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Abstract. On a closed convex set Z in �N with sufficiently smooth (W2,∞) bound-
ary, the stop operator is locally Lipschitz continuous from W1,1([0, T ],�N ) × Z into
W1,1([0, T ],�N ). The smoothness of the boundary is essential: A counterexample shows
that C1-smoothness is not sufficient.
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1. Introduction and main result

Throughout the paper we will use the following notation: For 1 � p < ∞, an
interval [0, T ], and a set Z ⊂ �

N , the space W1,p([0, T ], Z) denotes the space of

absolutely continuous functions f : [0, T ]→ Z whose derivative is in Lp. We use the
norm

‖f‖p
W1,p =

∫ T

0
|f(t)|p dt+

∫ T

0
|f ′(t)|p dt.

If Ω ⊂ �
M is a domain, Wk,∞(Ω, Z) is the space of functions f : Ω → Z whose

partial derivatives up to order k − 1 are Lipschitz continuous. By B(x, r) we mean
the closed ball with center x and radius r.

Partially supported by Spezialforschungsbereich F 003 “Optimierung und Kontrolle” at
the Karl-Franzens-Universität Graz, and by National Science Foundation and Fonds zur
Förderung der Wissenschaftlichen Forschung within the US-Austrian Cooperative Science
Program, P10552-MAT
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Let Z ⊂ �
N be a closed convex set. Given x0 ∈ Z and a function u ∈

W1,1([0, T ],�N ), we seek a function x ∈W1,1([0, T ],�N ) such that
• x(0) = x0.
• x(t) ∈ Z for all t ∈ [0, T ].
• For almost all t, x′(t) is as close as possible to u′(t).

Then x is characterized by the variational inequality

(1.1)

x(0) = x0,

x(t) ∈ Z,

(∀y ∈ Z) 〈u′(t)− x′(t), y − x(t)〉 � 0.

We denote by ∂Z the boundary and by Z◦ the interior of Z. By NZ(x) we denote
the normal cone of Z at the point x. We can rewrite the variational inequality as

a differential inclusion

x(0) = x0,

x(t) ∈ Z,

u′(t)− x′(t) ∈ NZ(x(t)).

If Z is the closure of an open domain Z◦ with C1-boundary, so that for each point
x ∈ ∂Z the outward unit normal vector n(x) is defined and depends continuously on
x, then the differential inclusion is in fact a differential equation

(1.2) x′(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′(t) if x(t) ∈ Z◦,

u′(t) if x(t) ∈ ∂Z and 〈n(x(t)), u′(t)〉 < 0,

u′(t)− 〈n(x(t)), u′(t)〉 n(x(t))

if x(t) ∈ ∂Z and 〈n(x(t)), u′(t)〉 � 0.

Given any closed convex set Z, it is shown in [6], that for any x0 ∈ Z and any

u ∈W1,1([0, T ],�N ) there exists a unique function x ∈W1,1([0, T ], Z) solving (1.1).
(See also [7, Proposition 2.2], [8].) The operator

S :
{
W1,1([0, T ],�N )× Z →W1,1([0, T ], Z),

(u, x0) 
→ x

is called the stop operator with characteristic Z. This operator plays a fundamen-

tal role in the theory of elastoplastic materials (see, e.g., the monographs [3], [6],
[8], [11]).
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According to [7, Proposition 3.1 and Corollary 3.4], the stop operator maps

W1,p([0, T ],�N ) × Z continuously into W1,p([0, T ],�N ) for 1 � p < ∞. Moreover,
global Lipschitz continuity has been proved onW1,1 × Z intoW1,1, if Z ⊂ � is an
interval [10], and, more generally, if Z ⊂ �

N is a (bounded or unbounded) poly-

hedron [4]. If p > 1, the stop operator is not Lipschitz continuous from W1,p × Z

into W1,p [10]. The unit ball in �2 provides a counterexample to global Lipschitz

continuity in W1,1 for general convex sets, however, if Z is a ball in �N , the stop
operator satisfies a local Lipschitz condition

|x(t)− y(t)|+
∫ T

0
|x′(t)− y′(t)| dt

� M(u)

[
|x0 − y0|+

∫ T

0
|u′(t)− v′(t)| dt

]

if x = S(u, x0), y = S(v, y0), and M(u) is a Lipschitz constant depending on∫ T

0 |u′(t)| dt [2, Corollary A.4 and Example A.6].

