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USING SUCCESSIVE APPROXIMATIONS FOR IMPROVING

THE CONVERGENCE OF GMRES METHOD

Jan Zítko, Praha

(Received February 16, 1996)

Abstract. In this paper, our attention is concentrated on the GMRES method for the
solution of the system (I − T )x = b of linear algebraic equations with a nonsymmetric
matrix. We perform m pre-iterations yl+1 = Tyl + b before starting GMRES and put ym

for the initial approximation in GMRES. We derive an upper estimate for the norm of the
error vector in dependence on the mth powers of eigenvalues of the matrix T . Further we
study under what eigenvalues lay-out this upper estimate is the best one. The estimate
shows and numerical experiments verify that it is advisable to perform pre-iterations before
starting GMRES as they require fewer arithmetic operations than GMRES. Towards the
end of the paper we present a numerical experiment for a system obtained by the finite
difference approximation of convection-diffusion equations.

Keywords: GMRES, iterative method, numerical experiments, solution of discretized
equations

MSC 2000 : 65F10, 65N22

1. Introduction

One of the basic problems of numerical computing is the ability to solve linear
systems Ax = f arising from finite difference or finite element approximations of
partial differential equations or as intermediate steps in computing the solution of
nonlinear problems. The matrices of such systems are usually large and sparse.
The iterative or semi-iterative methods generate a sequence of approximate so-

lutions {xk} and the evaluationof an iterative method invariably focuses on how
quickly the iterates xk converge. A difficulty associated with SOR, ADI and other

This paper was supported by the Grant Agency of the Czech republic under Grant No
201/96/0918.
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accelerated iterative methods or Chebyshev semiiterative methods is that they de-
pend upon parameters that are sometimes hard to choose properly. How to avoid this
difficulty? In 1952, Hestenes and Stiefel introduced the conjugate gradient method
which is an algorithm for solving symmetric positive definite linear systems. The
CG-type methods need no accelerated parameters and have been developed later by
many authors.

For nonsymmetric systems a lot of methods were proposed which are based upon a
projection onto a Krylov subspace. In 1986, Saad and Schultz ([S-S 86]) introduced
an iterative method, theoretically equivalent to GCR (see [E 82]), which has the
property of minimizing at every step the norm of the residual over a Krylov subspace.
The GMRES method has become very popular for the solution of nonsingular and
nonsymmetric linear systems.

Another way to accelerate the convergence of basic linear iterative methods has
been the use of extrapolation procedures. However, it was shown in the paper [Si-88]
that the extrapolation methods MPE, RRE and the topological epsilon algorithm
when applied to linearly generated vector sequences are Krylov subspace methods.

On the basis of the paper [Zi 83], where an improvement of the convergence of
iterative processes is described, the GMRES method is introduced here for theoreti-
cal investigations as an extrapolation procedure for accelerating the convergence of
successive approximations xk+1 = Txk+b for solving the linear system (I−T )x = b.
Let x� denote the solution of this system. By practical use of GMRES the stor-
age requirements per iteration grow linearly and a number of multiplications grows
quadratically. Therefore restarts are necessary. But successive approximations need
only one iteration vector and every iteration needs the same number of operations.
Therefore, a question occurs, what happens if we first proceed m successive approx-
imations and then take the resulting iteration xm as a starting vector for GMRES.
Will the convergence behaviour of such a modified GMRES be better? Numeri-
cal tests confirm this hypothesis. The theory presented in this paper explains this
observation.

In Sections 2 and 3 we present some auxiliary considerations which enable us for
a given k to calculate xk − x∗ in the case that the matrix T possesses a general Jor-
dan canonical form. In Section 4 we show that ‖xk − x∗‖ � L(m)mδ|λµ|m(uk(m) +
wk(m)), where L(m) ∈

〈
1, ‖I − T ‖‖(I − T )−1‖

〉
, δ is an integer, λµ is an eigen-

value, {uk(m)}∞m=0 and {wk(m)}∞m=0 are sequences of nonnegative numbers such
that lim supm→∞ uk(m) < ∞ and lim

k→∞
wk(m) = 0. We obtain the index µ = µ(k)

easily from the Jordan canonical form of the matrix T . Complete formulas and es-
timates are given in precisely formulated propositions. This estimate inspired us to
use successive approximations before starting GMRES. Numerical examples show
that this approach could be very advantageous because one successive approxima-
tion costs less work. In Section 5 we study under what eigenvalues lay-out the upper
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estimate for ‖xk − x∗‖ is the best one. The numerical examples are focused on the
systems which we obtain by finite difference approximation of convection-diffusion
equations. We have tested our generalization of GMRES, i.e. the use of the so called
“pre-iteration” on systems with ten and twenty thousand unknowns and we have
found it very effective especially when SOR pre-iterations were used. Numerical
examples and graphs conclude the paper.

2. Auxiliary considerations

Let us consider the system

(2.1) (I − T )x = b,

where T ∈ L(�n ), 1 �∈ σ(T ), x, b ∈ �
n . Here σ(T ) denotes the spectrum of the

matrix T . Recall that the symbol e(s)i denotes the ith column of the identity matrix

Is ∈ L(�s) and e(s) =
s∑

i=1
e
(s)
i . If ui ∈ �

n or ui ∈ �
n , i = 1, . . . , r, then the sym-

bol (u1, u2, . . . , ur) denotes a rectangular n × r matrix with columns u1, u2, . . . , ur.
The symbol (U1, U2, . . . , Ur), where Ui ∈ L(�ki ,�n ) or Ui ∈ L(� ki , � n ), denotes,
analogously, a rectangular matrix with block columns U1, U2, . . . , Ur. The symbol Js

denotes the square matrix (Θ, e(s)1 , e
(s)
2 , . . . , e

(s)
s−1).

Let x0 ∈ �
n , r0 = b− (I − T )x0 �= 0. Let k � n be an integer and

(2.2) Kk(r0, I − T ) = span{r0, (I − T )r0, . . . , (I − T )k−1r0}

the Krylov subspace generated by the matrix of the system (2.1) and the residual
r0. It is well known that the GMRES-algorithm computes for any starting vector
x0 ∈ �

n the kth approximation xk to the solution x∗ of the equation (2.1) in the
form xk = x0 + uk, where uk ∈ Kk(r0, I − T ) with the minimization property

(2.3) ‖r0 − (I − T )uk‖ = min
u∈Kk(r0,I−T )

‖r0 − (I − T )u‖.

The symbol ‖x‖ denotes the l2−norm of the vector x. In practice the minimum in
(2.3) is usually being looked for so that in the space Kk(r0, I − T ) an orthonormal
base is constructed according to the Arnoldi process. For the sake of clarity let us
present here the whole GMRES algorithm. The following algorithm combines the
procedures given in [V-V 93] and in [S-S 86].

Algorithm 2.1.

1) Choose x0 ∈ �
n and put r0 = b− (I − T )x0 and v1 = r0/‖r0‖.
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2) For j = 1, 2 . . . , k do
v̂j+1 = (I − T )vj ; vj+1 = v̂j+1;

For i = 1, 2 . . . , j do
hij = vT

i v̂j+1;
vj+1 = vj+1 − hijvi

End for i.
Put hj+1,j = ‖vj+1‖; vj+1 = vj+1/hj+1,j

End for j.
3) Calculate xk = x0 + uk on the condition (2.3).
End of Algorithm 2.1.

