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Abstract. We present the convergence analysis of an efficient numerical method for the
solution of an initial-boundary value problem for a scalar nonlinear conservation law equa-
tion with a diffusion term. Nonlinear convective terms are approximated with the aid of a
monotone finite volume scheme considered over the finite volume barycentric mesh, whereas
the diffusion term is discretized by piecewise linear nonconforming triangular finite elements.
Under the assumption that the triangulations are of weakly acute type, with the aid of the
discrete maximum principle, a priori estimates and some compactness arguments based on
the use of the Fourier transform with respect to time, the convergence of the approximate
solutions to the exact solution is proved, provided the mesh size tends to zero.
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1. Introduction

Many processes in science and technology are described by convection-diffusion
equations with convection dominating over diffusion. We can mention, e.g., processes

of fluid dynamics, hydrology and environmental protection. There is an extensive
literature on the numerical solution of convection-diffusion problems. Let us mention,

e.g., the papers [1], [2], [22], [23], [27], [29], [32], [34], [35], the monographs [26], [28]
and the references therein, devoted mainly to linear problems. The main difficulty

which must be overcome is the accurate resolution of the so-called boundary layers.
If the equation under consideration represents a nonlinear conservation law with
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a small dissipation, then beside boundary layers also shock waves appear (slightly

smeared due to dissipation). This is particularly the case of the system describing
the viscous gas flow.

In [6], [9], [10], [12] we developed numerical methods for the solution of high-speed

viscous compressible flow in domains with complex geometry. These methods are
based on the combination of a finite volume scheme for the discretization of inviscid

convective terms and the finite element discretization of viscous terms. Numerical
experiments proved the efficiency and robustness of these methods with respect to

the precise resolution of boundary layers and shock capturing. (For the finite volume
solution of an inviscid gas flow see, e.g., [3], [8], [16], [17], [18], [19], [20], [24], [33]).

Since the complete viscous gas flow problem is rather complex, the theoretical analy-
sis of the combined finite volume—finite element method has been carried out for

the case of a simplified scalar nonlinear conservation law equation with a small dissi-
pation which is the simplest prototype of the compressible Navier-Stokes equations.
Papers [11], [13], [15] are concerned with the convergence and error estimates for the

method using dual finite volumes over a triangular mesh combined with conforming
piecewise linear triangular finite elements.

Another possibility is the combination of the so-called barycentric finite volumes
constructed over a triangular grid with the well-known Crouzeix-Raviart noncon-

forming piecewise linear finite elements used for the numerical solution of incom-
pressible viscous flow ([5], [8], [31]). The upwind version of the Crouzeix-Raviart

finite element method was developed and analyzed in [27] for a linear stationary
convection-diffusion equation. This was the inspiration for Schieweck and Tobiska

who investigated in [29] upwind schemes for the steady incompressible Navier-Stokes
equations.

In the present paper we are concerned with the convergence analysis of the

combined barycentric finite volume—nonconforming piecewise linear finite element
method for the numerical solution of the nonstationary initial-boundary value prob-

lem for a scalar nonlinear conservation law equation with a diffusion term. The
main technique used in this paper is based on the discrete maximum principle, a

priori estimates and discrete compactness results derived with the aid of the Fourier
transform with respect to time.

2. Continuous Problem

Let Ω ⊂ �
2 be a bounded domain with a Lipschitz-continuous boundary ∂Ω. In

the space-time cylinder QT = Ω × (0, T ) (0 < T < ∞) we consider the following
initial-boundary value problem:
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Find u : QT → �, u = u(x, t), x ∈ Ω, t ∈ [0, T ], such that

(2.1)
∂u

∂t
+

2∑

s=1

∂fs(u)
∂xs

− ν∆u = g in QT ,

(2.2) u|∂Ω×(0,T ) = 0,

(2.3) u(x, 0) = u0(x), x ∈ Ω,

where ν > 0 is a given constant and fs : � → �, s = 1, 2, g : QT → �, u0 : Ω → �

are given functions.

We denote

(2.4) V = H10 (Ω) =W
1,2
0 (Ω).

In the space H1(Ω) besides its norm we will often work with the seminorm

(2.5) |u|H1(Ω) =

(∫

Ω
|∇u|2 dx

)1/2

which is an equivalent norm on V : there exist constants c̄1, c̄2 > 0 such that

(2.6) c̄1‖v‖H1(Ω) � |v|H1(Ω) � c̄2‖v‖H1(Ω).

We can write |u|H1(Ω) = ((u, u))1/2, where

(2.7) ((u, v)) =
∫

Ω
∇u · ∇v dx, u, v ∈ H1(Ω),

is a scalar product on V . Further we set

(2.8) (u, v) =
∫

Ω
uv dx, u, v ∈ L2(Ω).

We will assume that

(2.9) fs ∈ C2(�), fs(0) = 0, s = 1, 2,

(2.10) g ∈ C([0, T ];W 1,q(Ω)) for some q > 2,

(2.11) u0 ∈W 1,p(Ω) for some p > 2.
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Now we derive the weak formulation of problem (2.1)–(2.3). Multiplying (2.1) by

an arbitrary v ∈ V , integrating over Ω, using Green’s theorem we obtain the identity

d
dt

∫

Ω
u(t)v dx−

∫

Ω

2∑

s=1

fs(u(t))
∂v

∂xs
dx+ ν

∫

Ω
∇u(t) · ∇v dx(2.12)

=
∫

Ω
g(t)v dx, ∀v ∈ V, ∀t ∈ [0, T ].

Here, for t ∈ [0, T ], u(t) means the function “x ∈ Ω → u(t)(x) = u(x, t).” Let us

set

(2.13) b(ϕ, v) = −
∫

Ω

2∑

s=1

fs(ϕ)
∂v

∂xs
dx for ϕ ∈ L∞(Ω), v ∈ V.

Definition 1. We say that a function u is a weak solution of problem (2.1)–

(2.3), if it satisfies the conditions

(2.14) u ∈ L2(0, T ;V ) ∩ L∞(QT ),

(2.15)
d
dt
(u(t), v) + b (u(t), v) + ν((u(t), v)) = (g(t), v) ∀v ∈ V,

in the sense of distributions on (0, T ),

(2.16) u(0) = u0.

The identity (2.15), which is (2.12) rewritten with the aid of the above notation,
means that

−
∫ T

0
(u(t), v)ψ

′
(t) dt+ ν

∫ T

0
((u(t), v))ψ(t) dt+

∫ T

0
b (u(t), v)ψ(t) dt(2.17)

=
∫ T

0
(g(t), v)ψ(t) dt ∀v ∈ V, ∀ψ ∈ C∞0 ((0, T )).

It follows from [11] that problem (2.14)–(2.16) has a unique solution.
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3. Discrete problem

Let Ωh be a polygonal approximation of the domain Ω. By Th we will denote
a triangulation of Ωh with standard properties (see e.g. [4]): T ∈ Th are closed

triangles and

(3.1) Ωh =
⋃

T∈Th

T,

(3.2) if T1, T2 ∈ Th, then T1 ∩ T2 = ∅ or

T1 ∩ T2 is a common side of T1 and T2 or T1 ∩ T2 is a common vertex of T1 and T2,

(3.3) P ∈ Ω for any vertex P of each T ∈ Th.

By Sh we denote the set of all sides of all triangles T ∈ Th. We introduce a

numbering of triangles T ∈ Th and their sides S ∈ Sh in such a way that

Th = {Ti ; i ∈ I} ,
Sh = {Sj ; j ∈ J} ,

where I and J are suitable index sets. By Qj we denote the centre of a side Sj ∈ Sh

and put Ph = {Qj ; j ∈ J}. Moreover, we set

(3.4) J◦ = {i ∈ J ; Qi ∈ Ωh} .

Sometimes we will use the local notation Sij and Qij , j = 1, 2, 3, for the sides of a
triangle Ti ∈ Th and their centres, respectively. Then

{Qj, j ∈ J} = {Qik, k = 1, 2, 3, i ∈ I},(3.5)

{Sj, j ∈ J} = {Sik, k = 1, 2, 3, i ∈ I}.

By h(T ) and θ(T ) we denote the length of the longest side and the magnitude of

the smallest angle, respectively, of the triangle T ∈ Th and put

(3.6) h = max
T∈Th

h(T ), θh = min
T∈Th

θ(T ).

Now let us construct the barycentric mesh Dh = {Di ; i ∈ J} over the basic mesh
Th. The barycentric finite volume Di is a closed polygon defined in the following
way: We join the barycentre of every triangle T ∈ Th with its vertices. Then around

267



the side Si, i ∈ J◦, we obtain a closed quadrilateral containing Si. If Sj ⊂ ∂Ωh is a

side with vertices P1, P2 of a triangle T ∈ Th adjacent to ∂Ωh, then we denote by
Dj the triangle with the sides Sj and segments connecting the barycentre of T with
P1 and P2. (See Figures 1, 2.)

Di P1

Sj

Qj

Dj

P2

Qi

Si

Fig. 1. Barycentric finite volumes, Di, Dj ∈ Dh, Qi, Qj ∈ Ph, Si, Sj ∈ Sh, Sj ⊂ ∂Ωh.

Fig. 2. Triangular mesh and associated barycentric finite volume mesh.

It is obvious that

(3.7) Ωh =
⋃

i∈J

Di.

If Di 
= Dj and the set ∂Di ∩ ∂Dj contains more than one point, we call Di and
Dj neighbours and set Γij = ∂Di ∩ ∂Dj (= a common side of Di and Dj). Further,
we define the set s(i) = {j ∈ J ; Dj is a neighbour of Di}. If Qi ∈ ∂Ωh, then we set

S(i) = s(i)∪ {−1} and Γi,−1 = Si ⊂ ∂Ωh, otherwise (for i ∈ J◦) we put S(i) = s(i).
In the sequel we use the following notation: |T | = area of T ∈ Th, |Di| = area of

Di ∈ Dh (i.e., i ∈ J), lij = length of the segment Γij , nij = (nij1, nij2) = unit outer
normal to ∂Di on Γij (i.e., nij points from Di to Dj). Moreover, let us consider a
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partition 0 = t0 < t1 < . . . of the interval (0, T ) and set τk = tk+1−tk for k = 0, 1, . . ..
Obviously, we have

(3.8) ∂Di =
⋃

j∈S(i)

Γij .

Let us define the following spaces over the grids Th and Dh:

Xh =
{
vh ∈ L2(Ωh); vh|T is linear ∀T ∈ Th, vh is continuous at Qj ∀j ∈ J

}
,

Vh = {vh ∈ Xh; vh(Qi) = 0 ∀i ∈ J − J◦} ,(3.9)

Zh =
{
wh ∈ L2(Ωh);wh|Di = const ∀i ∈ J

}
,

Yh = {wh ∈ Zh;wh = 0 on Di ∈ Dh ∀i ∈ J − J◦} .