It is announced without proof in [6, Chapter 4, Theorem 20.1] that a similar local

Lipschitz condition holds on domains with smooth boundaries. In this paper we give
a proof for the local Lipschitz continuity of the stop operator if the domain Z is

smooth enough so that there exists a unique outward unit normal vector n(x) to ∂Z

at every boundary point x ∈ ∂Z and n(x) depends Lipschitz continuously on x.

Hypothesis 1.1. Let Z ⊂ �
N be a closed convex set withW2,∞-boundary, i.e.,

for all z ∈ ∂Z there exists an orthonormal system (v1, . . . , vN ), some ε > 0 and

a map a ∈W2,∞([−ε, ε]N−1,�) such that a(0, . . . , 0) = 0 and for all ξj ∈ [−ε, ε] the
following holds:

z +
N−1∑

j=1

ξjvj + (a(ξ1, . . . , ξN−1) + ξN )vN ∈ Z iff ξN � 0.

By n(z) we will denote the outward unit normal vector at z:

n(z) =
1√

1 +
N−1∑
j=1

∂a
∂ξj
(0)2

(N−1∑

j=1

∂a

∂ξj
(0)vj − vN

)
.

With this assumption we prove the following theorem:
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Theorem 1.1. Let Z ⊂ �
N satisfy Hypothesis 1.1, and letK be a compact subset

of Z. Let R > 0 be fixed. Then there exists a constant L > 0 (depending on K and

R) such that the following local Lipschitz estimate holds:

If x0, y0 ∈ K and u, v ∈W1,1([0, T ],�N ) for some T > 0 with

(1.3)
∫ T

0
(|u′(t)|+ |v′(t)|) dt � R,

then x = S(u, x0) and y = S(v, y0) satisfy

(1.4)
∫ T

0
|x′(t)− y′(t)| dt � L

[
|x0 − y0|+

∫ T

0
|u′(t)− v′(t)| dt

]
.

We will give the proof in Section 2. The smoothness assumption on ∂Z is essential:
In Section 3 we present a cone in �3 as a counterexample to local Lipschitz continuity

of the stop operator in general convex sets. Moreover, in Example 3.2 we show that
Hölder continuous dependence of the normal vector n(x) on x is not sufficient to

imply that the stop operator is locally Lipschitz.

Acknowledgement. The author wishes to thank P. Krejč́ı and an anonymous
referee for valuable information, in particular for drawing his attention to the cru-
cial reference [6]. Moreover, Example 3.2 was motivated by the referee’s conjecture

that C1-smoothness of the domain is not sufficient to ensure Lipschitz continuity.
The author also thanks P. Krejč́ı for communicating his manuscript [9] containing

a thorough discussion of Lipschitz continuity of the stop operator.

2. Proof of the main result

For the proof of the main theorem, we will require some simple facts from differen-
tial geometry. Let V be a relatively compact subset of ∂Z. The tubular neighborhood

of radius δ > 0 around V is defined by

Tubδ V = {x+ λn(x) | λ ∈ (−δ, δ)}.

If ∂Z is a C2-manifold, the implicit function theorem can be used to show that for
sufficiently small δ > 0, the map

can

{
V × (−δ, δ) → Tubδ V

(x, λ) 
→ x+ λn(x)
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is a C1-diffeomorphism. (This is, e.g., a special case of the situation treated in [1,
Section 2.7].) Since we have required less smoothness than C2, the map can will in
general not be contained in C1, and the standard versions of the implicit function
theorem do not work. We will therefore relax the smoothness assumption a little

and give a different proof:

Lemma 2.1. Let Z be as in Hypothesis 1.1, and z ∈ ∂Z. For x ∈ �N we define

d(x) =

{
dist(x, ∂Z) if x ∈ Z,

− dist(x, ∂Z) if x �∈ Z.