It is easy to show that if for k < n the equality dimKk+1(r0, I − T ) = k + 1
holds then it is possible to construct nonzero and mutually orthonormal vectors
v1, v2, . . . , vk+1.

Assumption 1. Let for k < n dimKk+1(r0, I − T ) = k + 1.

If it would be

dimKk̂(r0, I − T ) = k̂ and dimKk̂+1(r0, I − T ) = k̂

for some k̂ < n then x∗ = xk̂. We define a matrix Hk = (hij)i,j=1,...,k with hij = 0
for i � j + 2. Let

(2.4) Ĥk =

(
Hk

ĥ

)
, where ĥ = (0, 0, . . . , 0, hk+1,k).

The matrix Ĥk is a rectangular (k + 1)× k matrix.
Algorithm 2.1 immediately reveals that

(2.5) (I − T )Vk = Vk+1Ĥk,

where

(2.6) Vk = (v1, . . . , vk) and Vk+1 = (v1, . . . , vk+1).

If we multiply (2.5) from the left by the matrix V T
k , we obtain

(2.7) V T
k (I − T )Vk = Hk.

Let us now put u = Vkz in (2.3). The problem of finding uk is usually formulated so
that we look for a vector zk ∈ �

k in such a way that

(2.8) ‖r0 − (I − T )Vkzk‖ = min
z∈�k

‖r0 − (I − T )Vkz‖.
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The expression on the right hand side is modified using (2.5). Let us denote β = ‖r0‖.
Then

‖r0 − (I − T )Vkz‖ = ‖βv1 − Vk+1Ĥkz‖ = ‖βVk+1e
(k+1)
1 − Vk+1Ĥkz‖

= ‖Vk+1(βe
(k+1)
1 − Ĥkz)‖ = ‖βe(k+1)1 − Ĥkz‖.

In practice the minimalization of the functional ‖βe(k+1)1 − Ĥkz‖ is done by using
the QR-decomposition, and it is described in [S-S 86] in great detail. Computer
programs are prepared according to the just presented procedure.
Now we will start by studying the behaviour of ‖xk − x∗‖, analogously as in the

papers [Zi 83], [Zi 84] and [Si 88]. First, we will generalize the GMRES method in
the sense of the following algorithm.

Algorithm 2.2.

1) Choose y0 ∈ �
n and an integer m � 0.

2) Calculate the m-th iteration ym by the following iterative process:

(2.9) yl+1 = Tyl + b , l = 0, 1, 2, . . . ,m.

3) Put x0 = ym and carry out k steps of the GMRES (i.e. calculate xk according
to Algorithm 2.1).
End of Algorithm 2.2.

Throughout the paper we assume exact arithmetic. It is easy to see that

(2.10) Kk(r0, I − T ) = Kk(r0, T ) = span{r0, T r0, T 2r0, . . . , T k−1r0}.

(See [F-F] or [Zi 96].)

On the basis of (2.10) the approximation xk can theoretically be expressed in the
form

(2.11) xk = x0 + ν0r0 + ν1Tr0 + ν2T
2r0 + . . .+ νk−1T

k−1r0,

while in the sense of Algorithm 2.1, the numbers νi, i = 0, . . . k − 1, are constructed
so that

‖rk‖ = min
(µ0,µ1,...,µk−1)T∈�k

= ‖r0 − (I − T )(µ0r0 + µ1Tr0 + . . .+ µk−1T
k−1r0)‖.

Let us define numbers α(k)0 , α
(k)
1 , . . . , α

(k)
k as the solution of the following nonsingular

system with a lower triangular matrix,

(2.12)
k∑

t=s

α
(k)
t = νs−1 for s = k, k − 1, . . . , 0,
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putting ν−1 = 1. If we define further iterations ym+1, ym+2, . . . according to (2.9),
then

(2.13) r0 = b− (I − T )x0 = Tx0 + b− x0 = Tym + b− ym = ym+1 − ym

and thus

(2.14) T tr0 = ym+t+1 − ym+t

for any nonnegative integer t. If we substitute (2.12) and (2.14) into (2.11), we obtain

(2.15) xk =
k∑

t=0

α
(k)
t ym+t,

and analogously for rk we obtain the expression

(2.16)

rk = b− (I − T )xk =
k∑

t=0

α
(k)
t (b− (I − T )ym+t)

=
k∑

t=0

α
(k)
t (ym+t+1 − ym+t) =

k∑

t=0

α
(k)
t T tr0,

where we have used the relation (2.14) in the last equation. Let us calculate

‖rk‖2 = rT
k rk =

( k∑

t=0

α
(k)
t T tr0

)T ( k∑

t=0

α
(k)
t T tr0

)

= (α(k)0 , α
(k)
1 , . . . , α

(k)
k )

TAk+1(α
(k)
0 , α

(k)
1 , . . . , α

(k)
k ),

where Ak+1 ∈ L(�k+1 ) is a matrix in the form

Ak+1 =




rT
0 r0, rT

0 Tr0, rT
0 T
2r0, . . . , rT

0 T
kr0

(Tr0)T r0, (Tr0)TTr0, (Tr0)TT 2r0, . . . , (Tr0)TT kr0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(T kr0)T r0, (T kr0)TTr0, (T kr0)TT 2r0, . . . , (T kr0)TT kr0


 .

We can see that

(2.17) (Ak+1)ij = (T i−1r0)TT j−1r0.

If we denote

�αk+1 = (α
(k)
0 , α

(k)
1 , . . . , α

(k)
k )

T ,(2.18)

then

‖rk‖2 = �αT
k+1Ak+1�αk+1.(2.19)

����. The upper indices of the coefficients α(k)i mean that k relates to xk or rk.
The lower index of �αk+1 or Ak+1 denotes the dimension.
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The matrix Ak+1 is symmetric and according to Assumption 1 it is positive def-
inite. Thus the condition of the minimum can be formulated as follows. Let us
denote by the symbolM the set of all vectors from �

k+1 for which the sum of their
components equals 1. Then

(2.20) �αk+1 = argmin
w∈M

wTAk+1w.

Theorem 2.1. There exists only one vector �αk+1 which solves the problem
(2.20). If Bk+1 ∈ L(�k+1 ) is a matrix whose elements have the form

(2.21)
(Bk+1)t,s = (T t−1(T − I)r0)TT s−1r0 for t = 1, . . . , k; s = 1, . . . , k + 1,

(Bk+1)k+1,s = 1 for s = 1, . . . , k + 1,

then the vector �αk+1 is the only solution of the system

(2.22) Bk+1z = e
(k+1)
k+1 , z ∈ �

k+1 .

�����. For w ∈ �
k+1 , w = (w1, w2, . . . , wk+1)T let us put

F (w) = wTAk+1w, G(w) =
k+1∑

t=0

wt − 1,

in order to shorten the notation. If the function F possesses on the set M its
minimum at �αk+1, then there exists λ ∈ � such that the following equations hold:

F ′(�αk+1) + λG
′(�αk+1) = 0,

G(�αk+1) = 0,

where F ′(�αk+1) and G′(�αk+1) denote the Gâteaux derivative of the functionals F
and G respectively at �αk+1. In our case the Gâteaux derivative equals the Fréchet
derivative. If we calculate both derivatives and make a transposition, we obtain a
system of k + 2 linear algebraic equations

Ak+1�αk+1 + λ
2 e
(k+1) = Θ,(2.23)

(e(k+1))T �αk+1 = 1.(2.24)

From (2.23) and (2.24) we easily obtain that �αk+1 is a solution of (2.22). As the
system (2.23), (2.24) is nonsingular, the matrix Bk+1 is nonsingular as well. �
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Let us remark that the matrix Bk+1 has the form




((T − I)r0)T )r0, ((T − I)r0)TTr0, . . . , ((T − I)r0)TT kr0
(T (T − I)r0)T r0, (T (T − I)r0)TTr0, . . . , (T (T − I)r0)TT kr0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(T k−1(T − I)r0)T r0, (T k−1(T − I)r0)TTr0, . . . , (T k−1(T − I)r0)TT kr0

1 1 , . . . , 1



.