Let us notice that Xh 
⊂ H1(Ωh) and Vh 
⊂ V = H10 (Ωh). Therefore, we speak
about nonconforming, piecewise linear finite elements. (By G. Strang, the use of

nonconforming finite elements belongs to one of the basic finite element variational
crimes, see [30].)

In the spaces from (3.9) we easily construct simple bases : The system {wi ; i ∈ J}
of functions wi ∈ Xh such that wi(Qj) = δij = Kronecker delta, i, j ∈ J , forms a

basis in Xh. The system {wi, i ∈ J◦} is a basis in Vh. Furthermore, denoting by
di = χDi the characteristic function of Di ∈ Dh, we have bases in Zh and Yh as the

systems {di ; i ∈ J} and {di ; i ∈ J◦}, respectively.
By Ih we denote the interpolation operator in the space of nonconforming finite

elements (see [8], 8.9.79). If v ∈ H1(Ω), then

(3.10) Ihv ∈ Xh, (Ihv)(Qij) =
1

|Sij |

∫

Sij

v dS, j = 1, 2, 3, i ∈ I.

This integral exists due to the theorem on traces in the space H1(T ):

(3.11) ‖ϕ‖L2(∂T ) � c‖ϕ‖H1(T ), ϕ ∈ H1(T ), T ∈ Th (c = c(T )) .

By Lh : Xh → Zh we denote the so-called lumping operator : if v : Ph → �, then

we set

(3.12) Lhvh =
∑

i∈J

vh(Qi) di ∈ Zh.

Obviously, Lh(Vh) = Yh.
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In order to derive the discrete problem to (2.14)–(2.16) from Definition 1, we put

(u, v)h =
∫

Ωh

(Ihu)(Ihv) dx, u, v ∈ H1(Ωh),(3.13)

((u, v))h =
∑

i∈I

∫

Ti

∇u · ∇v dx, u, v ∈ L2(Ωh),

u|T , v|T ∈ H1(T ) ∀T ∈ Th,

b̃h(u, v) =
∑

i∈I

∫

Ti

2∑

s=1

∂fs(u)
∂xs

v dx, u ∈ L∞(Ωh),

v ∈ L2(Ωh), u|T ∈ H1(T ) ∀T ∈ Th.

By | · |h we denote the discrete L2-norm induced by (·, ·)h. For vh ∈ Xh we set
Ihvh = vh and then

(3.14) (uh, vh)h = (uh, vh)L2(Ωh), |vh|h = ‖vh‖L2(Ωh), uh, vh ∈ Xh.

If Ωh = Ω, then for “regular” functions we have

((u, v))h = ((u, v)), u, v ∈ H1(Ω),(3.15)

b̃h(u, v) = b(u, v), u ∈ H1(Ω) ∩ L∞(Ω), v ∈ L2(Ω).

The form ((·, ·))h induces the seminorm

(3.16) ‖uh‖Xh
=

(∑

i∈I

∫

Ti

|∇uh|2 dx
)1/2

, uh ∈ Xh.

Under the notation

(3.17) ‖uh‖Xh(Ti) =

(∫

Ti

|∇uh|2 dx
)1/2

, i ∈ I, uh ∈ Xh,

we have

(3.18) ‖uh‖2Xh
=

∑

i∈I

‖uh‖2Xh(Ti), uh ∈ Xh.

The following Cauchy inequality holds:

(3.19) ((uh, vh))h � ‖uh‖Xh
‖vh‖Xh

, uh, vh ∈ Xh.
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In the case when the diffusion ν is small, it is suitable to modify the discrete “con-

vection” form b̃h with the aid of the finite volume approach. Let u ∈ H1(Ωh), vh ∈ Vh.
Then we write

∫

Ωh

2∑

s=1

∂fs(u)
∂xs

v dx ≈
∫

Ωh

2∑

s=1

∂fs(u)
∂xs

Lhv dx

=
∑

i∈J

v(Qi)
∫

Di

2∑

s=1

∂fs(u)
∂xs

dx

=
∑

i∈J

v(Qi)
∫

∂Di

2∑

s=1

fs(u)ns dS

=
∑

i∈J

v(Qi)
∑

j∈S(i)

∫

Γij

2∑

s=1

fs(u)ns dS

=
∑

i∈J

v(Qi)
∑

j∈s(i)

∫

Γij

2∑

s=1

fs(u)ns dS

≈
∑

i∈J

v(Qi)
∑

j∈s(i)

H (u(Qi), u(Qj),nij) lij .

The function H defined on �
2 × S, where S = {n ∈ �

2 ; |n| = 1}, is called a
numerical flux.

It is easy to see that the form

(3.20) bh(u, v) =
∑

i∈J

v(Qi)
∑

j∈s(i)

H (u(Qi), u(Qj),nij) lij

obtained above has sense for all u, v ∈ Xh. We will use it as an approximation of
the form b̃h.

Definition 2. We define the approximate solution of problem (2.1)–(2.3) as
functions uk

h, tk ∈ [0, T ], given by the conditions

(3.21) u0h = Ihu
0 (∈ Vh),

(3.22) uk+1
h ∈ Vh, tk ∈ [0, T ),

1
τ
(uk+1

h − uk
h, vh)h + bh(uk

h, vh) + ν((u
k+1
h , vh))h = (gk+1, vh)h,(3.23)

∀vh ∈ Vh, tk ∈ [0, T ),

where gk = g(·, tk). The function uk
h is the approximate solution at time tk.
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Properties of the numerical flux. In what follows we use the following as-
sumptions:
1. H = H(y, z,n) is locally Lipschitz-continuous with respect to y, z: for any

M∗ > 0 there exists c(M∗) > 0 such that

|H(y, z,n)−H(y∗, z∗,n)| � c(M∗)(|y − y∗|+ |z − z∗|)(3.24)

∀y, y∗, z, z∗ ∈ [−M∗,M∗], ∀n ∈ S .

2. H is consistent :

(3.25) H(u, u,n) =
2∑

s=1

fs(u)ns, ∀u ∈ �, ∀n = (n1, n2) ∈ S .

3. H is conservative:

(3.26) H(y, z,n) = −H(z, y,−n) ∀y, z ∈ �, ∀n ∈ S .

4. H is monotone in the following sense: For a given fixed number M∗ > 0 the
function H(y, z,n) is nonincreasing with respect to the second variable z on the set

(3.27) MM∗ = {(y, z,n); y, z ∈ [−M∗,M∗],n ∈ S }.

Lemma 1. Problem (3.21)–(3.23) from Definition 2 has the following properties:
1. The bilinear forms (·, ·)h and ((·, ·))h defined in (3.13) are scalar products on Vh.

2. For each uh ∈ Xh, bh(uh, ·) is a linear form on Vh.

3. If i ∈ J and T ∈ Th is a triangle for which Qi ∈ T , then

(3.28) |T ∩Di| =
1
3
|T |.

4. The approximation (·, ·)h of the L2-scalar product can be defined with the aid of
numerical integration using the centres Qij of sides Sij of Ti ∈ Th as integration

points:

(3.29) (u, v)h =
1
3

∑

i∈I

|Ti|
3∑

j=1

u(Qij)v(Qij) =
∫

Ω
(Lhu)(Lhv) dx, u, v ∈ Xh.

5. We have

(3.30) (wi, wj)h = δij |Di|, i, j ∈ J,

(3.31) (u,wi)h =
1
3

∑

{T∈Th;Qi∈T∩Ph}
|T |u(Qi) = |Di|u(Qi), i ∈ J, u ∈ Xh,

(3.32) (gk, wi)h = |Di|g(Qi, tk), i ∈ J, tk ∈ [0, T ].
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6. Problem (3.22)–(3.23) has a unique solution uk+1
h .

7. Function z ∈ Xh and y ∈ Vh can be expressed in the form

(3.33) z =
∑

j∈J

z(Qj)wj and y =
∑

j∈J◦
y(Qj)wj ,

respectively.

8. Problem (3.22)–(3.23) is equivalent to the system of algebraic equations

|Di|uk+1
h (Qi) + τν

∑

j∈J◦
((wi, wj))hu

k+1
h (Qj)(3.34)

= |Di|uk
h(Qi)− τbh(uk

h, wi) + τ |Di|g(Qi, tk), i ∈ J◦,(3.35)

for unknown values uk+1
h (Qj), j ∈ J◦. This system is uniquely solvable.

�����. Assertions 1, 2, 3 and 7 are obvious. By [4], Par. 4.1, the numerical

quadrature

(3.36)
∫

Ti

u dx ≈ |Ti|
3

3∑

j=1

u(Qij),

is exact for polynomials of degree � 2. This together with 3 implies assertion 4.
Assertion 5 is a consequence of 3 and 4. Assertion 6 follows from the Lax-Milgram
lemma, 8 is obtained from 5, 6 and 7. �

4. Convergence

In what follows, for simplicity we assume that the domain Ω is polygonal and,

hence, Ωh = Ω. Let us consider a system {Th}h∈(0,h0) (h0 > 0) of triangulations
of the domain Ω, set τ = T/r for any integer r > 1 and define the partition of the

interval [0, T ] formed by time instants tk = kτ , k = 0, 1, . . . , r.
We define functions uhτ , whτ : (−∞,∞) → Vh associated with an approximate

solution {uk
h}r

k=0:

uhτ (t) = u
0
h, t � 0,(4.1)

uhτ (t) = uk
h, t ∈ (tk−1, tk], k = 1, . . . , r,

uhτ (t) = ur
h, t � T ;

whτ is a continuous, piecewise linear mapping of [0, T ] into Vh,(4.2)

whτ (tk) = uk
h, k = 0, . . . , r,

whτ (t) = 0 for t < 0 or t > T.
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Our goal is to prove that the functions uhτ , whτ , constructed from the values

of the approximate solution uk
h, tk ∈ [0, T ] with the aid of scheme (3.21)–(3.23),

converge in some sense to the exact solution of problem (2.1)–(2.3) as h, τ → 0
in a suitable way. In what follows we shall work with a number of constants. By

c, c1, c2, . . . , ĉ, ĉ1, . . . , c̃, c̃1, . . . we will denote constants independent of h, τ , ν, and
C,C1, . . . will denote constants that are independent of h, τ , but depend on ν.

Moreover, c will be used as a generic constant attaining in general different values
at different places.

Assumptions:
1. Let the system {Th}h∈(0,h0) be regular, i.e. there exists ϑ0 > 0 such that

(4.3) θh � ϑ0 > 0 ∀h ∈ (0, h0).

2. Let the magnitude of all angles of all T ∈ Th, h ∈ (0, h0), is less than or equal to
�/2, i.e.

(4.4) The triangulations Th, h ∈ (0, h0) are of weakly acute type.

3. The inverse assumption is satisfied: There exists c1 > 0 such that

(4.5)
h

h(T )
� c1 ∀T ∈ Th ∀h ∈ (0, h0).