For δ > 0 let Uδ be the tubular neighborhood of radius δ around ∂Z ∩B(z, δ). Then

δ > 0 may be chosen sufficiently small, such that the following assertions hold:

(i) can: [∂Z ∩ B(z, δ)] × (−δ, δ) → Uδ is a Lipschitz continuous homeomorphism

with a Lipschitz continuous inverse.

(ii) d is differentiable on Uδ, and its gradient ∇d(x) depends Lipschitz continuously
on x. Namely, if x = can(y, λ), then ∇d(x) = −n(y).

�����. Let z ∈ ∂Z. We utilize the chart generated by v1, . . . , vN , ε > 0, and

the function a as in Hypothesis 1.1. Without loss of generality (by rotation of the
coordinate system, if necessary) we may assume that n(z) = −vN . We define

T :

⎧
⎨
⎩

(−ε, ε)N−1 × (−ε, ε) → �
N ,

(ξ, λ) 
→ z +
N−1∑
j=1

ξjvj + (a(ξ) + λ)vN ,

and write the map can and the normal vector n in local coordinates:

ñ :

⎧
⎨
⎩

(−ε, ε)N−1 → �
N ,

ξ 
→ n

(
z +

N−1∑
j=1

ξjvj + a(ξ1, . . . , ξN−1)vN

)
,

c̃an:

⎧
⎨
⎩

(−ε, ε)N−1 × (−ε, ε) → �
N ,

(ξ, λ) 
→ z +
N−1∑
j=1

ξjvj + a(ξ)vN + λñ(ξ).

We have to prove that c̃an has a Lipschitz continuous inverse on a suitable suffi-

ciently small neighborhood of z. It is easy to prove that T−1 exists and is Lipschitz
continuous on a suitable neighborhood of z. Let M be a Lipschitz constant for T−1.

Notice that

(T − c̃an)(ξ, λ) = λ(vN − ñ(ξ)).

465



Therefore, if η ∈ (0, ε) is sufficiently small, (T − c̃an) is Lipschitz on (−η, η)N−1 ×
(−η, η) with a Lipschitz constant L < 1/(2M). From the contraction principle [5,
10.1.3] we infer that for y sufficiently close to z, there exists a unique solution to

(ξ, λ) = T−1[y + T (ξ, λ)− c̃an(ξ, λ)],

which is equivalent to

y = c̃an(ξ, λ).

The proof of the contraction principle shows that this solution depends Lipschitz
continuously on y. Therefore can possesses a Lipschitz continuous inverse on a suf-

ficiently small neighborhood of W of z.

Now choose a neighborhood V of z and δ > 0 sufficiently small, such that U =
Tubδ V ⊂ W and for any x ∈ U the closest point Π(x) to x on ∂Z is contained in

W . For x ∈ U , elementary geometry shows that

can−1(x) = (Π(x),−d(x)).

The proof above implies therefore that d is Lipschitz continuous. However, we can

improve the result and obtain continuous differentiability of d. Let x ∈ U and Δx

be sufficiently small. We define

ΔΠ = Π(x +Δx)−Π(x),
Δd = d(x +Δx)− d(x),

Δn = n(Π(x +Δx))− n(Π(x)).

Notice that by the Lipschitz continuity of n and can−1, all of the following terms,
ΔΠ, Δd, and Δn are of order O(Δx). Thus

Δx =
[
Π(x+Δx)− d(x +Δx)n(Π(x +Δx))

]
−
[
Π(x) − d(x)n(Π(x))

]

= Π(x) + ΔΠ− (d(x) + Δd)[n(Π(x)) + Δn]−Π(x) + d(x)n(Π(x))

= ΔΠ− d(x)Δn − (Δd)n(Π(x)) + o(Δx).

Since n is normalized, we infer that 〈n(Π(x)),Δn〉 = o(Δx), and since n is orthogonal
to ∂Z, we infer that 〈n(Π(x)),ΔΠ〉 = o(Δx). We obtain therefore

〈n(Π(x)),Δx〉 = −Δd+ o(Δx).

This says that ∇d(x) = −n(Π(x)). �
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The following lemma is the core of the proof of Theorem 1.1.