The relations (2.15) and (2.24) imply

(2.25) xk − x∗ =
k∑

t=0

α
(k)
t (ym+t − x∗).

For calculating xk − x∗ we need to express ym+t − x∗ and estimate α(k)t . For this
purpose we first express vectors

Tm+t(y0 − x∗), T t−1(T − I)r0 = T tr0 − T t−1r0, T sr0

for integers t � 1, s � 0 and on the basis of the obtained formulas we will modify
the elements of the matrix Bk+1.

3. Modification of the auxiliary elements of the matrix Bk+1

Let the matrix U transform the matrix T into its Jordan canonical form, i.e.,

(3.1) U−1TU = diag(λ1Ii1 + Ji1 , λ2Ii2 + Ji2 , λ3Ii3 + Ji3 , . . . , λpIip + Jip).

The matrix U is in general a complex matrix, i.e., it is an element of L(� n ).

Assumption 2. Let

(3.2) |λ1| � |λ2| � |λ3| � . . . � |λp| > 0,

and let all eigenvalues λ1, λ2, λ3, . . . , λp be mutually different. If |λj | = |λj+1| let
ij � ij+1.

Let us denote the columns of the transformation matrix U successively by
u1, u2, . . . , un and let us put

(3.3)
tl =

l∑

s=1

is for l = 0, 1, . . . , p,

Ui+1 = (uti+1, uti+2, . . . , uti+1) for i = 0, 1, . . . , p− 1.
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Accordingly,

(3.4) U = (U1, U2, . . . , Up).

It follows from the relation (3.1) that

(3.5) T lU = U diag((λ1Ii1 + Ji1)
l, (λ2Ii2 + Ji2)

l, (λ3Ii3 + Ji3 )
l, . . . , (λpIip + Jip)

l)

for any positive integer l. Let Pi denote the projection of the space � n into the
subspace generated by the columns of the matrix Ui for i = 1, 2, . . . , p. Let

y1 − y0 = a1 + a2 + . . .+ ap,(3.6)

y0 − x∗ = â1 + â2 + . . .+ âp,(3.7)

where aj , âj ∈ Pj�
n ∀j. Let us define the vectors bj , b̂j ∈ �

ij ∀j by the relations

(3.8) aj = Ujbj and âj = Uj b̂j .

For a positive integer l let us calculate T lr0 and T l(y0 − x∗). We perform the
calculation only for T lr0, the procedure for T l(y0 − x∗) is identical. Since according
to (3.5) T laj = Uj(λjIij + Jij )

lbj , we have

(3.9) T l(y1 − y0) =
l∑

j=1

Uj(λjIij + Jij )
lbj .

If we denote bj = (β
(j)
1 , . . . , β

(j)
ij
)T , then

(3.10) Uj(λjIij + Jij )
lbj =

ij∑

i=1

(
l

i− 1

)
λl

jvji

where we have put

(3.11) vji =

( ij∑

s=i

β(j)s utj−1+s−i+1

) /
λi−1

j and

(
l

s

)
= 0 for s > l.

Consequently,

(3.12) T l(y1 − y0) = yl+1 − yl =
p∑

j=1

ij∑

i=1

(
l

i− 1

)
λl

jvji.
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By analogy, if we put

(3.11′) v̂ji =

( ij∑

s=i

β̂(j)s utj−1+s−i+1

) /
λi−1

j where b̂j = (β̂
(j)
1 , . . . , β̂

(j)
ij
)T ,

we obtain

(3.12′) T l(y0 − x∗) = yl − x∗ =
p∑

j=1

ij∑

i=1

(
l

i− 1

)
λl

j v̂ji.

Without any loss of generality let us suppose

Assumption 3. Let β(j)ij
�= 0 and β̂(j)ij

�= 0 ∀j = 1, 2 . . . p.

We will further simplify the notation (3.12) and (3.12′).
Let N denote the set of the following pairs of positive integers:

(3.13) (1, i1), (1, i1 − 1), . . . , (1, 1), (2, i2), . . . , (2, 1), . . . , (p, ip), . . . , (p, 1).

Let cl be a vector from �
tp whose q-th component equals

(
l

i−1
)
λl

j , where the pair
(j, i) occupies the q-th position in the sequence (3.13).The number tp was defined by

the relation (3.3), i.e., tp =
p∑

j=1
ij. Let us introduce matrices

V = (v1i1 , . . . , v11, v2i2 , . . . , v21, . . . , vpip , . . . , vp1),(3.14)

V̂ = (v̂1i1 , . . . , v̂11, v̂2i2 , . . . , v̂21, . . . , v̂pip , . . . , v̂p1),(3.14′)

where the indices of the column vectors of these matrices are arranged in accordance
with (3.13). On the basis of the above introduced notation it follows from the
relations (3.12) and (3.12’) that

(3.15) yl+1 − yl = V cl; yl − x∗ = V̂ cl.

According to (2.14) and (3.15)

T tr0 = ym+t+1 − ym+t = V cm+t and(3.16)

T t−1(T − I)r0 = T tr0 − T t−1r0 = ∆T t−1r0 = V∆cm+t−1.(3.17)

Let the inequality m � max
j=1,...,p

ij − 1 hold for the number m introduced in Algo-
rithm 2.2. Let q � tp and let the pair (j, i) occupy the q-th position in the sequence
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(3.13). Then

(e(tp)
q )T (cm+t − cm+t−1) =

(
m+ t
i− 1

)
λm+t

j −
(
m+ t− 1
i− 1

)
λm+t−1

j

= λm
j m

i−1
[(m+ t

m

) (m+ t− 1
m

)
. . .

(m+ t− i+ 2
m

)
λj

−
(m+ t− 1

m

)(m+ t− 2
m

)
. . .

(m+ t− i+ 1
m

)]
λt−1

j

(i− 1)!

= λm
j m

i−1
[(
1 +

t

m

)(
1 +

t− 1
m

)
. . .

(
1 +

t− i+ 2
m

)
λj

−
(
1 +

t− 1
m

)(
1 +

t− 2
m

)
. . .

(
1 +

t− i+ 1
m

)]
λt−1

j

(i− 1)!

= λm
j m

i−1
∞∑

l=0

ϕ
(t)
l (q)
ml

,

where the series has only a finite number of nonzero members, however, as we will
use it further, it is of advantage of to consider it as an absolutely convergent series.
Obviously ϕ(t)0 (q) �= 0. Thus

(3.18) (e(tp)
q )T (cm+t − cm+t−1) = λ

m
j m

i−1
∞∑

l=0

ϕ
(t)
l (q)
ml

,

and by analogy

(3.19) (e(tp)
q )T cm+s = λm

j m
i−1

∞∑

l=0

ψ
(s)
l (q)
ml

,

where ψ(t)0 (q) �= 0. According to (2.21)

(Bk+1)t,s = (T tr0 − T t−1r0)TT s−1r0 where t = 1, . . . , k; s = 1, . . . , k + 1.