In view of [4], Remark 3.1.3, assumption (4.3) implies the existence of a constant
c2 > 0 such that

(4.6) h2 � c2|T |, T ∈ Th, h ∈ (0, h0).

5. L∞-stability

In virtue of (2.10) and (2.11), u0 ∈ C(Ω) and g ∈ C(QT ). Hence, there exist

constants M̃ and K̃ such that

(5.1) ‖u0h‖L∞(Ω) � M̃, ‖g‖L∞(QT ) � K̃.

Let us put

(5.2) M∗ = M̃ + TK̃.
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If uh ∈ Xh and |uh(Qi)| � M∗ for all i ∈ J , then ‖uh‖L∞(Ω) � M := 3M∗. The

main tool for proving the L∞-stability is the discrete maximum principle represented
by the following results.

Theorem 1. For i ∈ J◦ and j ∈ J let real numbers aij , bij , δi, ϕi, uj, ũj, τ

satisfy the following conditions:

τ > 0,

aii > 0 ∀i ∈ J◦, aij � 0 ∀i ∈ J◦, j ∈ J, i 
= j,
bij � 0 ∀i ∈ J◦, j ∈ J,∑

j∈J

aij =
∑

j∈J

bij = δi > 0 ∀i ∈ J◦,

∑

j∈J

aij ũj =
∑

j∈J

bijuj + τδiϕi ∀i ∈ J◦,

ũi = ui = 0, ∀i ∈ J − J◦.

Then

(5.3) max
j∈J

|ũj| � max
j∈J

|uj|+ τ max
j∈J◦

|ϕi|.

����� follows from [22], Lemma 3.1.1, page 29. �

Lemma 2. Let wi, i ∈ J be the basis functions of Xh defined above. Then under

assumption (4.4) the following relations are valid:

((wi, wi))h > 0, i ∈ J,(5.4)

((wi, wj))h � 0, i, j ∈ J, i 
= j,(5.5) ∑

j∈J

((wi, wj))h = 0, i ∈ J.(5.6)

�����. By the definition, we have

(5.7) ((wi, wj))h =
∑

T∈Th

|T |∇wi|T · ∇wj |T .

If ∇wi|T ·∇wj |T 
= 0 then Qi, Qj must be the midpoints of the sides of the triangle T .

So, let T be a triangle with nodes Qi = (xi1, xi2), Qj = (xj1, xj2), Qk = (xk1, xk2).
Taking into account that wi|T is uniquely determined by its values at the vertices of

275



the triangle QiQjQk and using the standard results (Cf., e.q., [14], Section 4.4), we

have

∇wi|T =
1
D
(xj2 − xk2, xk1 − xj1),

∇wj |T =
1
D
(xk2 − xi2, xi1 − xk1),(5.8)

∇wk|T =
1
D
(xi2 − xj2, xj1 − xi1),

where

(5.9) D =

∣∣∣∣∣∣

xi1, xi2, 1
xj1, xj2, 1

xk1, xk2, 1

∣∣∣∣∣∣
.

This implies that

(5.10) |∇wi|T |2 =
1
D2

|Qj −Qk|2 > 0.

Since wi + wj + wk = 1 on T , we have

(5.11) |∇wi|2 +∇wi · ∇wj +∇wi · ∇wk = 0 on T.

Further, using (5.8), the well-known expression of the cosine of the angle between

two vectors and denoting by αi the angle in the triangle QiQjQk at the vertex Qi,
we find that

(5.12) ∇wi|T · ∇wj |T = −
1
D2

|Qi −Qj| |Qi −Qk| cosαi � 0

(similarly for ∇wi · ∇wk and ∇wj · ∇wk). The last inequality is a consequence of
the assumption (4.4) on the angles of T ∈ Th, which implies that αi ∈ (0, �/2]. Now
we multiply (5.10)–(5.12) by |T |, sum over all T ∈ Th and use (5.7). As a result we

immediately obtain (5.4)–(5.6). �

Theorem 2. If τ > 0 and h ∈ (0, h0) satisfy the condition

(5.13) τc(M∗)|∂Di| � |Di|, i ∈ J,

where c(M∗) is the constant from (3.24), and if (5.1) and (5.2) hold, then

‖uk
h‖L∞(Ω) � M, tk ∈ [0, T ],(5.14)

‖uhτ‖L∞(QT ), ‖whτ‖L∞(QT ) � M.(5.15)
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�����. In virtue of (3.34) and the fact that uh(Qj) = 0, Qj ∈ ∂Ω, identity

(3.23) can be written in the form

|Di|uk+1
h (Qi) + τν

∑

j∈J

((wi, wj))hu
k+1
h (Qj)(5.16)

= |Di|uk
h(Qi)− τbh(u

k
h, wi) + τ |Di|g(Qi, tk), i ∈ J◦, k � 0.

By induction with respect to k we will prove that

(5.17) ‖uk
h(Qi)‖L∞(Ω) � M̃ + kτK̃ � M∗, tk ∈ [0, T ], Qi ∈ Ph.

Obviously, (5.17) holds for k = 0. Let us assume that (5.17) is valid for some

tk ∈ [0, T ).
Let us denote by Li the left hand side of (5.16) and set ui = uk

h(Qi) and ϕi =

g(Qi, tk) (for simplicity we omit the superscript k). Then (5.16) reads

Li = |Di|ui − τbh(uh, wi) + τ |Di|ϕi

= |Di|ui − τ
∑

j∈s(i)

H(ui, uj ,nij)lij + τ |Di|ϕi

= |Di|ui + τ
∑

j∈s(i)

[
H(ui, ui,nij)−H(ui, uj,nij)−H(ui, ui,nij)

]
lij

+ τ |Di|ϕi, i ∈ J◦.

In view of the consistency of the numerical flux H (see (3.25)) and Green’s theorem,

we have
∑

j∈s(i)

H(ui, ui,nij)lij =
∫

∂Di

2∑

s=1

fs(ui)ns dS = 0.

Hence, if we set

(5.18) � ij =





0, ui = uj

H(ui, ui,nij)−H(ui, uj,nij)
uj − ui

lij , ui 
= uj,

we can write

(5.19) Li = |Di|ui + τ
∑

j∈s(i)

� ij (uj − ui) + τ |Di|ϕi.

Due to the monotonicity of the numerical flux,

(5.20) � ij � 0, i ∈ J◦, j ∈ s(i).
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In virtue of the induction assumption, |ui| � M̃ + kτK̃ < M∗ for i ∈ J . This and

the local Lipschitz-continuity of H imply that

0 � � ij � c(M∗)lij = c(M∗)|Γij |.

Using (3.8), we find that

0 �
∑

j∈s(i)

� ij � c(M∗)
∑

j∈s(i)

|Γij | � c(M∗)|∂Di|

and hence, by (5.13),

(5.21) |Di| − τ
∑

j∈s(i)

� ij � 0, i ∈ J◦.

From (5.19) it follows that (5.16) can be written in the form

|Di|uk+1
h (Qi) + τν

∑

j∈J

((wi, wj))hu
k+1
h (Qj)(5.22)

=

(
|Di| − τ

∑

j∈s(i)

� ij

)
uk

h(Qi) + τ
∑

j∈s(i)

� iju
k
h(Qj) + τ |Di|ϕk

i , i ∈ J◦.

Taking into account (5.4)–(5.6), (5.20) and (5.21), we see that Theorem 1 can be

applied if we set

aij = |Di|δij + τν((wi, wj))h,(5.23)

bii = |Di| − τ
∑

k∈s(i)

� ik ,

bij = τ� ij , i 
= j,
ui = uk

h(Qi),

ũi = u
k+1
h (Qi),

δi = |Di|.

Inequality (5.3) and the fact that uk+1
h (Qj) = 0 for Qj ∈ ∂Ωh imply that

max
i∈J

|uk+1
h (Qi)| � max

i∈J
|uk

h(Qi)|+ τ‖g(·, tk)‖L∞(Ω).

In view of the induction assumption and (5.1), we find that

max
i∈J

|uk+1
h (Qi)| � M̃ + (k + 1)τK̃ � M∗.

Hence, ‖uk+1
h ‖L∞(Ω) � M = 3M∗, which we wanted to prove. �

278



Lemma 3. Assumption (4.3) and its consequence (4.6) imply that there exists a
constant c3 > 0 such that

(5.24) |Di|/|∂Di| � c3h, ∀i ∈ J, ∀h ∈ (0, h0).

�����. From (3.28) we deduce that

(5.25) ∀i ∈ J ∃j0 ∈ I such that |Di| �
1
3
|Tj0 |,

which together with (4.6) implies that

(5.26) |Di| �
1
3c2

h2 ∀i ∈ J.

Further, it is easy to see that |∂Di| � 8
3h, which together with (5.26) gives assertion

(5.24). �

As we see, we can consider the stability condition

(5.27) 0 � τ � c3c(M)−1h.

Obviously, (5.24) and (5.27) yield (5.13).

6. Consistency

Lemma 4. (Discrete Friedrichs inequality) There exists a constant ĉ1 indepen-
dent of h such that

(6.1) ‖uh‖L2(Ω) � ĉ1‖uh‖Xh
, uh ∈ Vh, h ∈ (0, h0).

�����. In [31], Chap. I, Par. 4, Proposition 4.13 or [8], Lemma 8.9.92, this

lemma is proved provided Ω is convex. For the case of a general polygonal domain
see [7]. �

Definition 3. Let us define the space L2(0, T ;Vh) as the set of all functions

vh : (0, T )→ Vh such that

‖vh‖L2(0,T ;Vh) ≡
(∫ T

0
‖vh(t)‖2Xh

dt

)1/2
(6.2)

=

(∫ T

0

(∑

i∈I

∫

Ti

|∇vh(t)|2 dx
)
dt

)1/2
<∞.
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Lemma 5. The interpolation operator Ih defined by (3.10) has the following
properties:

(6.3) If ϕ ∈ V, then Ihϕ ∈ Vh.

Let ϕ ∈ Hk+1(Ω), where k = 0 or 1. Then for h ∈ (0, h0) we have

‖ϕ− Ihϕ‖Xh
� chk‖ϕ‖Hk+1(Ω),(6.4)

‖ϕ− Ihϕ‖L2(Ω) � chk+1‖ϕ‖Hk+1(Ω),(6.5)

‖Ihϕ‖Xh
� c‖ϕ‖H1(Ω),(6.6)

(6.7) ϕ ∈ H1(Ω)⇒ ‖ϕ− Ihϕ‖Xh
→ 0 as h→ 0

with c > 0 independent of ϕ and h.

�����. See [8], Lemma 8.9.81. �

Lemma 6. There exists a constant c > 0 such that for any h ∈ (0, h0) we have

(6.8) ‖vh‖L2(Ω) = ‖Lhvh‖L2(Ω), vh ∈ Xh,

(6.9) ‖vh − Lhvh‖L2(Ω) � ch‖vh‖Xh
, vh ∈ Xh,

(6.10) (uh, vh) = (uh, vh)h, uh, vh ∈ Xh,

(6.11) |(gk, vh)− (gk, vh)h| � ch‖gk‖W 1,q(Ω)‖vh‖Xh
, vh ∈ Vh.