Lemma 2.2. Let Z be as in Hypothesis 1.1, and z ∈ Z. Then there exists

a neighborhood V of z, a constant R > 0 and a constant M > 0 such that the stop

operator satisfies the following local Lipschitz condition:

If T > 0, x0, y0 ∈ V , u, v ∈W1,1([0, T ],�N ) with

∫ T

0
(|u′(t)|+ |v′(t)|) dt � R,

and x = S(u, x0), y = S(v, y0), then

∫ T

0
|x′(t)− y′(t)| dt � M

[
|x0 − y0|+

∫ T

0
|u′(t)− v′(t)| dt

]
.

�����. If z ∈ Z◦, then choose a neighborhood V and a constant R > 0 such

that V + B(0, R) is entirely contained in Z◦. Since |x′(t)| � |u′(t)|, |y′(t)| � |v′(t)|
(e.g., [4, Proposition 1.2]), we infer that x(t) and y(t) remain in Z◦ for t � T , so
that x′ = u′ and y′ = v′. In this case, the assertion is trivial.

Assume now that z ∈ ∂Z. According to Lemma 2.1 we choose a neighborhood
U = Uδ of Z such that d is differentiable with Lipschitz continuous derivative on

U . For shorthand we denote n(x0) = −∇d(x0). This notation is consistent with the
fact that n(x0) is the outward unit normal vector to Z at x0, if x0 ∈ ∂Z. Let L be

a Lipschitz constant for n on U . Notice also that |n(x0)| � 1 for any x0 ∈ U , since
n is the negative gradient of a distance. Again we choose a constant R > 0 and

a neighborhood V of z such that V + B(0, R) ⊂ U , therefore x(t) and y(t) remain
in U for t � T .

We keep track of the functions |x′(t) − y′(t)|, |x(t) − y(t)| and β(t) = |d(x(t)) −
d(y(t))|. Let t be a Lebesgue point of all of the following functions, x′, y′, [d(x)]′,

[d(y)]′, and |x(t) − y(t)|′, and such that (1.2) holds. From [7, (2.6)] we infer easily
that

d
dt
|x(t) − y(t)| � |u′(t)− v′(t)|.

Thus

(2.1) |x(t)− y(t)| � |x0 − y0|+
∫ t

0
|u′(s)− v′(s)| ds.

To handle the other two functions, we will prove the inequality

(2.2)
|x′(t)− y′(t)|+ β′(t)

� 2|u′(t)− v′(t)|+ 2L(|u′(t)|+ |v′(t)|) |x(t) − y(t)|.
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Once this equation is proved, we may integrate and obtain

∫ T

0
|x′(t)− y′(t)| dt

� β(0)− β(T ) + 2
∫ T

0
|u′(t)− v′(t)| dt

+ 2L
∫ T

0
(|u′(t)|+ |v′(t)|)|x(t) − y(t)| dt

� |x0 − y0| − 0 + 2
∫ T

0
|u′(t)− v′(t)| dt

+ 2L

(
|x0 − y0|+

∫ T

0
|u′(s)− v′(s)| ds

)∫ T

0
|u′(t) + v′(t)| dt

� (2LR+ 1)|x0 − y0|+ (2LR+ 2)
∫ T

0
|u′(t)− v′(t)| dt.

Therefore, Lemma 2.2 is proved, if we can show (2.2). For this purpose we distinguish
the following cases:

Case 1 : x(t) ∈ Z◦, y(t) ∈ Z◦:
In this case, x′ = u′ and y′ = v′. For shorthand we will omit the argument (t) in

the following computations. Thus

d
dt

β �
∣∣∣ d
dt

d(x) − d
dt

d(y)
∣∣∣ = | − 〈n(x), u′〉+ 〈n(y), v′〉|

� |〈n(x), u′ − v′〉|+ |〈n(x) − n(y), v′〉| � |u′ − v′|+ L|x− y| |v′|.

Equation (2.2) follows easily.

Case 2 : x(t) ∈ ∂Z and y(t) ∈ ∂Z.

Since x is differentiable at the point t and x(t) ∈ ∂Z while x(s) ∈ Z for all s, the
derivative x′(t) is necessarily in the tangent space of Z at x(t). This is only possible

if u′(t) does not point strictly inward, i.e. 〈n(x), u′〉 � 0. The same argument holds
for y′. We have therefore

x′ = u′ − 〈n(x), u′〉n(x), y′ = v′ − 〈n(y), v′〉n(y).

