0, 1). Fix ε > 0. Then there is n0 such that relation
(38) holds. We have proved that

lim
δ→0+

1

H
(
U (x; δ)

)
∫

∂G∩U (x;δ)

∣∣∣∣
n0∑

n=0

(
−V − αI

α

)n g
α
(y)−

(
−V − αI

α

)n g
α
(x)

∣∣∣∣ dH (y) = 0.

For sufficiently small δ we have

1

H
(
U (x; δ)

)
∫

∂G∩U (x;δ)

|f(y)− f(x)| dH (y) < ε

and relation (33) holds. Therefore g(x) is the nontangential limit of HG
g at x by

Theorem 3 and Lemma 2. Relation (35) holds by Lemma 3. �
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