If M > 0 and κ ∈ (0, 1), then there exists a constant c̃ = c̃(M,κ) such that

|b̃h(uh, vh)− bh(uh, vh)| � c̃h1−κ
(
‖uh‖2Xh

+ ‖uh‖Xh

)
‖vh‖Xh

,(6.12)

uh ∈ Vh ∩ L∞(Ω), ‖uh‖L∞(Ω) � M, vh ∈ Vh, h ∈ (0, h0),

where the forms b̃h and bh are defined by (3.13) and (3.20), respectively.

�����. 1. Let vh ∈ Xh. We can write

(6.13) ‖vh‖2L2(Ω) =
∫

Ω
|vh|2 dx =

∑

i∈I

∫

Ti

|vh|2 dx.

By the definition of Xh, vh|Ti is a linear function. Since the quadrature formula

(6.14)
∫

Ti

ϕdx ≈ 1
3
|Ti|

3∑

j=1

ϕ(Qij)

280



is precise for quadratic functions on Ti, we immediately find that

(6.15) ‖vh‖2L2(Ω) =
∑

i∈I

1
3
|Ti|

3∑

j=1

vh(Qij)2.

On the other hand, from the definition of Lh and (3.28) it follows that

‖Lhvh‖2L2(Ω) =
∫

Ω
|Lhv|2 dx =

∑

j∈J

∫

Dj

|Lhv|2 dx(6.16)

=
∑

j∈J

|Dj |vh(Qj)
2 =

∑

i∈I

1
3
|Ti|

3∑

j=1

vh(Qij)
2.

Now (6.15) and (6.16) yield (6.8).

Ti1

Ti2

Ti3

Qi1

Qi2

Qi3

Fig. 3. Partition of a triangle Ti into subtriangles Ti1, Ti2, Ti3

2. Each vh ∈ Xh is linear on Ti ∈ Th and can be expressed in the form
(6.17)

vh(x1, x2) = vh(Qij) +
∂vh

∂x1

∣∣∣∣
Ti

(x1 − x1(Qij)) +
∂vh

∂x2

∣∣∣∣
Ti

(x2 − x2(Qij)) , j = 1, 2, 3,

where (x1(Qij), x2(Qij)) are the coordinates of Qij .

Next we have | (x1 − x1(Qij)) | � h, | (x2 − x2(Qij)) | � h for (x1, x2) ∈ Ti. Every
triangle Ti ∈ Th can be divided into three subtriangles Ti1, Ti2, Ti3 (see Fig. 3).
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Then we have

‖vh − Lhvh‖2L2(Ω) =
∫

Ω
|vh − Lhvh|2 dx =

∑

i∈I

3∑

j=1

∫

Tij

|vh − Lhvh|2 dx

=
∑

i∈I

3∑

j=1

∫

Tij

∣∣∣∣
∂vh

∂x1

∣∣∣
Ti

(
x1 − x1(Qij)

)
+
∂vh

∂x2

∣∣∣
Ti

(
x2 − x2(Qij)

)∣∣∣∣
2

dx

� h2
∑

i∈I

3∑

j=1

∫

Tij

(∣∣∣∣
∂vh

∂x1

∣∣∣∣+
∣∣∣∣
∂vh

∂x2

∣∣∣∣
)2
dx � 2h2

∑

i∈I

∫

Ti

(∣∣∣∣
∂vh

∂x1

∣∣∣∣
2

+

∣∣∣∣
∂vh

∂x2

∣∣∣∣
2
)
dx

= 2h2‖vh‖2Xh
,

which proves (6.9).

3. Assertion (6.10) immediately follows from (3.13) and the fact that uh = Ihuh for
uh ∈ Xh.

4. Assertion (6.11) follows from relation (3.29), the fact that the quadrature formula
(3.36) is exact for polynomials of degree � 2 and [4], Theorem 4.1.5.
5. Let us define the form

(6.18) b∗h(uh, vh) =
∑

i∈J

vh(Qi)
∑

j∈s(i)

∫

Γij

2∑

s=1

fs(uh)ns dS, uh, vh ∈ Vh.

We write

b̃h(uh, vh)− bh(uh, vh) =
[
b̃h(uh, vh)− b̃h(uh, Lhvh)

]
(6.19)

+
[
b̃h(uh, Lhvh)− b∗h(uh, vh)

]
+

[
b∗h(uh, vh)− bh(uh, vh)

]

and estimate the expressions in square brackets separately. Obviously, due to (6.9)
and the bound ‖uh‖L∞(Ω) � M ,

∣∣∣b̃h(uh, vh)− b̃h(uh, Lhvh)
∣∣∣ =

∣∣∣∣∣
∑

i∈I

∫

Ti

2∑

s=1

f ′s(uh)
∂uh

∂xs
(vh − Lhvh) dx

∣∣∣∣∣(6.20)

� max
|ξ|�M

max
s=1,2

|f ′s(ξ)| ‖∇uh‖L2(Ω)‖vh − Lhvh‖L2(Ω)

� c̃h‖uh‖Xh
‖vh‖Xh

, c̃ = c̃(M).
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Using notation from Fig. 3, we have

b̃h(uh, Lhvh) =
∑

i∈I

∫

Ti

2∑

s=1

∂fs(uh)
∂xs

Lhvh dx(6.21)

=
∑

i∈I

3∑

j=1

vh(Qij)
∫

Tij

2∑

s=1

∂fs(uh)
∂xs

dx

=
∑

i∈I

3∑

j=1

vh(Qij)
∫

∂Tij

2∑

s=1

fs(uh)ns dS.

It is evident (see Fig. 4) that for each k ∈ J there exist i, i∗ ∈ I and j, j∗ ∈ {1, 2, 3}
such that

(6.22) Dk = Tij ∪ Ti∗j∗ , Sk = Tij ∩ Ti∗j∗ , Qij = Qi∗j∗ = Qk.

If Dk is a boundary finite volume then i = i∗, j = j∗ and Sk = Tij ∩ ∂Ωh.

Dk

Qk

Sk

Tij
Ti∗j∗

Fig. 4. Line of discontinuity Sk of finite volume Dk

The function uh ∈ Xh is in general discontinuous on Sk − {Qk}. We denote
uh|Ti = (uh)

p
k and uh|T∗i = (uh)nk . We denote the outer unit normals to Ti, Ti∗ on

Sk by n
p
k, n

n
k and their components by n

p
ks, n

n
ks, s = 1, 2, respectively. (Obviously
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np
k = −nn

k .) We have

∫

∂Tij

2∑

s=1

fs(uh)ns dS +
∫

∂Ti∗j∗

2∑

s=1

fs(uh)ns dS(6.23)

=
∫

∂Dk

2∑

s=1

fs(uh)ns dS +
∫

Sk

2∑

s=1

fs ((uh)
p
k)n

p
ks dS

+
∫

Sk

2∑

s=1

fs ((uh)
n
k )n

n
ks dS

=
∫

∂Dk

2∑

s=1

fs(uh)ns dS +
∫

Sk

2∑

s=1

[fs ((uh)
p
k)− fs ((uh)

n
k )]n

p
ks dS.

Now from (6.21), (6.23) and the definition of the forms b∗h, b̃h we have

(6.24)

b̃h(uh, Lhvh)− b∗h(uh, vh) =
∑

k∈J

vh(Qk)
∫

Sk

2∑

s=1

[fs ((uh)
p
k)− fs ((uh)nk )]n

p
ks dS.

In the following we omit for simplicity the subscript k and write up
h = (uh)

p
k, u

n
h =

(uh)nk , ns = n
p
ks. By assumption (2.9) and the Taylor formula we can write

fs(u
p
h) = fs(uK) + f

′
s(uK)(u

p
h − uK) +

1
2
f
′′
s (ηsp)(u

p
h − uK)2, s = 1, 2,(6.25)

fs(un
h) = fs(uK) + f

′
s(uK)(un

h − uK) +
1
2
f
′′
s (ηsn)(un

h − uK)2, s = 1, 2,

where uK = u
p
h(Qk) = un

h(Qk), ηsp lies between u
p
h and uK , ηsn lies between un

h and
uK . Using the above notation for s = 1, 2, we have

(6.26)

fs(u
p
h)− fs(u

n
h) = f

′
s(uK)(u

p
h − un

h) +
1
2

[
f
′′
s (ηs1)(u

p
h − uK)

2 − f
′′
s (ηs2)(u

n
h − uK)

2
]
.

Since up
h, u

n
h are linear functions, then ∇up

h and ∇un
h are constant and

up
h(x) − un

h(x) = (∇up
h −∇un

h) · (x−Qk) , x ∈ Sk,(6.27)

up
h(x)− uK = ∇up

h · (x−Qk) , x ∈ Sk,

un
h(x)− uK = ∇un

h · (x−Qk) , x ∈ Sk,

|x−Qk| �
h

2
, x ∈ Sk.
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Now from the assumptions on uh, (6.26) and (6.27) we have

∣∣∣∣
∫

Sk

2∑

s=1

(fs(u
p
h)− fs(u

n
h))ns dS

∣∣∣∣(6.28)

�
∣∣∣∣
∫

Sk

2∑

s=1

f ′s(uK) (u
p
h − un

h) dS

∣∣∣∣

+ max
|ξ|�M

max
s=1,2

|f ′′s (ξ)|
h2

4

∫

Sk

∣∣|∇up
h|2 − |∇un

h|2
∣∣ dS

� max
|ξ|�M

max
s=1,2

|f ′′s (ξ)|
h3

4

(
|∇up

h|2 + |∇un
h|2

)
,

since
∫

Sk
(up

h − un
h) dS = 0, as one can easily show. Putting (6.28) into (6.24) and

taking into account that u(Qk) = 0 for Qk ∈ ∂Ωh, we obtain

∣∣∣b̃h(uh, Lhvh)− b∗h(uh, vh)
∣∣∣(6.29)

� max
|ξ|�M

max
s=1,2

|f ′′s (ξ)|
h3

4

∑

k∈Jo

|vh(Qk)|
(
|∇(uh)

p
k|2 + |∇(uh)

n
k |2

)

� max
|ξ|�M

max
s=1,2

|f ′′s (ξ)|
h3

2

∑

i∈I

3∑

j=1

∣∣∣∇uh

∣∣
Ti

∣∣∣
2 ∣∣∣Lhvh

∣∣
Tij

∣∣∣

� ĉ max
|ξ|�M

max
s=1,2

|f ′′s (ξ)|
h

2

∑

i∈I

3∑

j=1

|Ti|
∣∣∣∇uh

∣∣
Ti

∣∣∣
2 ∣∣∣Lhvh

∣∣
Tij

∣∣∣

� ch‖vh‖L∞(Ω)‖uh‖2Xh
.