We infer that

|x′ − y′| = |u′ − 〈n(x), u′〉n(x)− v′ + 〈n(y), v′〉n(y)|
� |u′ − v′ − 〈n(x), u′ − v′〉n(x)|+ |〈n(x) − n(y), v′〉n(x)|
+ |〈n(y), v′〉(n(x) − n(y))|

� |u′ − v′|+ 2L|x− y| |v′|.
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Since x′ and y′ are tangential to ∂Z, we infer that

d
dt

β �
∣∣∣ d
dt

d(x(t))
∣∣∣ +

∣∣∣ d

dt
d(y(t))

∣∣∣ = 0.

Summing up these estimates, we infer again (2.2).

Case 3 : x(t) ∈ ∂Z and y(t) ∈ Z◦, or vice versa.

Again 〈n(x), u′〉 � 0 and x′ is tangential to ∂Z. Then

|x′ − y′| = |u′ − 〈n(x), u′〉n(x) − v′| � |u′ − v′|+ 〈n(x), u′〉.

Notice that in this case d(x) = 0, d(y) > 0, and again d
dtd(x) = 0. Therefore

d
dt

β =
d

dt
(d(y) − d(x)) = 〈−n(y), v′〉 − 0

� |〈n(y)− n(x), v′〉|+ |〈n(x), v′ − u′〉| − 〈n(x), u′〉
� L|x− y| |v′|+ |u′ − v′| − 〈n(x), u′〉.

This implies again the estimate (2.2). �

����� �� ������� 1.1. For each z ∈ Z, choose a neighborhood V (z) and

constants M(z), R(z) according to Lemma 2.2. Let W (z) be a neighborhood of z

and let δ(z) be sufficiently small, such that W (z) + B(0, δ(z)) ⊂ V (z). We cover

K + B(0, R) by a finite union of neighborhoods W (zi) (i = 1, . . . , m). Put M =
max{M(zi) | i = 1, . . . , m}, S = min{R, R(z1), . . . , R(zm)} and δ = min{δ(zi) | i =

1, . . . , m}. We start proving Equation (1.4) with R replaced by S in (1.3), and with
the assumption that

(2.3) x0, y0 ∈ K +B(0, R) with |x0 − y0| < δ.

Choose i such that x0 ∈ W (zi) ⊂ V (zi). Assumption (2.3) implies y0 ∈ V (zi). There-

fore we may apply Lemma 2.2 on the set V (zi) and obtain exactly Equation (1.4)
with L =M .

Next we remove the condition (2.3). Let x0, y0 ∈ K+B(0, R) with |x0− y0| � kδ,
and let u, v ∈W1,1([0, T ],�N ) satisfy (1.3) with S instead of R. For j = 0, . . . , k we

define functions zj = S(uj , xj) with uj = u + j
k (v − u) and xj = x0 +

j
k (y0 − x0).

Notice that x = z0 and y = zk, and the initial data satisfy |xj−xj−1| � δ. Therefore
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(1.4) holds for each of the differences zj − zj−1 and we obtain

∫ T

0
|x′(t)− y′(t)| dt �

k∑

j=1

∫ T

0
|z′j−1(t)− z′j(t)| dt

� M

k∑

j=1

[
|xj−1 − xj |+

∫ T

0
|u′j−1(t)− u′j(t)| dt

]

=M

[
|x0 − y0|+

∫ T

0
|u′(t)− v′(t)| dt

]
.

Finally we ged rid of the assumption that R is replaced by S in (1.3). Assume
that R � kS with fixed k. Let x0, y0 ∈ K and let u, v ∈ W1,1([0, T ],�N ) satisfy

(1.3). Since |x′(t)| � |u′(t)|, we infer that x(t) ∈ K + B(0, R) for all t ∈ [0, T ]. The
same holds for y(t). Choose 0 = t0 < t1 < . . . < tk = T such that

∫ tk+1

tk

(|u′(t)|+ |v′(t)|) dt � S.