On the basis of the formulae (3.18), (3.19) let us define sequences of vectors{
Φ(t)l

}∞
l=0

⊂ �
tp and

{
Ψ(s)l

}∞
l=0

⊂ �
tp such that the q-th component od the vector

Φ(t)l and Ψ
(s)
l equals ϕ(t)l (q) and ψ

(s)
l (q), respectively. Moreover, if we define vectors

gl = (λ
l
1, . . . , λ

l
1︸ ︷︷ ︸

i1−times

, λl
2, . . . , λ

l
2︸ ︷︷ ︸

i2−times

, . . . , λl
p, . . . , λ

l
p︸ ︷︷ ︸

ip−times

)T ,(3.20)

hl = (li1−1, li1−2, . . . , 1, li2−1, li2−2, . . . , 1, . . . , lip−1, lip−2 . . . , 1)T(3.21)
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for any positive integer l then according to (3.15), (3.16), (3.17), (3.18) and (3.19)

T tr0 − T t−1r0 = V diag(gm) diag(hm)
∞∑

l=0

Φ(t)l

ml
,(3.22)

T s−1r0 = V diag(gm) diag(hm)
∞∑

l=0

Ψ(s)l

ml
.(3.23)

Let us summarize the result of the above consideration in the following theorem.

Theorem 3.1. Let Assumptions 1–3 be valid. Let the inequality m �
max

j=1,...,p
ij − 1 hold for the number m introduced in Algorithm 2.2. Then there

exist sequences of vectors {Φ(t)l }∞l=0 ⊂ �
tp and {Ψ(s)l }∞l=0 ⊂ �

tp for t = 1, . . . , k

and s = 1, . . . , k + 1 such that all components of the vectors Φ(t)0 and Ψ(s)0 are

nonzero, the series (all components of the series)
∞∑

l=0

Φ(t)l

ml and
∞∑
l=0

Ψ(s)l

ml are absolutely

convergent and the equalities (3.22), (3.23) hold. Consequently, the elements of the
matrix Bk+1 are in the form

(3.24)

(Bk+1)k+1,s = 1,

(Bk+1)t,s =

(
V1

∞∑

l=0

Φ(t)l

ml

)T

V1

( ∞∑

l=0

Ψ(s)l

ml

)

for t = 1, . . . , k, s = 1, . . . , k + 1, where V1 = V diag(gm) diag(hm).

4. The estimate for ‖xk − x∗‖

If m � 0 is an integer then according to (3.12) we have

(4.1) ym+t − x∗ = V̂ cm+t =
p∑

j=1

ij∑

i=1

(
m+ t
i− 1

)
λm+t

j v̂ji

for any nonnegative integer t. The relation (2.15) implies that

(4.2) xk − x∗ =
k∑

t=0

α
(k)
t (ym+t − x∗).

For the purpose of simplifying the formulas let us make the following assumption.
We will describe in the discussion later what would happen if the assumption were
not met.
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Assumption 4. If k is a positive integer for which we calculate xk then let there
exist a positive integer τ ∈ [1, p] such that

(4.3) k =
τ∑

j=1

ij.

Let us introduce the polynomial

P̂k(z) = σ̂kz
k + σ̂k−1z

k−1 + . . .+ σ̂0 = (z − λ1)
i1(z − λ2)

i2 . . . (z − λτ )
iτ .

����. In case Assumption 4 were not fulfilled, we would have to construct the
polynomial P̂k(z) in a different way.

Let us put

(4.4) Pk(z) = P̂k(z)/P̂k(1) ≡ σkz
k + σk−1z

k−1 + . . .+ σ0.

If we now substitute in the relation (4.2) σj for α
(k)
j ∀j and for ym+t − x∗ from the

relation (4.1), we obtain

k∑

t=0

σt(ym+t − x∗) =
k∑

t=0

σt

p∑

j=1

ij∑

i=1

(
m+ t
i− 1

)
λm+t

j v̂ji(4.5)

=
τ∑

j=1

ij∑

i=1

k∑

t=0

σt

(
m+ t
i− 1

)
λm+t

j v̂ji +
p∑

j=τ+1

ij∑

i=1

k∑

t=0

σt

(
m+ t
i− 1

)
λm+t

j v̂ji.

Let us denote Qm+k(z) = zmPk(z). The polynomial Qm+k(z) has the root zero of
multiplicity m while λj is the root of multiplicity ij for j = 1, 2, . . . , τ . Thus the
polynomial

Qm+k(z) = σkz
m+k + σk−1z

m+k−1 + . . .+ σ0z
m

satisfies

(4.7)
d(i−1)Qm+k(z)

dz(i−1)

∣∣∣∣
z=λj

= 0 for j = 1, 2, . . . , τ and i = 1, 2, . . . , ij.

If we multiply the equation (4.7) by the number zi−1/(i− 1)!, we obtain
[
(m+ k)(m+ k − 1) . . . (m+ k − i+ 1)

(i− 1)! σkz
m+k(4.8)

+
(m+ k − 1)(m+ k − 2) . . . (m+ k − i)

(i− 1)! σk−1z
m+k−1

+ . . .+
(m)(m− 1) . . . (m− i+ 1)

(i− 1)! σ0z
m

]

z=λj

= 0

for j = 1, 2, . . . , τ and i = 1, 2, . . . , ij .
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If we rewrite the relation (4.8) using binomial coefficients and reverse the order of
addition, we obtain a system of equations

(4.9)
k∑

t=0

σt

(
m+ t
i− 1

)
λm+t

j = 0 for j = 1, 2, . . . , τ and i = 1, 2, . . . , ij.

If we substitute (4.9) into (4.5), we obtain

(4.10)
k∑

t=0

σt(ym+t − x∗) =
p∑

j=τ+1

ij∑

i=1

k∑

t=0

σt

(
m+ t
i− 1

)
λm+t

j v̂ji.

On the basis of the above we can formulate a proposition.

Theorem 4.1. Let Assumptions 1–4 be met. Let xk(m) be a vector obtained
by applying Algorithm 2.2 for a non-negative integer m. Then there exist numbers
L(m),

1 � L(m) � κ = ‖(I − T )−1‖‖(I − T )‖
independent of k and sequences {uk(m)}∞m=0, {wk(m)}∞m=0, uk(m) > 0, wk(m) �
0 ∀m, such that

(4.11) ‖xk(m)− x∗‖ � L(m)miτ+1−1|λτ+1|m(uk(m) + wk(m))

and

(4.12) lim
m→∞

wk(m) = Θ.

If iτ+1 = 1 then

(4.13) uk(m) �
p∑

j=τ+1
|λj |=|λτ+1|

∣∣∣∣
k∑

t=0

σtλ
t
j

∣∣∣∣‖v̂j1‖ ∀m.

If iτ+1 = 1 and |λτ+1| > |λτ+2| then

(4.12′) lim
m→∞

1
miτ+2−1

∣∣∣∣
(
λτ+1

λτ+2

)m

wk(m)

∣∣∣∣ <∞.

If iτ+1 > 1 then

(4.14) uk(m) �
p∑

j=τ+1
|λj |=|λτ+1|, ij=iτ+1

∣∣∣∣
k∑

t=0

σtλ
t
j

∣∣∣∣‖v̂jij ‖/(ij − 1)!.
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In this case wk(m) ∼ O( 1m ).