Let us put p = 2/κ (∈ (2,∞)). Similarly as in [29] we have

(6.30) ‖vh‖Lp(Ω) � c(p)‖vh‖Xh
, vh ∈ Vh, h ∈ (0, h0).

(Cf. also [31], Chap. II, Par. 23.) Then, using the inverse assumption (4.5), with the

aid of the inverse inequality ([4], Theorem 3.2.6), we obtain

(6.31) ‖vh‖L∞(Ω) � c̃(p)h−
2
p ‖vh‖Lp(Ω), vh ∈ Vh, h ∈ (0, h0).

Now (6.29), (6.30) and (6.31) imply that

(6.32)
∣∣∣b̃h(uh, Lhvh)− b∗h(uh, vh)

∣∣∣ � c(M,κ)h1−κ‖uh‖2Xh
‖vh‖Xh

, vh ∈ Vh.
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Using (3.20), (6.18), the conservativity of the numerical flux H and the relations

Γij = Γji, lij = lji,nij = −nji, we arrive at

(6.33)

b∗h(uh, vh)− bh(uh, vh)

=
∑

i∈J

vh(Qi)
∑

j∈s(i)

{∫

Γij

2∑

s=1

fs(uh)ns dS −H (uh(Qi), uh(Qj),nij) lij

}

=
1
2

∑

i∈J

∑

j∈s(i)

[∫

Γij

2∑

s=1

fs(uh)ns dS −H (uh(Qi), uh(Qj),nij) lij

]
(vh(Qi)− vh(Qj)) .

If i ∈ J and j ∈ s(i) then we denote by T ij the triangle from Th such that Γij ⊂ T ij.
It is easy to see that

|Qi −Qj | �
h

2
, |x−Qi| �

h

2
for x ∈ Γij , lij � 2

3
h,(6.34)

|uh(Qi)− uh(Qj)| �
h

2
|∇uh|T ij |,

|uh(x)− uh(Qi)| �
h

2
|∇uh|T ij | for x ∈ Γij ,

|vh(Qi)− vh(Qj)| �
h

2
|∇vh|T ij |.

In virtue of the consistency and local Lipschitz-continuity of H , the bound
‖uh‖L∞(Ω) � M and (6.34), we conclude that

∣∣∣∣∣

∫

Γij

2∑

s=1

fs(uh)ns dS −H (uh(Qi), uh(Qj),nij) lij

∣∣∣∣∣(6.35)

�
∣∣∣∣∣

∫

Γij

2∑

s=1

(fs(uh)− fs(uh(Qi)))ns dS

∣∣∣∣∣

+

∣∣∣∣∣
2∑

s=1

fs(uh(Qi))−H (uh(Qi), uh(Qj),nij)

∣∣∣∣∣ lij

=

∣∣∣∣∣

∫

Γij

[H (uh(x), uh(x),nij)−H (uh(Qi), uh(Qi),nij)] dS

∣∣∣∣∣
+ |H (uh(Qi), uh(Qi),nij)−H (uh(Qi), uh(Qj),nij)| lij

� 2c(M) max
x∈Γij

|uh(x) − uh(Qi)| lij + c(M) |uh(Qi)− uh(Qj)| lij

� c(M)h2 |∇uh|T ij | .
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This, (6.33) and (6.34) immediately yield the estimate

(6.36) |b∗h(uh, vh)− bh(uh, vh)| �
1
2

∑

i∈J

∑

j∈s(i)

c(M)h3 |∇uh|T ij | |∇vh|T ij | .

Taking into account that each triangle T ∈ Th appears in the sum in (6.36) as some

T ij at most six times and using (4.6), we find that

|b∗h(uh, vh)− bh(uh, vh)| � 3c2c(M)h
∑

i∈I

|Ti| |∇uh|Ti | |∇vh|Ti |

= ch
∑

i∈I

∫

Ti

|∇uh| |∇vh| dx � ch‖uh‖Xh
‖vh‖Xh

.

This, (6.19), (6.20) and (6.32) finally yield (6.12). �

Lemma 7. If M > 0, then there exists a constant c∗ = c∗(M) such that

|bh(uh, vh)| � c∗‖uh‖L∞(Ω)‖vh‖Xh
,(6.37)

uh ∈ Vh ∩ L∞(Ω), ‖uh‖L∞(Ω) � M, vh ∈ Vh, h ∈ (0, h0).

�����. Let uh, vh ∈ Vh and ‖uh‖L∞(Ω) � M . Using (3.20), the conservativity

of the numerical flux and the relations Γij = Γji, lij = lji, nij = −nji, we find that

bh(uh, vh) =
∑

i∈J

vh(Qi)
∑

j∈s(i)

H (u(Qi), u(Qj),nij) lij(6.38)

=
1
2

∑

i∈J

∑

j∈s(i)

H (u(Qi), u(Qj),nij) (vh(Qi)− vh(Qj)) lij .

Let us use the symbol T ij in the same way as in the proof of Lemma 6. Then (6.38),

(2.9), (6.34), the consistency and local Lipschitz-continuity of H imply that

(6.39) |bh(uh, vh)| �
1
2
c(M)max

Ω
|uh|

∑

i∈J

∑

j∈s(i)

h2
∣∣∇vh

∣∣
T ij

∣∣ .

From (6.39), (4.6), the fact that each T ∈ Th appears in the above sum as some T ij

at most six times and from the Cauchy inequality we conclude that

|bh(uh, vh)| � 3c2c(M)‖uh‖L∞(Ω)

∑

i∈I

|Ti|
∣∣∣∇vh

∣∣
Ti

∣∣∣(6.40)

= 3c2c(M)‖uh‖L∞(Ω)

∫

Ω
|∇vh| dx

� 3c2c(M) (meas(Ω))1/2 ‖uh‖L∞(Ω)‖vh‖Xh
,

which is (6.37) with c∗ := 3c2c(M)(meas(Ω))1/2. �
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The above results imply the following

Theorem 3. Let (5.1), (5.2) and (5.13) hold. Then the solution uk+1
h of the

discrete problem (3.21)–(3.23) satisfies the relation

(uk+1
h − uk

h, vh) + τ b̃h(uk
h, vh) + τν((u

k+1
h , vh))h = τ(gk+1, vh) + lkh(vh),(6.41)

vh ∈ Vh, tk ∈ [0, T ), h ∈ (0, h0),

where

lkh(vh) = lk1h(vh) + lk2h(vh),(6.42)

lk1h(vh) = τ
(
b̃h(uk

h, vh)− bh(uk
h, vh)

)
,(6.43)

lk2h(vh) = −τ
(
(gk, vh)− (gk, vh)h

)
.(6.44)

Moreover, for any κ ∈ (0, 1) there exists a constant c > 0 independent of vh, k, τ

and h (but dependent on κ and M) such that

(6.45)
∣∣lk1h(vh)

∣∣ � cτh1−κ
(
‖uk

h‖2Xh
+ ‖uk

h‖Xh

)
‖vh‖Xh

.

There exists a constant ĉ independent of vh, k, τ and h such that

(6.46)
∣∣lk2h(vh)

∣∣ � ĉτh‖gk‖W 1,q(Ω)‖vh‖Xh
.

����� is an immediate consequence of Theorem 2 and Lemma 6. �

7. A priori estimates

Theorem 4. Let (5.1) and (5.2) hold. Then there exists a constant Ĉ > 0

independent of h, τ and m (but dependent on ν) such that

(7.1) max
tk∈[0,T ]

‖uk
h‖L2(Ω) � Ĉ,

(7.2)
m∑

k=1

‖uk
h − uk−1

h ‖2L2(Ω) � Ĉ, tm ∈ (0, T ],

(7.3) ντ

m∑

k=0

‖uk
h‖2Xh

� Ĉ, tm ∈ [0, T ],

for all τ, h > 0 satisfying the conditions h ∈ (0, h0) and (5.13).

288



�����. In view of Lemma 3 and Theorem 2, conditions (5.1), (5.2) and (5.27)

imply (5.14). If we set vh := u
k+1
k in (3.23) and use the relation

(7.4) (y − z, y) =
1
2

(
‖y‖2L2(Ω) − ‖z‖2L2(Ω) + ‖y − z‖2L2(Ω)

)

valid for y, z ∈ L2(Ω), we get

‖uk+1
h ‖2L2(Ω) − ‖uk

h‖2L2(Ω) + ‖uk+1
h − uk

h‖2L2(Ω) + 2τν‖uk+1
h ‖2Xh

(7.5)

= 2τ(gk, uk+1
h )h − 2τbh(uk

h, u
k+1
h ).

In virtue of Theorem 2, Lemma 7 and Young’s inequality for ε > 0, we have

(7.6) 2
∣∣bh(uk

h, u
k+1
h )

∣∣ � (c∗M)2 /ε+ ε‖uk+1
h ‖2Xh

.

By (3.29) and the Cauchy inequality,

(7.7)
∣∣(gk, uk+1

h )h
∣∣ =

∣∣(Lhg
k, Lhu

k+1
h )

∣∣ � ‖Lhg
k‖L2(Ω)‖Lhu

k+1
h ‖L2(Ω).

With the aid of the definition of the operator Lh and the continuous imbedding

W 1,q(Ω) ↪→ C(Ω) it is easy to find that

(7.8) ‖Lhg
k‖L2(Ω) � c‖g‖C(0,T ;W 1,q(Ω))

with c independent of h and k. Further, from (3.14) and (3.29) we have

(7.9) ‖vh‖L2(Ω) = ‖vh‖h = ‖Lhvh‖L2(Ω), ∀vh ∈ Xh.

This, (7.7), (7.8), Lemma 4 and Young’s inequality yield the estimate

2
∣∣(gk, uk+1

h )h
∣∣ � 2ĉ1c‖g‖C(0,T ;W 1,q(Ω))‖uh‖Xh

(7.10)

� ĉ21c
2‖g‖2C(0,T ;W 1,q(Ω))/ε+ ε‖uh‖2Xh

, ε > 0.

Now choosing ε = ν/2, from (7.5), (7.6) and (7.10) we get

‖uk+1
h ‖2L2(Ω) − ‖uk

h‖2L2(Ω) + ‖uk+1
h − uk

h‖2L2(Ω) + ντ‖uk+1
h ‖2Xh

� Cτ,(7.11)

C = 2(ĉ21c
2‖g‖2C(0,T ;W 1,q(Ω)) + (c

∗M)2)/ν.

Summation over k = 0, . . . ,m−1 (tm ∈ (0, T ]) and the use of (7.9), (3.21), (6.6) and
Lemma 4 yield

‖um
h ‖2L2(Ω) +

m∑

k=1

‖uk
h − uk−1

h ‖2L2(Ω) + τν
m∑

k=1

‖uk
h‖2Xh

(7.12)

� CT + ‖u0h‖2L2(Ω) � CT + ĉ21‖u0h‖2Xh

� CT + ĉ21c‖u0‖2H1(Ω) � Ĉ, tm ∈ (0, T ).