The estimate (1.4) holds on the intervals [tj−1, tj ]. Utilizing Equation (2.1), we

obtain

∫ tj

tj−1

|x′(t)− y′(t)| dt

� M

[
|x(tj−1)− y(tj−1)|+

∫ tj

tj−1

|u′(t)− v′(t)| dt
]

� M

[
|x0 − y0|+

∫ tj−1

0
|u′(t)− v′(t)| dt+

∫ tj

tj−1

|u′(t)− v′(t)| dt
]

� M

[
|x0 − y0|+

∫ T

0
|u′(t)− v′(t)| dt

]
.

Summing up all intervals we obtain

∫ T

0
|x′(t)− y′(t)| dt � kM

[
|x0 − y0|+

∫ T

0
|u′(t)− v′(t)| dt

]
.

Therefore (1.4) holds with L = kM . �
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3. Counterexamples

We show that the local Lipschitz condition proved in Theorem 1.1 for smooth

domains is not valid in general convex sets. Our first counterexample is a cone of
revolution in �3 . For preparation we show that a local Lipschitz condition in a cone

in fact implies a global condition.

Lemma 3.1. Let Z ⊂ �
N be a closed convex cone with vertex 0. Suppose that

there exist R > 0, M > 0 and T > 0 such that for all u, v ∈W1,1([0, T ],�N ) with

∫ T

0
(|u′(t)|+ |v′(t)|) dt � R,

the solutions x = S(u, 0) and y = S(v, 0) satisfy the estimate

∫ T

0
|x′(t)− y′(t)| dt � M

∫ T

0
|u′(t)− v′(t)| dt.

Then for all x0, y0 ∈ Z and all w ∈ W1,1
loc([0,∞),�N ) the solutions x = S(w, x0),

y = S(w, y0) satisfy

(3.1)
∫ ∞

0
|x′(t)− y′(t)| dt � M |x0 − y0|.

�����. Let w ∈ W1,1
loc([0,∞),�N ), let x0, y0 ∈ K and x = S(w, x0), y =

S(w, y0). For η > 0 define xη, yη, uη, vη by uη(0) = vη(0) = 0 and

xη(t) =

{
tx0 if t ∈ [0, η],
ηx( t

η − 1) if t � η,
yη(t) =

{
ty0 if t ∈ [0, η],
ηy( t

η − 1) if t � η,

u′η(t) =

{
x0 if t ∈ [0, η],
w′( t

η − 1) if t � η,
v′η(t) =

{
y0 if t ∈ [0, η],
w′( t

η − 1) if t � η.

For t � η we have x′η(t) = x0 = uη(t). For t � η we obtain

u′η(t)− x′η(t) = w′
( t

η
− 1

)
− x′

( t

η
− 1

)
∈ NZ

(
x
( t

η
− 1

))
= NZ(xη(t)).

Here we have used that Z is a cone. Thus xη = S(uη, 0). Similarly, yη = S(vη , 0).
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Now we fix some S > 0. Notice that for any η > 0,

∫ η(S+1)

0
(|u′η(t)|+ |v′η(t)|) dt

=
∫ η

0
(|x0|+ |y0|) dt+ 2

∫ η(S+1)

η

∣∣∣w′
( t

η
− 1

)∣∣∣dt

= η(|x0|+ |y0|) + 2η
∫ S

0
|w′(s)| ds.

Therefore we can pick η sufficiently small such that η(S + 1) � T and

∫ η(S+1)

0
(|u′(t)|+ |v′(t)|) dt < R.

Then by assumption we have

∫ S

0
|x′(s)− y′(s)| dt = 1

η

∫ η(S+1)

η

|x′η(t)− y′η(t)| dt

� M

η

∫ T

0
|u′η(t)− v′η(t)| dt =

M

η

∫ η

0
|x0 − y0| dt

=M |x0 − y0|.

As S →∞, we obtain (3.1). �

Now we give our counterexample.

	
���
� 3.1. Consider the cone

Z =

⎧
⎨
⎩

⎛
⎝

ξ1

ξ2
ξ3

⎞
⎠ ∈ �3 | ξ3 �

√
ξ21 + ξ22

⎫
⎬
⎭ .