���	�
. An analogous theorem could be formulated for the behaviour of ‖rk‖.
The upper bound for the constant L(m) is ‖I − T ‖ and the other estimates remain
unchanged in this case. Therefore, it is sufficient to investigate only the behaviour
of the norm ‖xk − x∗‖ in what follows.
�����. In the sequel we will write xk instead of xk(m). The linear combination

k∑
t=0

σtym+t ∈ x0 +Kk(r0, T ) in view of
k∑

t=0
σt = 1. From the minimization property

(2.3) it follows that

‖(I − T )(xk − x∗)‖ � ‖(I − T )
k∑

t=0

σt(ym+t − x∗)‖

and hence

‖(xk − x∗)‖ � ‖(I − T )−1‖‖(I − T )‖
∥∥∥∥

k∑

t=0

σt(ym+t − x∗)

∥∥∥∥.

If α(k)t = σt, then ‖xk − x∗‖ = ‖
k∑

t=0
σt(ym+t − x∗)‖ would hold according to (4.2).

Therefore there exists a number L(m) ∈ 〈1, κ〉 such that the inequality

(4.15) ‖(xk − x∗)‖ � L(m)

∥∥∥∥
k∑

t=0

σt(ym+t − x∗)

∥∥∥∥

holds. For the sake of brevity let us denote

(4.16) d(t,m, i, j) = σt

(
m+ t
i− 1

)
λm+t

j v̂ji.

According to (4.10) we have

k∑

t=0

σt(ym+t − x∗) =
p∑

j=τ+1

ij∑

i=1

k∑

t=0

d(t,m, i, j) = z1(m) + z2(m)

where

z1(m) =
p∑

j=τ+1
|λj |=|λτ+1|

ij∑

i=1

k∑

t=0

d(t,m, i, j),(4.17)

z2(m) =
p∑

j=τ+1
|λj |<|λτ+1|

ij∑

i=1

k∑

t=0

d(t,m, i, j).(4.18)
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If iτ+1 = 1, then according to Assumption 2

z1(m) =
p∑

j=τ+1
|λj |=|λτ+1|

k∑

t=0

d(t,m, 1, j).

If we put uk(m) = ‖z1(m)/λm
τ+1‖ and wk(m) = ‖z2(m)/λm

τ+1‖, then

(4.19)

∥∥∥∥
k∑

t=0

σt(ym+t − x∗)

∥∥∥∥ � |λτ+1|m(uk(m) + wk(m)),

where the numbers uk(m), wk(m) conform to the relations (4.13) and (4.12). The

equality (4.12′) is evident from the transcription of
k∑

t=0
σt(ym+t − x∗).

If iτ+1 > 1 then according to (4.17)

z1(m) =
p∑

j=τ+1
|λj |=|λτ+1|, ij=iτ+1

ij∑

i=1

k∑

t=0

d(t,m, i, j) +
p∑

j=τ+1
|λj |=|λτ+1|, ij<iτ+1

ij∑

i=1

k∑

t=0

d(t,m, i, j)

=
p∑

j=τ+1
|λj |=|λτ+1|, ij=iτ+1

{ k∑

t=0

d(t,m, ij, j) +
ij−1∑

i=1

k∑

t=0

d(t,m, i, j)

}

+
p∑

j=τ+1
|λj |=|λτ+1|, ij<iτ+1

ij∑

i=1

k∑

t=0

d(t,m, i, j).

Taking into account that

(
m+ t
i− 1

)
=

mi−1

(i− 1)!
(
1 +

t

m

)(
1 +

t− 1
m

)
. . .

(
1 +

t− i+ 2
m

)

=
mi−1

(i− 1)!
(
1 +

1
m
Ri−2

( 1
m

))
,

where Ri−2 is polynomial of the degree i− 2, and putting

(4.20) ẑ1(m) =
p∑

j=τ+1
|λj |=|λτ+1|, ij=iτ+1

k∑

t=0

σtm
iτ+1−1λm+t

j vjij /(iτ+1 − 1)!

and
ẑ2(m) = z1(m)− ẑ1(m) + z2(m),
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then we conclude
(4.21)

ẑ2(m) =
p∑

j=τ+1
|λj |=|λτ+1|, ij=iτ+1

k∑

t=0

σtm
iτ+1−2λm+t

j Riτ+1−2(1/m)vjij/(iτ+1 − 1)!

+
p∑

j=τ+1
|λj |=|λτ+1|, ij=iτ+1

ij−1∑

i=1

k∑

t=0

d(t,m, i, j) +
p∑

j=τ+1
|λj|=|λτ+1|, ij<iτ+1

ij∑

i=1

k∑

t=0

d(t,m, i, j)

+
p∑

j=τ+1
|λj |<|λτ+1|

ij∑

i=1

k∑

t=0

d(t,m, i, j),

and also putting

uk(m) = ‖ẑ1(m)/(miτ+1−1λm
τ+1)‖,

wk(m) = ‖ẑ2(m)/(miτ+1−1|λτ+1|m)‖

we obtain

(4.19′)

∥∥∥∥
k∑

t=0

σt(ym+t − x∗)

∥∥∥∥ � miτ+1−1|λτ+1|m(uk(m) + wk(m)),

where uk(m) fulfils (4.14) and for wk(m) the relation (4.12) holds. Moreover,
wk(m) = O( 1m ) for m→∞ in this case, i.e., iτ+1 > 1. �

The formula (4.11) inspired us to use Algorithm 2.2 because successive approxi-
mations (2.9) (we have called them pre-iterations) cost less work then GMRES (see
Algorithm 2.1).

��� ����
���	���
. let us consider the system obtained by the finite
difference approximation of the convection-diffusion equation on the unit square (see
(6.1). We took n = 900 and tested GMRES without any restart for such a small
system. From Algorithm 2.1 it is easy to obtain that for the calculation of xk with
m = 0 we need

4nk + k(k + 1)n+ 2nk + 6n = nk2 + 7nk + 6n = nk(k + 7) + 6n

multiplications if we consider the system (6.3). An analogous formula holds for (6.4).
The m successive approximations (2.9) need 4nm multiplications.
For m = 600 we found ‖(I − T )(x9 − x∗)‖ < 10−8 where x9 is the first iteration

for which the norm of the residual is less then 10−8. In this case we needed 2 550n
multiplications and stored 9 vectors.

337



Form = 0 we found ‖(I−T )(x107−x∗)‖ < 10−8, we needed 12 204nmultiplications
and stored 109 vectors.

Now it remains to specify what would happen if Assumption 4 were not fulfilled.
Let

τ−1∑

j=1

ij < k <

τ∑

j=1

ij .

Then only the construction of the polynomial Pk would be different. All the rest
would remain the same. With regard to the above extensive description it is easy to
imagine that the estimate obtained would be

(4.22) ‖xk − x∗‖ � L(m)mδ|λτ |m(uk(m) + wk(m)),

where again lim
m→∞

|uk(m)| < ∞ and |wk(m)| meets the relation (4.12). The integer
δ � iτ − 1 in general case. From the point of view of convergence the best k’s are
those for which Assumption 4 is fulfilled. �

Our exposition reveals that Algorithm 2.2 is theoretically derived for all nonnega-
tive integers m while in practice we consider only one m. Thus from the theoretical
viewpoint the components of the vector �αk+1 are functions of m although we have
written only α(k)i so far. Further on we will respect this dependence, i.e., instead of
α
(k)
i and �αk+1 we will write α

(k)
i (m) and �αk+1(m), respectively.