Now, estimates (7.12) immediately imply (7.1)–(7.3). �

289



Theorem 5. Let (5.1) and (5.2) hold. Then there exists a constant C > 0 such

that functions uhτ and whτ defined by (4.1) and (4.2) satisfy the estimates

‖uhτ‖L2(−1,T ;L2(Ω)) � C,(7.13)

‖whτ‖L2(0,T ;L2(Ω)) � C,(7.14)

‖uhτ‖L2(−1,T ;Vh) � C,(7.15)

‖whτ‖L2(0,T ;Vh) � C(7.16)

for all h ∈ (0, h0) and τ > 0 satisfying condition (5.13). Moreover, there exists a
constant C̃ > 0 such that

(7.17) ‖uhτ − whτ‖L2(QT ) � C̃
√
τ

for all h and τ with the above properties.

�����. Assertions (7.13) and (7.15) immediately follow from (7.1) and (7.3),
respectively.

Now let us prove (7.17). We have

‖uhτ − whτ‖2L2(QT ) =
r∑

k=1

∫ tk

tk−1

∥∥∥∥
t− tk
τ

(
uk

h − uk−1
h

)∥∥∥∥
2

L2(Ω)

dt

�
r∑

k=1

‖uk
h − uk−1

h ‖2L2(Ω)
∫ tk

tk−1

( t− tk
τ

)2
dt � Ĉ

τ

3
,

as follows from (7.2).

Assertion (7.14) is a consequence of (7.13) and (7.17). Finally,

(7.18) ‖whτ‖2L2(0,T ;Vh) =
r∑

k=1

∫ tk

tk−1

‖whτ (t)‖2Xh
dt

and for t ∈ (tk−1, tk), using the convexity of the function “u→ ‖u‖2Xh
,” we get

(7.19) ‖whτ (t)‖2Xh
=

∥∥∥∥u
k−1
h +

t− tk
τ

(
uk

h − uk−1
h

)∥∥∥∥
2

Xh

� ‖uk−1
h ‖2Xh

+ ‖uk
h‖2Xh

.

This and (7.3) already yield (7.16). �
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8. Passage to limit

We rewrite scheme (3.23) in the form

d
dt
(whτ (t), vh)h + ν((uhτ , vh))h + bh(uhτ (t− τ), vh) = (ghτ (t), vh)h(8.1)

for a. e. t ∈ (0, T ), vh ∈ Vh,

where

(8.2) ghτ (t) = gk+1 for t ∈ (tk, tk+1).

The weak solution of the continuous problem (2.1)–(2.3) satisfies the condition
u(·, t) ∈ V for a.e. t ∈ (0, T ) and the approximate solution uk

h ∈ Vh for tk ∈ [0, T ].
Since we use nonconforming FEM and thus Vh 
⊂ V , the convergence analysis is more
complex than in the conforming case investigated in [11]. Our further considerations

will be based on results from [31] and [8], Section 8.9.
If vh ∈ Vh, then the distributional derivatives are not elements of L2(Ω). There-

fore, we will define the discrete analogue dihvh of the derivatives
∂vh

∂xi
, i = 1, 2:

(8.3) (dihvh)(x) =

(
∂vh

∂xi

)
(x), x ∈ T, T ∈ Th.

Obviously, dihv ∈ L2(Ω).
We introduce the space F =

[
L2(Ω)

]3
and the mapping ω : V → F defined by

(8.4) u ∈ V �−→ ωu =

(
u,

∂u

∂x1
,
∂u

∂x2

)
∈ F.

The space F is equipped with the norm

(8.5) ‖ϕ‖F =

( 2∑

i=0

‖ϕi‖2
)1/2

for ϕ = (ϕ0, ϕ1, ϕ2) ∈ F.

We define a scalar product in F by

(8.6) (ϕ, ψ)F =
2∑

i=0

(ϕi, ψi)L2(Ω), ϕ = (ϕ0, ϕ1, ϕ2), ψ = (ψ0, ψ1, ψ2) ∈ F.

Further, we define the imbedding operator Jh : Vh → F by

(8.7) vh ∈ Vh �−→ Jhvh = (vh, d1hvh, d2hvh) ∈ F.
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From (8.5) and the discrete Friedrichs inequality (6.1) we have

(8.8) ‖Jhvh‖2F = ‖vh‖2L2(Ω) + ‖vh‖2Xh
� (c21 + 1)‖vh‖2Xh

for vh ∈ Vh,

which leads to

(8.9) ‖Jhvh‖F � c‖vh‖Xh
for vh ∈ Vh.

This implies that the operators Jh, h ∈ (0, h0), are uniformly bounded :

(8.10) ‖Jh‖ = sup
0�=vh∈Vh

‖Jhvh‖F

‖vh‖Xh

� c, h ∈ (0, h0).

We will also work with the operator Ih : V → Vh defined by (3.10). Let us prove

several auxiliary results.

Lemma 8. 1. For each v ∈ V ,

(8.11) lim
h→0

Jh(Ihv) = ωv strongly in F.

2. If for a sequence hn ∈ (0, h0), n = 1, 2, . . . we have h = hn → 0 as n → ∞,
vh ∈ Vh and

(8.12) lim
h→0

Jhvh = ϕ weakly in F,

then there exists v ∈ V such that ϕ = ωv.

�����. 1. Let v ∈ V . In view of (8.4) and (8.7) we have

(8.13) ‖Jh(Ihv)− ωv‖2F = ‖Ihv − v‖2Xh
+ ‖Ihv − v‖2L2(Ω) → 0 for h→ 0

as follows from Lemma 5.

2. To establish assertion 2, see the 2nd and 3rd part of the proof of 8.9.118 from
[8] or Chap. 1, Sec. 5 from [21]. �

������ 1. The family of triplets {Vh, Jh, Ih}h∈(0,h0) together with {V, F, ω}
is called the external approximation of the space V . If (8.10) holds, the external
approximation of V is called stable. If the operators Ih, Jh have properties (8.11) and

(8.12), then the external approximation of V is called convergent (cf. [21], Chap. I,
Sec. 5. or [31], Chap. I, Par. 3).
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Lemma 9. There exists a constant c > 0 such that

(8.14)

∣∣∣∣
∑

T∈Th

∫

∂T

vhϕni dS

∣∣∣∣ � ch‖ϕ‖H1(Ω)‖vh‖Xh
, h ∈ (0, h0),

for any ϕ ∈ H1(Ω) and vh ∈ Vh. Here ni denotes the i-th component of the unit

outer normal to ∂T .

�����. See [8], Lemma 8.9.85 and Lemma 4. �

Now let us return to the systems of functions uhτ and whτ defined in (4.1) and

(4.2), respectively, for h ∈ (0, h0) and τ > 0 satisfying the stability condition (5.13).
Then uhτ and whτ satisfy estimates (7.13), (7.15) and (7.14), (7.16), respectively.

Lemma 10. There exist sequences h = hn, τ = τh → 0 as n → ∞ satisfying

(5.13) and functions u ∈ L2(−1, T ;V ), ϕ ∈ L2(−1, T ;F ) such that

uhτ → u weakly in L2(−1, T ;L2(Ω)),(8.15)

Jhuhτ → ϕ weakly in L2(−1, T ;F ),(8.16)

and ϕ = ωu.

�����. In view of (7.15) and (8.9) we have

(8.17) ‖Jhuhτ‖L2(−1,T ;F ) � c‖uhτ‖L2(−1,T ;Vh) � C, h ∈ (0, h0), τ > 0,

where C > 0 is a constant independent of h and τ . Since the spaces L2(−1, T ;L2(Ω))
and L2(−1, T ;F ) are reflexive, we obtain sequences h = hn, τ = τn → 0 and
functions u, ϕ such that (8.15) and (8.16) hold.

Further, we prove that ϕ = ωu. If ϕ = (ϕ0, ϕ1, ϕ2), then obviously u = ϕ0.
We want to show that ∂u

∂xs
= ϕs, s = 1, 2 in the sense of distributions on Q̃T =

Ω × (−1, T ). We can proceed similarly as in the proof of 8.9.81 from [8]. Let
ϕ ∈ C∞(Q̃T ). Then (8.15) and (8.16) imply that

∫

Q̃T

uhτ
∂ϕ

∂xs
dxdt→

∫

Q̃T

u
∂ϕ

∂xs
dxdt,(8.18)

∫

Q̃T

dshuhτϕdxdt→
∫

Q̃T

ϕsϕdxdt.(8.19)

Using Fubini’s and Green’s theorems, we get
∫

Q̃T

uhτ
∂ϕ

∂xs
dxdt =

∫ T

−1

(∫

Ω
uhτ

∂ϕ

∂xs
dx

)
dt(8.20)

= −
∫ T

−1

(∑

i∈I

∫

Ti

∂uhτ

∂xs
ϕdx

)
dt+

∫ T

−1

(∑

i∈I

∫

∂Ti

uhτϕns dS

)
dt.

293



Since ϕ ∈ C∞(Q̃T ) and uhτ : (−1, T ) → Vh, we conclude from Lemma 9 and the
Cauchy inequality that

∣∣∣∣
∫ T

−1

(∑

i∈I

∫

∂Ti

uhτϕns dS

)
dt

∣∣∣∣ � ch

∫ T

−1
‖uhτ (t)‖Xh

‖ϕ(t)‖H1(Ω) dt(8.21)

� ch‖uhτ‖L2(−1,T ;Vh)‖ϕ‖L2(−1,T ;H1(Ω)) � C̃h→ 0 as h, τ → 0.

This, (8.18)–(8.20) and the relation

(8.22)
∫ T

−1

(∑

i∈I

∫

Ti

∂uhτ

∂xs
ϕdx

)
dt =

∫

Q̃T

dshuhτϕdxdt

imply that

(8.23)
∫

Q̃T

u
∂ϕ

∂xs
dxdt = −

∫

Q̃T

ϕsϕdxdt.

Taking here ϕ ∈ C∞0 (Q̃T ) ⊂ C∞(Q̃T ), we find that
∂u
∂xs
= ϕs ∈ L2(−1, T ;L2(Ω)),

s = 1, 2. Hence, u ∈ L2(−1, T ;H1(Ω)) and ϕ = ωu. As we see, we have

(8.24)
∫

Q̃T

u
∂ϕ

∂xs
dxdt = −

∫

Q̃T

∂u

∂xs
ϕdxdt ∀ϕ ∈ C∞(Q̃T ), s = 1, 2.