Then for any R > 0, M > 0, and any T > 0, there are functions u, v ∈
W1,1([0, T ],�3) and x = S(u, 0), y = S(v, 0), with

∫ T

0
(|u′(t)|+ |v′(t)|) dt � R

and ∫ T

0
|x′(t)− y′(t)| dt > M

∫ T

0
|u′(t)− v′(t)| dt.
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�����. Assume the contrary. Then the assumptions for Lemma 3.1 are satisfied.

We construct w, x and y in order to arrive at a contradiction to (3.1). We put

x(t) =

⎛
⎝
(t+ 1)−1 cos(t)
(t+ 1)−1 sin(t)

(t+ 1)−1

⎞
⎠ , y(t) = 0,

w′(t) =

⎛
⎝
(1− (t+ 1)−2) cos(t)− (t+ 1)−1 sin(t)
(1− (t+ 1)−2) sin(t) + (t+ 1)−1 cos(t)

−1− (t+ 1)−2

⎞
⎠ , w(0) = 0.

Thus

x′(t) =

⎛
⎝
−(t+ 1)−2 cos(t)− (t+ 1)−1 sin(t)
−(t+ 1)−2 sin(t) + (t+ 1)−1 cos(t)

−(t+ 1)−2

⎞
⎠ .

The normal cone at zero is given by

NZ(0) =

⎧
⎨
⎩

⎛
⎝

ξ1
ξ2

ξ3

⎞
⎠ ∈ �3 | −ξ3 �

√
ξ21 + ξ22

⎫
⎬
⎭ .

A straightforward computation shows that w′(t) ∈ NZ(0) for all t, thus S(w, 0) =

0 = y. At the other points of ∂Z, the normal cone is given by

NZ

⎛
⎝
⎛
⎝

γ cos(t)
γ sin(t)

γ

⎞
⎠
⎞
⎠ =

⎧
⎨
⎩λ

⎛
⎝
cos t
sin t

−1

⎞
⎠ | λ � 0

⎫
⎬
⎭ .

Thus

w′(t)− x′(t) =

⎛
⎝
cos(t)
sin(t)

−1

⎞
⎠ ∈ NZ(x(t)).

Thus x = S(w, x(0)). From (3.1) one infers

∫ ∞

0
|x′(t)| dt =

∫ ∞

0
|x′(t)− y′(t)| dt � M |x(0)|.

However,

|x′(t)| =
√
2(t+ 1)−4 + (t+ 1)−2 � (t+ 1)−1,

so that x′ is not integrable on [0,∞). �
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������ 3.1. Although Example 3.1 shows an unbounded convex set, a careful

analysis of the proof shows that also a truncated cone provides a counterexample.

The following example shows that the stop operator is not necessarily locally

Lipschitz continuous if the characteristic is a domain of type C1, i.e., the normal
vector n(x) in each boundary point x ∈ ∂Z is unique and depends continuously

on x. In fact, the normal vector in the following counterexample depends Hölder
continuously on x.

	
���
� 3.2. Let

Z =
{( ξ1

ξ2

)
∈ �2 | ξ2 � β(|ξ1|)

}

with

β(ξ) =
∫ x

0
γ(τ) dτ, γ(τ) =

√
τ

τ + 2
.

Then for all R > 0 and M > 0 there exist x0, y0 ∈ Z, T > 0, u ∈W1,1([0.T ],�2),
x = S(x0, u), y = S(y0, u) with |x0| � R, |y0| � R,

(3.2)
∫ T

0
|u′(t)| dt � R and

∫ T

0
|x′(t)− y′(t)| dt � M |x0 − y0|.

�����. Notice that Hypothesis 1.1 holds everywhere except at the origin. To

exploit the singularity at the origin we will construct a forcing function u and solu-
tions

x(t) =

(
ξ(t)

β(|ξ(t)|)

)
∈ ∂Z, y(t) =

(
η(t)

β(η(t))

)
∈ ∂Z,

such that ξ � 0 and η � 0 oscillate in a neighborhood of the origin. More precisely,
we construct sequences 0 = t0 < t1 < t2 . . . and q0 > q1 > q2 > . . . > 0 with

ξ(ti) =

{
−qi for even i,

0 for odd i,
and η(ti) =

{
0 for even i,

qi for odd i,
(3.3)

qi � q0
1 + iq0

,(3.4)

∫ ti

ti−1

|u′(t)| dt � qi−1
√
2 � q0

√
2,(3.5)

∫ ti

ti−1

|x′(t)− y′(t)| dt �
√
2

3
√
3

q
3/2
i−1.(3.6)

We will show later that this construction ensures that the solutions satisfy (3.2).
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With

K =
2
√
2

3
√
3

⎛
⎝1− 1√

1 +R/
√
8

⎞
⎠

we choose q0 > 0 sufficiently small such that

q0 < min
({
1,

K2

4M2
,

R√
8

})
and

√
q20 + β(q0)2 < 2q0.