Now the question is what relation occurs between the components of the vec-
tor �αk+1(m) and the coefficients of the polynomial Pk, because if the sequence
{�αk+1(m)} converged to the coefficients of the polynomial Pk for m → ∞ then
the number L(m) in the estimate (4.11) which is for all m bounded by the condition
number of the matrix I − T would be close to 1. That is why it will be useful to
study the behaviour of α(k)i (m) in dependence on m.

5. The behaviour of the functions α(k)i (m) in dependence on m

Let us put

σ(k + 1) = (σ0, σ1, . . . , σk)T ,(5.1)

ϑ(k + 1) = Bk+1σ(k + 1)− e
(k+1)
k+1 .(5.2)

From the latter relation it follows that

(5.3) �αk+1(m) = B
−1
k+1e

(k+1)
k+1 = σ(k + 1)−B−1k+1ϑ(k + 1).
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As the last component of the vector ϑ(k + 1) is zero, we omit the calculation of
the last column of the matrix B−1k+1. Now we use the well-known formula for the
calculation of the inverse matrix B−1k+1, namely

(B−1k+1)ij =
BA

k+1(i, j)

detBk+1
,

where BA
k+1 denotes the adjoint of Bk+1. To make things clear let us take the matrix

B4 (for k = 3) and let us show what BA
4 (3, 2) looks like:

(5.4)

BA
4 (3, 2) = − det



((T − I)r0)T r0, ((T − I)r0)TTr0, ((T − I)r0)TT 3r0
(T 2(T − I)r0)T r0, (T 2(T − I)r0)TTr0, (T 2(T − I)r0)TT 3r0)

1, 1, 1


 .

We subtract the second column from the third and the first from the second obtaining
(5.5)

BA
4 (3, 2) = − det

(
((T − I)r0)T (T − I)r0, ((T − I)r0)TT (T 2 − I)r0
(T 2(T − I)r0)T (T − I)r0, (T 2(T − I)r0)TT (T 2 − I)r0

)
.

If we modify detB4 in a similar way, we obtain
(5.5′)

detB4 = det




((T−I)r0)
T (T−I)r0, ((T−I)r0)

T T (T−I)r0, ((T−I)r0)
T T 2(T−I)r0

(T (T−I)r0)
T (T−I)r0, (T (T−I)r0)

T T (T−I)r0, (T (T−I)r0)
T T 2(T−I)r0

(T 2(T−I)r0)
T (T−I)r0,(T

2(T−I)r0)
T T (T−I)r0,(T

2(T−I)r0)
T T 2(T−I)r0


 .

According to Assumption 1 the matrix in (5.5′) is strongly nonsingular. Each element
of this matrix is a scalar product of vectors in the form (3.22). The same holds for
each element of the matrix (5.4), only the series are different.
Our concern here is to express the determinant of the matrix Bk+1 and the deter-

minant of the corresponding adjoints with one formula. Let us now go back to the
general formulation. The matrices whose determinant we will calculate have in gen-
eral the dimension k or k − 1. Let us consider a matrix from L(�k ), the calculation
for matrices from L(�k−1 ) would be analogous.
Let us now make the following general consideration. Let {Λ(s)q,l }∞l=0, be sequences

of vectors from L(� tp ) for q = 1, . . . , k, s = 1, 2 such that the series

(5.6)
∞∑

l=0

Λ(s)q,l

ml

absolutely converge for all q, s under consideration. We suppose that k � tp = n.
(See (3.3).) Let K(s)q (m) denote the sum of the series and let us define also the
vectors L(s)q (m),

(5.7) L(s)q (m) = diag(gm) diag(hm)K(s)q (m),
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where gm and hm were respectively defined by (3.20) and (3.21). Let us consider the
matrix Ck ∈ L(� k ) constructed as follows:
(5.7′)

Ck =




(V L
(1)
1 (m))

H(V L
(2)
1 (m)), (V L

(1)
1 (m))

H(V L
(2)
2 (m)), ..., (V L

(1)
1 (m))

H(V L
(2)
k (m))

(V L
(1)
2 (m))

H(V L
(2)
1 (m)), (V L

(1)
2 (m))

H(V L
(2)
2 (m)), ..., (V L

(1)
2 (m))

H(V L
(2)
k (m))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(V L
(1)
k (m))H(V L

(2)
1 (m)), (V L

(1)
k (m))H(V L

(2)
2 (m)), ..., (V L

(1)
k (m))H(V L

(2)
k (m))


,

where V was given by (3.14).
Let us suppose that the matrix Ck is regular. Then the matrices

(5.8)
L(1)(m) = (L(1)1 (m), L

(1)
2 (m), . . . , L

(1)
k (m)),

L(2)(m) = (L(2)1 (m), L
(2)
2 (m), . . . , L

(2)
k (m))

are of the rank k and therefore the matrices

(5.9)
K(1)(m) = (K(1)1 (m),K

(1)
2 (m), . . . ,K

(1)
k (m)),

K(2)(m) = (K(2)1 (m),K
(2)
2 (m), . . . ,K

(2)
k (m))

are of the rank k as well. According to (5.7)

(5.10) L(s)(m) = diag(gm) diag(hm)K(s)(m) for s = 1, 2.

In the following considerations we will write the index s in the sense that everything
holds for s = 1, 2.

Assumption 5. Let matrices H(s)(m) constructed from the first k rows of the
matrix K(s)(m) be strongly nonsingular for s = 1, 2.

Therefore there exists an upper triangular matrix R(s)k (m) with a unit diagonal

such that the matrix H(s)(m)R(s)k (m) is lower triangular. Furthermore there ex-

ists a lower triangular matrix W (s)
k (m) with a unit diagonal such that the matrix

H(s)(m)R(s)k (m)W
(s)
k (m) is diagonal. Therefore the matrixK

(s)(m)R(s)k (m)W
(s)
k (m)

has the following form: It is a rectangular matrix tp×k whose first k rows form a di-
agonal matrix. We expect that the elements of the matrix K(s)(m)R(s)k (m)W

(s)
k (m)

have the form
∞∑

t=ν
δ
(s)
t /mt, where ν is an integer and the series is absolutely conver-

gent. After all this is clear from the following auxiliary proposition and assumption
if we bear in mind that by triangular decomposition we perform Gauss elimination.

Lemma 5.1. Let the series
∞∑

t=0

γt

mt be absolutely convergent and γ0 �= 0. Then

there exists a positive integer m0 and a sequence {γ̂t}∞t=0 such that the series
∞∑

t=0

γ̂t

mt
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is absolutely convergent and

(5.11)

( ∞∑

t=0

γt

mt

)−1
=

∞∑

t=0

γ̂t

mt
∀m � m0

holds.

This lemma is proved in [Zi 84].

Note. If we consider the series
∞∑

t=ν

γt

mt where ν �= 0, then instead of (5.11) we
obtain

(5.11′)

( ∞∑

t=ν

γt

mt

)−1
=

∞∑

t=−ν

γ̂t

mt
.

Assumption 6. Let |λτ | > |λτ+1| and m � mU , where all series are invert-
ible in the sense of Lemma 5.1 by the decompositions K(s)(m)R(s)k (m)W

(s)
k (m) for

m � mU .