The application of Green’s theorem yields the identity

(8.25)
∫ T

−1

(∫

∂Ω
uϕns dS

)
dt = 0 ∀ϕ ∈ C∞(Q̃T ), s = 1, 2,

which implies that u(t) = 0 on ∂Ω for a.e. t ∈ (−1, T ). Thus, u ∈ L2(−1, T ;V ). �

Lemma 11. If h = hn and τ = τn are sequences from Lemma 10, then

whτ → u weakly in L2(0, T ;L2(Ω))(8.26)

Jhwhτ → ωu weakly in L2(0, T ;F ).(8.27)

�����. We use Lemma 10 and (7.17). �

Lemma 12. Let h = hn → 0 as n → ∞, vh ∈ Xh, v ∈ V , Jhvh → ωv weakly in

F . Then vh → v strongly in L2(Ω).

�����. See part 5) of the proof of Theorem 8.9.118 from [8]. �
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In the sequel we will use the compactness criterion based on the Fourier transform

ŵhτ of the function whτ with respect to time:

(8.28) ŵhτ (s) =
∫

�

whτ (t)e−2�ist dt.

Lemma 13. We have

(8.29)
∫

�

|s|2γ‖ŵhτ (s)‖2L2(Ω) ds � c for 0 < γ < 1/4

with a constant c independent of h, τ .

�����. For a.e. t ∈ (0, T ) we define rhτ (t) ∈ Vh by the identity

(8.30) ((rhτ (t), vh))h = (ghτ (t), vh)h−ν((uhτ (t), vh))h−bh(uhτ (t−τ), vh) ∀vh ∈ Vh.

Hence, by (8.1),

(8.31)
d
dt
(whτ (t), vh)h = ((rhτ (t), vh))h, vh ∈ Vh, a.e. t ∈ (0, T ).

Substituting vh := rhτ (t) in (8.30) and using (6.37), (6.1), (2.10) and (5.15), we

obtain

‖rhτ (t)‖2Xh
� ‖rhτ (t)‖L2(Ω)‖ghτ(t)‖L2(Ω) + ν‖uhτ (t)‖Xh

‖rhτ (t)‖Xh

+ c∗‖uhτ(t)‖L∞(Ω)‖rhτ (t)‖Xh
� c‖rhτ (t)‖Xh

(1 + ‖uhτ(t)‖Xh
)

and thus, in view of (4.2),

(8.32) ‖rhτ (t)‖Xh
� c

(
1 + ‖uk

h‖Xh

)
, tk−1 � t � tk.

This, (7.3) and the Cauchy inequality imply that

∫ T

0
‖rhτ (t)‖Xh

dt �
√
T

(∫ T

0
‖rhτ (t)‖2Xh

dt

)1/2
(8.33)

� c
√
T

(
T + τ

r∑

k=1

‖uk
h‖2Xh

)1/2
� const.

Now we put

(8.34) r̄hτ (t) =

{
rhτ (t), t ∈ (0, T ),
0, t 
∈ (0, T ).
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Then the Fourier transform r̂hτ of rhτ satisfies the relations

(8.35) ‖ˆ̄rhτ (s)‖Xh
=

∥∥∥∥
∫ ∞

−∞
e−2�istr̄hτ (t) dt

∥∥∥∥
Xh

�
∫ T

0
‖rhτ (t)‖Xh

dt � c, s ∈ �.

The distribution derivative of the function (whτ (t), vh)h over � has the form

(8.36)
d
dt
(whτ (t), vh)h = ((r̄hτ (t), vh))h + (u

0
h, vh)hδ0 − (ur

h, vh)hδT , vh ∈ Vh,

where δ0 and δT are the Dirac distributions concentrated at t = 0 and t = T ,
respectively. The Fourier transform yields

2�is(ŵhτ (s), vh)h = ((ˆ̄rhτ (s), vh))h + (u0h, vh)h(8.37)

− (ur
h, vh)h exp(−2�isT ), s ∈ �.

Putting here vh := ŵhτ (s), we have

2�is(ŵhτ (s), ŵhτ (s))h = ((ˆ̄rhτ (s), ŵhτ (s)))h(8.38)

+ (u0h, ŵhτ (s))h − (ur
h, ŵhτ (s))h exp(−2�isT ), c ∈ �.

From (6.10), (8.38) and the Cauchy inequality we find that

2�|s|‖ŵhτ (s)‖2L2(Ω) � ‖ˆ̄rhτ (s)‖Xh
‖ŵhτ (s)‖Xh

(8.39)

+ ‖u0h‖L2(Ω)‖ŵhτ (s)‖L2(Ω)

+ ‖ur
h‖L2(Ω)‖ŵhτ (s)‖L2(Ω).

In view of (8.39), (8.35), (7.1) and (6.1), we obtain

(8.40) |s|‖ŵhτ (s)‖2L2(Ω) � c‖ŵhτ (s)‖Xh
, s ∈ �.

Let 0 < γ < 1/4. Obviously, there exists a constant c(γ) such that

(8.41) |s|2γ � c(γ)
1 + |s|
1 + |s|1−2γ , s ∈ �,

and

(8.42)
∫ ∞

−∞

ds
(1 + |s|1−2γ)2 <∞.
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Using (8.40)–(8.42), the Cauchy inequality and (6.1), we find that

∫ ∞

−∞
|s|2γ‖ŵhτ (s)‖2L2(Ω) ds(8.43)

� c

∫ ∞

−∞
‖ŵhτ (s)‖2L2(Ω) ds+ c

∫ ∞

−∞

‖ŵhτ (s)‖Xh

1 + |s|1−2γ ds

� c

∫ ∞

−∞
‖ŵhτ (s)‖2Xh

ds

{
1 +

(∫ ∞

−∞

ds
(1 + |s|1−2γ)2

)1/2}

� c

∫ ∞

−∞
‖ŵhτ (s)‖2Xh

ds.

With the aid of (3.16), Fubini’s theorem, the differentiation of the integral with
respect to a parameter, Parseval’s equality and (7.16), we obtain

∫ ∞

−∞
‖ŵhτ (s)‖2Xh

ds(8.44)

=
∫ ∞

−∞

∑

i∈I

∫

Ti

∣∣∣∣∇
∫ ∞

−∞
whτ (t)e−2�its dt

∣∣∣∣
2

dxds

=
∑

i∈I

∫

Ti

(∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
∇whτ (t)e

−2�its dt

∣∣∣∣
2

ds

)
dx

Parseval′s equality
=

=
∑

i∈I

∫

Ti

(∫ ∞

−∞
|∇whτ (t)|2 dt

)
dx =

∫ T

0

(∑

i∈I

∫

Ti

|∇whτ (t)|2 dx
)
dt

= ‖whτ‖2L2(0,T ;Vh) � C.

�

Now we prove the fundamental compactness result.

Lemma 14. Let us consider the sequences h = hn, τ = τn → 0 and whτ = whnτn

from Lemma 11 satisfying (7.16) and (8.26). Then (8.27) holds and

(8.45) whτ → u strongly in L2(QT ),

where u is the limit function from Lemma 11.

�����. Let us set

w(t) = u(t), t ∈ (0, T ),
w(t) = 0, t < 0 or t > T.
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Then, in virtue of (8.26) and (8.27),

Jhwhτ → ωw weakly in L2(�, F ),(8.46)

whτ → w weakly in L2(�, L2(Ω)).(8.47)

Our goal is to prove that

(8.48) Fhτ =
∫ ∞

−∞
‖whτ (t)− w(t)‖2L2(Ω) dt→ 0.

In virtue of (7.14), Fhτ is uniformly bounded for h ∈ (0, h0) and τ > 0 satisfying
(5.13). By Parseval’s equality,

(8.49) Fhτ =
∫ ∞

−∞
‖ŵhτ (s)− ŵ(s)‖2L2(Ω) ds,

where ŵ is the Fourier transform of w.

For γ > 0 we define the space

(8.50) H κ =

{
v ; ωv ∈ L2(−1, 1;F ),

∫

�

|s|2γ‖v̂(s)‖2L2(Ω) ds <∞
}

equipped with the scalar product

(8.51) (v, w)H κ =
∫ T

−1
(ωv(t), ωw(t))F dt+

∫

�

|s|2γ (v̂(s), ŵ(s)) ds.

It can be proved that H γ is a Hilbert space. In virtue of Theorem 5 and Lemma
13, the system {whτ} is uniformly bounded in H γ for all h ∈ (0, h0) and τ > 0

satisfying condition (5.13). Then, taking into account (8.47), we can write

(8.52) whτ → w weakly in H γ

and thus in view of the boundedness of Fhτ and relation (8.49),

(8.53)
∫ ∞

−∞
(1 + |s|2γ)‖ŵhτ (s)− ŵ(s)‖2L2(Ω) ds � C <∞.
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Now we write

Fhτ =
∫

|s|�M

‖ŵhτ (s)− ŵ(s)‖2L2(Ω) ds(8.54)

+
∫

|s|>M

(
1 + |s|2γ

)
‖ŵhτ (s)− ŵ(s)‖2L2(Ω)

ds
1 + |s|2γ

� Jhτ +
1

1 +M2γ

∞∫

−∞

(
1 + |s|2γ

)
‖ŵhτ (s)− ŵ(s)‖2L2(Ω) ds

� Jhτ +
C

1 +M2γ
,

where

(8.55) Jhτ =
∫

|s|�M

‖ŵhτ (s)− ŵ(s)‖2L2(Ω) ds.

For a given ε > 0 we choose M > 0 such that

(8.56)
C

1 +M2γ
� ε

2
.

Hence,

(8.57) Fhτ � Jhτ +
ε

2
.

Now we want to prove that

(8.58) Jhτ → 0 as h, τ → 0.

As we will show, this is a consequence of the Lebesgue theorem. We have

(8.59) ŵhτ (s) =
∫ ∞

−∞
whτ (t)e−2�its dt =

∫ ∞

−∞
whτ (t)χ(t)e−2�its dt, ∀s ∈ �,

where χ is the characteristic function of the interval [0, T ] (hence whτ = χwhτ ).
Then, using (7.14), we have

‖ŵhτ (s)‖L2(Ω) =

∥∥∥∥
∫ ∞

−∞
whτ (t)χ(t)e−2�its dt

∥∥∥∥
L2(Ω)

(8.60)

� ‖whτ (t)‖L2(�,L2(Ω))‖χ(t)e−2�its‖L2(�) � C

299



and

(8.61) ‖ŵhτ (s)− ŵ(s)‖2L2(Ω) � 2
(
C2 + ‖ŵ(s)‖2L2(Ω)

)
∀s ∈ �.

The function on the right-hand side of (8.61) is integrable over the interval (−M,M).
By definition, (8.26) is equivalent to

(8.62)
∫

�×Ω
(whτ − w)ϕdxdt→ 0 ∀ϕ ∈ L2(�, L2 (Ω)).

For ϑ ∈ L2(Ω) we have ϕ(x, t) = ϑ(x)χ(t)e−2�its ∈ L2(�, L2(Ω)) for any fixed s ∈ �.