We put t0 = 0, x0 = (−q0, β(q0))T , y0 = (0, 0)T and proceed by induction. Suppose
sequences ti and qi and a forcing function u ∈W1,1([0, tn],�N ) have been established

such that the conditions (3.3), (3.4), (3.5) and (3.6) are satisfied up to tn. Without
loss of generality we assume that n is even. The other case is treated similarly with

the roles of x and y interchanged. We put tn+1 = tn + qn and continue the forcing
function u on the interval [tn, tn+1] by

u′(t) =

(
1

−γ(qn − tn + t)

)
.

Put ξ(t) = −qn + t − tn. Obviously x = (ξ(t), β(|ξ(t)|)T satisfies x′ = u′, so that

x = S(x0, u). In particular ξ(tn+1) = 0. We obtain y(t) by

y′(t) = α(t)

(
1

γ(η(t))

)

with

α(t) =
1− γ(|ξ(t)|)γ(η(t))
1 + γ2(η(t))

.

Consider the outward unit normal vector n(y(t)) to ∂Z given by

n(y(t)) =
1√

1 + γ2(η(t))

(
γ(η(t))
−1

)

and let

λ(t) =
γ(|ξ(t)|) + γ(η(t))√
1 + γ2(η(t))

� 0.

A straightforward computation shows that y′(t) + λ(t)n(y(t)) = u′(t) so that y =
S(y0, u).

Since 0 � α(t) � 1 we infer that η(t) � qn for t ∈ [tn, tn+1]. A more careful
estimate shows now that

α(t) � 1− γ2(qn)
1 + γ2(qn)

=
1− qn

qn+2

1 + qn

qn+2

=
1

qn + 1
.

475



We put qn+1 = η(tn) and obtain

qn+1 � (tn+1 − tn) min
t∈[tn,tn+1]

(α(t)) � qn

qn + 1
� q0
1 + (n+ 1)q0

.

Using the inequalities q0 � 1 and γ(τ) � 1 we obtain

∫ tn+1

tn

|u′(t)| dt =
∫ tn+1

tn

√
1 + γ2(|ξ(t)|) dt � qn

√
2 � q0

√
2,

and
∫ tn+1

tn

|x′(t)− y′(t)| dt =
∫ tn+1

tn

λ(t) dt �
∫ tn+1

tn

γ(|ξ(t)|)√
2
dt

=
1√
2

∫ tn+1

tn

√
tn+1 − t

tn+1 − t+ 2
=
1√
2

∫ qn

0

√
s

s+ 2
ds

� 1√
6

∫ qn

0

√
sds =

√
2

3
√
3

q3/2n .

At this point the inductive construction is complete.

We choose now an integer n such that nq0
√
2 � R < (n+1)q0

√
2. Since q0 � R/

√
8

this implies R/
√
8 � nq0 � R/

√
2. From (3.5) we infer immediately

∫ tn

0
|u′(t)| dt � R.

From (3.4) and (3.6) we infer now

∫ tn

0
|x′(t)− y′(t)| dt �

√
2

3
√
3

n−1∑

i=0

( q0
1 + iq0

)3/2

�
√
2

3
√
3

∫ n

0

( q0
1 + sq0

)3/2
ds = q

1/2
0
2
√
2

3
√
3

(
1− (1 + nq0)−1/2

)

= q
1/2
0
2
√
2

3
√
3

⎛
⎝1− 1√

1 +R/
√
8

⎞
⎠ = Kq

1/2
0

� 2Mq0 � M |x0 − y0|.

�

������ 3.2. Again the domain in Example 3.2 can be modified to be bounded.
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