Assumption 6 introduces the positive integer mU . We have seen in the previous
sections that polynomials or quotients of polynomials with an argument 1m have been
represented by absolute convergent series. Therefore we can expect that the second
part of Assumption 6 will be fullfiled for all m considered.
Let us put M (s)

k (m) = R
(s)
k (m)W

(s)
k (m) and calculate (M

(1)
k (m))

HCkM
(2)
k (m).

Taking into account what has been said about the form of the matrixK(s)(m)M (s)
k (m)

and using the formula (5.10) we can immediately write the following proposition.

Theorem 5.1. Let Assumptions 1–6 be fulfilled. Let i � k and j � k, let (p1, q1)
and (p2, q2) be the pairs occupying the i-th and j-th position respectively in the
sequence N (see 3.13). Then

((M (1)
k (m))

HCkM
(2)
k (m))ij(5.12)

=

(
mq1−1λm

p1

∞∑

t=νq1

δ
(1)
t (p1, q1)
mt

vp1q1 + d
(1)
m (p1, q1)

)H

×
(
mq2−1λm

p2

∞∑

t=νq2

δ
(2)
t (p2, q2)
mt

vp2q2 + d
(2)
m (p2, q2)

)
,

where νqs are integers, both series absolutely converge, δ
(s)
νqs
(ps, qs) �= 0 and there

exists an integer lij such that the relations
(5.13)

lim
m→∞

‖d(s)m (ps, qs)/(mlijλm
τ+1)‖ <∞ and lim

m→∞
‖d(s)m (ps, qs)/(mlλm

τ )‖ = 0
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hold for s = 1, 2 and every integer l.

If we carry out the multiplication in the formula (5.12), we obtain

(5.14) ((M (1)
k (m))

HCkM
(2)
k (m))ij = m

rij (λp1)
mλm

p2

∞∑

t=0

γt(i, j)
mt

(1 + fm(i, j)),

where rij is an integer, lim
m→∞

fm(i, j) = 0, γ0(i, j) = δ
(1)
νq1
(p1, q1)δ

(2)
νq2
(p1, q2) �= 0 and

the implication νq1 = νq2 = 0 ⇒ rij = q1 + q2 − 2 holds. Moreover, there exists an
integer l(1)ij such that

(5.15) lim
m→∞

∣∣∣∣m
l
(1)
ij

(
λτ

λτ+1

)m

fm(i, j)

∣∣∣∣ <∞.

Let us remark that if all sums start from zero then the number l(1)ij = min(q1, q2) −
iτ+1.
Based on the above, we can express the determinant of the matrix Ck.

Theorem 5.2. Let Assumptions 1–6 be fulfilled. Then there exists an integer
l(1) such that

(5.16) detCk = mr(|λ1|i1 |λ2|i2 . . . |λτ−1|iτ−1 |λτ |iτ )2m
( ∞∑

t=ν

ξt
mt

)
(1 + ζm),

where

(5.17) lim
m→∞

ζm = 0, lim
m→∞

∣∣∣∣ml(1)
(

λτ

λτ+1

)m

ζm

∣∣∣∣ <∞,

the series is absolutely convergent and ξν �= 0. If ν = 0 then

(5.17′) l(1) = 1− iτ+1 and r =
τ∑

j=0

i2j − k.

�����. We use the previous theorem which describes the element in the (i, j)th
position in the matrix (M (1)

k (m))
HCkM

(2)
k (m). The determinant of the matrix is

the sum of (k!) products with each term resulting in such a way that from each
row and each column we take exactly one element and multiply it by the sign of
the corresponding permutation. We can see from the forms of the elements that all
summands have a common factor mr(|λ1|i1 |λ2|i2 . . . |λτ−1|iτ−1 |λτ |iτ )2m which may
be factored out and the remaining absolutely convergent series may be multiplied
and summed up. After a simple modification we obtain what is given in (5.16) in
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view of det((M (1)
k (m))

HCkM
(2)
k (m)) = det(Ck). If (5.17’) holds, then the exponent

r equals the number

(5.19) 2
τ∑

j=1

1
2
ij(ij − 1) =

τ∑

j=1

i2j − k.

The above expression for the exponent equals the sum of exponents of the dominant
diagonal entries of the matrix (M (1)

k (m))
HCkM

(2)
k (m). In the other products in

the sum for det(M (1)
k (m))

HCkM
(2)
k (m) the exponents are added up in a different

order (according to the appropriate permutation) but their sum equals (5.19) in all
summands. �

For the case of the adjoints of the matrix Bk+1 we can use exactly the same argu-
ment with the difference that instead of a matrix from L(�k ) we would consider
matrices from L(�k−1 ). Let us take a matrix of the form (5.7′) from L(�k−1 )

and denote it by Ck−1. The assumption k =
τ∑

j=1
ij is of course valid. Then

the formula (5.16) remains the same with the difference that instead of the fac-
tor (|λ1|i1 |λ2|i2 . . . |λτ−1|iτ−1 |λτ |iτ )2m we have (|λ1|i1 |λ2|i2 . . . |λτ−1|iτ−1 |λτ |iτ−1)2m.
Moreover, we have assumed the following

Assumption 7. Let |λτ−1| > |λτ | if τ > 1.
The relation (5.17) changes in the following way: there exists an integer l̃(1) such

that

lim
m→∞

∣∣∣∣ml̃(1)
(
λτ−1
λτ

)m

ζm

∣∣∣∣ <∞.

And now everything is ready for demonstrating what the elements of the inverse
matrix B−1k+1 look like.

Theorem 5.3. Let Assumptions 1–7 be fulfilled. Then the element in the
position (i, j) in the matrix B−1k+1 for i = 1, . . . , k, j = 1, . . . , k + 1 has the form

(5.20)
msij

|λτ |2m
( ∞∑

t=0

ωt(i, j)
mt

)
(1 + εm(i, j))

where sij is an integer, the series is absolutely convergent, ω0(i, j) �= 0 and there
exists an integer l(2)ij such that

(5.21) lim
m→∞

εm(i, j) = 0 and lim
m→∞

∣∣ml
(2)
ij qmεm(i, j)

∣∣ <∞,

where q = min
(∣∣ λτ

λτ+1

∣∣,
∣∣λτ−1

λτ

∣∣).
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The proof follows immediately from (5.16) if instead of the matrix Ck we consider
the matrix Bk+1 modified for calculating the determinant as shown in the special
case in (5.5’), and instead of the matrix Ck−1 we consider the corresponding adjoint
again modified as in the special case the determinant (5.5). The scalar product
by which the elements of the matrices Ck and Ck−1 respectively are expressed is
substituted from (3.24).
Now we return to the beginning of the section. We will calculate the 1, . . . , k-

th component of the vector ϑ(k + 1). The last component equals identically zero.

According to (5.2) and (2.21) it suffices to calculate
k∑

t=0
σtT

tr0. Using the relation

(4.9), we have

k∑

t=0

σtT
tr0 =

k∑

t=0

V (cm+tσt) = miτ+1−1λm
τ+1y(m)(5.22)

where lim
m→∞

‖y(m)‖ <∞.

����. By analogy the vector y(m) could be re-written using an absolutely con-
vergent series. Since this is clear, we omit it. Here we have assumed the following

Assumption 8. Let |λ1| > |λ2| and |λτ+1| > |λτ+2|.

Let us substitute the expression (3.22) instead of T t−1(T − I)r0 in Bk+1 We
immediately obtain the following theorem.

Theorem 5.4. Let Assumptions 1–4 and Assumption 8 be fulfilled. Then for
the components of the vector ϑ(k + 1) the equalities

(5.23)

(ϑ(k + 1))k+1 = 0,

(ϑ(k + 1))i = m
i1+iτ+1−2(λ1λτ+1)

m

( ∞∑

t=0

η
(i)
t

mt

)
(1 + ε(i)m ), for i = 1, . . . , k

hold, where the series are absolutely convergent, η(i)0 �= 0 ∀i and there exist integers
li such that

(5.24) lim
m→∞

ε(i)m = 0 and lim
m→∞

∣∣mliqm
1 ε
(i)
m

∣∣ <∞ ∀i,

where q1 = min
(∣∣λ1

λ2

∣∣,
∣∣λτ+1

λτ+2

∣∣).

From the above mentioned theorems we finally have the main theorem of this
section.
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Theorem 5.5. Let Assumptions 1–8 be fulfilled. Then for i = 0, . . . , k

(5.25) α
(k)
i (m)− σi = m

χi(λ1λτ+1/|λτ |2)m
( ∞∑

t=0

ω
(i)
t

mt

)
(1 + z(i)m ),

where the series absolutely converge, χi are integers, ω
(i)
0 �= 0 ∀i and there exist

integers li such that

(5.26) lim
m→∞

z(i)m = 0 and lim
m→∞

∣∣mliqm
2 z
(i)
m

∣∣ <∞ ∀i,

where q2 = min(q, q1). If |λ1λτ+1/λ
2
τ | < 1 then

(5.27) lim
m→∞

�αk+1(m) = σ(k + 1).

�����. The formula (5.25) immediately follows from (5.3) and Theorems 5.3
and 5.4. The rest is obvious. �

The formula (5.25) reveals that the coefficients α(k)i (m) do not alvays converge to
the corresponding numbers σi.
Now we focus our attention back on the estimate (4.11). Let us remark that

k =
τ∑

j=1
ij .

Let |λτ+1| > |λτ+2|. Then

(5.28) uk(m) � Cτ+1

∣∣∣∣
k∑

t=0

σtλ
t
τ+1

∣∣∣∣,

where Cτ+1 are constants independent of k and m.
If iτ+1 = 1 then

lim
m→∞

1
miτ+2−1

∣∣∣∣
(
λτ+1

λτ+2

)m

wk(m)

∣∣∣∣ <∞,

but if iτ+1 > 1 then wk(m) ∼ O( 1m ).
Moreover, let us suppose for the discussion that �(T ) < 1. We have two typical

lay-outs of the numbers |λτ |, |λτ+1| and |λτ+2|.

Case 1

0 |λτ |2 |λ1λτ+1| |λτ+1| |λτ | |λ1| 
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Case 2

0 |λ1λτ+1| |λτ+1| |λτ |2 |λτ | |λ1| 

In the case 1 we drew the situation when |λ1λτ+1/λ
2
τ | > 1. In this case, L(m)

could increase to κ but the upper estimate for uk(m) is small (see (5.28)) in view
of the continuous dependence of roots and coefficients of the polynomial Pk. In
the case 2 we drew the situation when |λ1λτ+1/λ

2
τ | < 1. In this case we can put

L(m)
.
= 1 for m 
 1 but uk(m) could be a larger number in view of the distance

between λτ and λτ+1. The dominant term in the estimate (4.11) is |λτ+1|m and
therefore if |λτ+1| < 1 (or more generally if T is convergent), then for a large m we
can obtain a very good estimate in (4.11).

���	�
. We have used the coefficients α(k)i (m) only for theoretical investiga-
tions. In practice we proceed according to Algorithm 2.1 and do not calculate any
α
(k)
i (m).

6. Numerical experiments

Let us consider a discrete approximation of the partial differential equation

(6.1) −∆x(s, t) + 2s2xs + 2s2xt = f(s, t)

on the square Ω = (0, 1) × (0, 1) with homogeneous Dirichlet boundary conditions,
where x = x(s, t). We discretize (6.1) on a uniform N × N grid using Green’s
Theorem (see [V] Chapter 6). Let us suppose that the grid points are ordered using
the rowwise natural ordering. Then the coefficient matrix A has the form

A = tri[Aj,j−1, Aj,j , Aj,j+1],

where Aj,j−1, Aj,j+1 are diagonal matrices and Aj,j tridiagonal matrices in L(�N )
for j = 1, 2, . . . , N . We write the system of linear algebraic equations obtained as

(6.2) Ax = f,

where A ∈ L(�n ) and n = N ×N .
Let us decompose A = D−CL −CU , where D is a diagonal matrix, CL a strictly

lower and CU a strictly upper triangular matrix. Putting T = D−1(CL + CU ) and
b = D−1f , we rewrite the system (6.2) in the form

(6.3) (I − T )x = b.
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We obtain the system to which Algorithm 2.2 has been applied. When the iteration
index k increases, the number of vectors requiring storage in GMRES increases like k.
The problems with memory occur for a large n. To avoid these difficulties we can
use the GMRES iteratively (the so called restarted GMRES) or we can perform a
large number of successive approximations (2.9) or (for large systems) we can restart
GMRES with pre-iterations. A more detailed analysis of restarted GMRES will be
the subject of a separate paper. We have put T = D−1(CL + CU ), i.e., the system
(6.2) is preconditioned by the diagonal of the matrix A. Another preconditioning
strategy involving incomplete LU-decomposition is studied in the papers [Zi2 96] or
[Zi 97]. We tested the computer time needed for the norm of error vector to be less
than 10−5. The pictures in Graph 1 show the dependence of time on the number
of pre-iterations (m) for various values of the restart. The behaviour of GMRES
with restart 100 is close to the behaviour of GMRES without restart. The matrix
T ∈ L(�n) for n = 10000. We took y0 = (1, 1, . . . , 1)T and f = 0, i.e., the error vector
is identical with the iteration. It is seen from the figures that we have obtained the
best result (the smallest time) for relatively small restart (for the restart = 20 (time
= 84 s)). Moreover, in a large neighbourhood of 1500 pre-iterations, the decrease and
increase of curves is very slow. Practically, we can choose the number of pre-iterations
in the interval [1000, 2500] for the restart = 20. In other examples we observed an
analogous phenomenon. Therefore, we propose (for diagonal preconditioning) to take
the restart in the interval [20, 60] and m = 1000 and, if the convergence is slow, to
add further pre-iterations.
We have further applied Algorithm 2.2 to the nonsymmetric linear systems

(6.4) (I −Lω)x = cω,

where
Lω = (D − ωCL)−1(ωCU + (1− ω)D),

cω = (D − ωCL)−1ωb.

The systems (6.4), (6.2) and (6.3) have the same solution. For the test we took
the same system with 10 000 unknowns and we tested the computer time needed for
the norm of the error vector to be less than 10−5. In both the last tests we took
y0 = (1, 1, . . . , 1)T . The following graphs show the dependence of time on ω for 0
and 200 pre-iterations.
We tested this example for various values of restarts and numerical results showed

that for the use of GMRES on the modified system it is convenient to take a small
number for the restart. We stored few vectors and as we saw in this case the con-
vergence was, for ω = 1.9, more than 5 times faster than in the case of Jacobi
pre-iterations. In the optimum case the time was 14 s. The relaxation factor ω has
been found experimentally.
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The program for GMRES in FORTRAN 77 was prepared by my student Miroslav
Folprecht.
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