Then, by the definition of the Fourier transform, Fubini’s theorem and (8.62),
∫

Ω
(ŵhτ (s)− ŵ(s))ϑ dx =

∫

Ω

(∫

�

(whτ (x, t) − w(x, t)) e−2�itsχ(t) dt

)
ϑ(x) dx

=
∫

�×Ω
(whτ (x, t)− w(x, t)) ϑ(x)χ(t)e−2�its dt dx→ 0 as h, τ → 0,

which means that

(8.63) ŵhτ (s)→ ŵ(s) =
∫ ∞

−∞
w(t)χ(t)e−2�its dt weakly in L2(Ω) ∀s ∈ �.

Due to (8.59), the Cauchy inequality and (7.16), we have

‖ŵhτ (s)‖Xh
=

∥∥∥∥
∫ ∞

−∞
whτ (t)χ(t)e−2�its dt

∥∥∥∥
Xh

(8.64)

� ‖whτ (t)‖L2(0,T ;Vh)‖χ(t)e−2�its‖L2(�) � C.

Hence

(8.65) ‖Jhŵhτ (s)‖F � C for all s ∈ �.

Now (8.63), reflexivity of the space F , (8.65) and assertion 2 of Lemma 8 imply

that

(8.66) Jhŵhτ (s)→ ωŵ(s) weakly in F for each s ∈ �.

Since ŵhτ (s) ∈ Xh (h = hn, τ = τn → 0 as n → ∞), the application of Lemma 12
implies that

(8.67) ŵhτ (s)→ ŵ(s) strongly in L2(Ω) for all s ∈ �.

Hence,

(8.68) ‖ŵhτ (s)− ŵ(s)‖2L2(Ω) → 0 ∀s ∈ �.

From (8.68), the bound (8.61) and the Lebesgue theorem we obtain (8.58). This
proves the lemma. �
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From Lemmas 10, 11 and 14 and assertion (7.17) we can conclude that there exist

sequences h = hn → 0, τ = τn → 0 as n→∞ satisfying (5.13) and a function u such
that

Jhuhτ → ωu weakly in L2(−1, T ;F ),(8.69)

Jhwhτ → ωu weakly in L2(−1, T ;F ),
uhτ → u strongly in L2(Q̃T ),

whτ → u strongly in L2(Q̃T )

as n → ∞. Since L∞(QT ) is the dual to the separable Banach space L1(QT ), the
above results and (5.15) imply that

uhτ → u weak-* in L∞(QT ),(8.70)

whτ → u weak-* in L∞(QT ).

9. Limit Process

Let us consider sequences h = hn, τ = τn → 0 satisfying (5.13) and assume
that the corresponding approximate solutions uhτ , whτ satisfy conditions (5.15) and

(8.69). Our goal is to show that the limit function u is a weak solution of problem
(2.1)–(2.3), i.e. u satisfies (2.14)–(2.16).

Multiplying (8.1) by any ψ ∈ C∞0 ([0, T )) := {ϕ ∈ C∞([0, T ]) ; ϕ(T ) = 0}, in-
tegrating over (0, T ), applying the integration by parts in the first term and using

(4.2), which implies that whτ (0) = u0h, we find that

−
∫ T

0
(whτ (t), ψ

′(t)vh)h dt+ ν
∫ T

0
((uhτ (t), ψ(t)vh))h dt(9.1)

+
∫ T

0
bh(uhτ (t− τ), ψ(t)vh) dt

=
∫ T

0
(ghτ (t), ψ(t)vh)h dt+ (u

0
h, vh)ψ(0), vh ∈ Vh, ψ ∈ C∞0 ([0, T )).

For t ∈ [0, T ], vh ∈ Vh, ψ ∈ C∞0 ([0, T )) we set

(9.2) ϑhτ (t;ψ, vh) = (ghτ (t), ψ(t)vh)h − (ghτ (t), ψ(t)vh) .
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Taking into account (6.10), we see that (9.1) is equivalent to

−
∫ T

0
(whτ (t), ψ′(t)vh) dt+ ν

∫ T

0
((uhτ (t), ψ(t)vh))h dt(9.3)

+
∫ T

0
bh(uhτ (t− τ), ψ(t)vh) dt

=
∫ T

0
(ghτ (t), ψ(t)vh) dt+ (u0h, vh)ψ(0) +

∫ T

0
ϑhτ (t;ψ, vh) dt.

In virtue of (6.11) and (2.10), we obtain

(9.4)

∣∣∣∣
∫ T

0
ϑhτ (t;ψ, vh) dt

∣∣∣∣ � ch‖vh‖Xh
.

Let v ∈ C∞0 (Ω), vh = Ihv. From (6.1), (6.4) and (6.6) we have

‖vh − v‖L2(Ω) � ĉ1‖vh − v‖Xh
� ch‖v‖H2(Ω)(9.5)

‖vh‖Xh
� c, h ∈ (0, h0).

This implies that

(9.6) Jhvh → ωv strongly in F.

Hence,

(9.7) ψ′vh → ψ′v strongly in L2(QT )

and

(9.8) Jhψvh → ωψv strongly in L2(0, T ;F ).

The analysis of the limit process will be divided into several lemmas. In what

follows we consider sequences h = hn → 0, τ = τn → 0 as n → ∞ satisfying (5.13),
such that (8.69) and (8.70) hold.

Lemma 15. Let ψ(t) ∈ C∞0 ([0, T )) and let whτ , vhτ be two sequences satisfying

whτ → u strongly in L2(QT ),(9.9)

vhτ → v strongly in L2(QT ).(9.10)

Then

(9.11)
∫ T

0
(whτ (t), ψ′(t)vhτ ) dt→

∫ T

0
(u(t), ψ′(t)v) dt

as h = hn → 0 and τ = τn → 0.
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Proof is evident.

Lemma 16. Let ψ(t) ∈ C∞0 ([0, T )) and let uhτ , vhτ be two sequences satisfying

Jhuhτ → ωu weakly in L2(0, T ;F ),(9.12)

Jhvh → ωv strongly in F.(9.13)

Then

(9.14)
∫ T

0
((uhτ (t), ψ(t)vhτ ))h dt→

∫ T

0
((u(t), ψ(t)v)) dt

as h = hn → 0 and τ = τn → 0.
�����. From (9.13) it follows that

(9.15) Jhψ(t)vh → ψ(t)v strongly in L2(0, T ;F ).

We have
∫ T

0
((uhτ (t), ψ(t)vh))h dt =

∫ T

0
(Jhuhτ (t), Jhψ(t)vh)F dt−

∫ T

0
(uhτ (t), ψ(t)vh) dt,

∫ T

0
((u(t), ψ(t)v))h dt =

∫ T

0
(ωu(t), ψ(t)ωv)F dt−

∫ T

0
(u(t), ψ(t)v) dt.

By the definition, (9.12) means that

(9.16)
∫ T

0
(Jhuhτ (t), ϑ(t)) dt→

∫ T

0
(ωu(t), ϑ(t)) dt ∀ϑ ∈ L2(0, T ;F ).

We can write
∣∣∣∣
∫ T

0
((uhτ (t), ψ(t)vhτ ))h dt−

∫ T

0
((u(t), ψ(t)v)) dt

∣∣∣∣(9.17)

�
∣∣∣∣
∫ T

0
(Jhuhτ (t), Jhψ(t)vh)F dt−

∫ T

0
(ωu(t), ψ(t)ωv)F dt

∣∣∣∣

+

∣∣∣∣
∫ T

0
(uhτ (t), ψ(t)vh) dt−

∫ T

0
(u(t), ψ(t)v) dt

∣∣∣∣

�
∫ T

0
‖Jhuhτ (t)‖F ‖ψ(t)(Jhvh − ωv)‖F dt(9.18)

+

∣∣∣∣
∫ T

0
(Jhuhτ (t), ψ(t)ωv)F dt−

∫ T

0
(ωu(t), ψ(t)ωv) dt

∣∣∣∣

+

∣∣∣∣
∫ T

0
(uhτ (t), ψ(t)vh) dt−

∫ T

0
(uhτ (t), ψ(t)v) dt

∣∣∣∣

+

∣∣∣∣
∫ T

0
(uhτ (t), ψ(t)v) dt−

∫ T

0
(u(t), ψ(t)v) dt

∣∣∣∣ → 0,
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as follows from the boundedness of the sequence {Jhuhτ} in L2(0, T ;F ), (9.12), (9.15)
and (9.16), where we substitute ϑ(t) = ψ(t)v. �

Lemma 17. Let ψ(t) ∈ C∞0 ([0, T )) and let uhτ , vh be two sequences satisfying

uhτ → u strongly in L2(Q̃T ), Q̃T = Ω× (−1, T ),(9.19)

Jhuhτ → ωu weakly in L2(−1, T ;F ),(9.20)

Jhvh → ωv strongly in F, v ∈ C∞0 (Ω).(9.21)

Then

∫ T

0
bh(uhτ (t− τ), vh)ψ(t) dt→

∫ T

0
b(u(t), v)ψ(t) dt(9.22)

as h = hn → 0, τ = τn → 0.

�����. We write

bh(uhτ (t− τ), vh)− b(u(t), v)

= bh(uhτ (t− τ), vh)− b̃h(uhτ (t− τ), vh) (=: σ(1))

+ b̃h(uhτ (t− τ), vh)− b̃h(uhτ (t− τ), v) (=: σ(2))

+ b̃h(uhτ (t− τ), v) − b(u(t− τ), v) (=: σ(3))

+ b(u(t− τ), v)− b(u(t), v) (=: σ(4))

(b̃h is defined in (3.13)) and successively estimate the terms σ(1)–σ(4):

In virtue of (6.12),

|σ(1)| � ch1−κ(‖uhτ (t− τ)‖2Xh
+ ‖uhτ(t− τ)‖Xh

)‖vh‖Xh

with κ ∈ (0, 1). Hence,
∣∣∣∣
∫ T

0

[
bh(uhτ (t− τ), vh)− b̃h(uhτ (t− τ), vh)

]
ψ(t) dt

∣∣∣∣(9.23)

� ch1−κ‖vh‖Xh

[∫ T

0
‖uhτ (t− τ)‖2Xh

dt+

(∫ T

0
‖uhτ(t− τ)‖2Xh

dt

)1/2]

� ch1−κ,

as follows from (7.15), (9.20) and (9.21). Similarly, using the Cauchy inequality and

(9.5), we obtain
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∣∣∣∣
∫ T

0

[
b̃h(uhτ (t− τ), vh)− b̃h(uhτ (t− τ), v)

]
ψ(t) dt

∣∣∣∣(9.24)

� 2 max
|ξ|�M

max
s=1,2

|f ′s(ξ)|
∫ T

0
‖uhτ(t− τ)‖2Xh

dt‖vh − v‖L2(Ω)

� c‖Jhvh − ωv‖F → 0.

Further,

σ(3) =
∑

i∈I

∫

Ti

2∑

s=1

(
∂fs(uhτ (t− τ))

∂xs
− ∂fs(u(t− τ))

∂xs

)
v dx

=
∑

i∈I

∫

Ti

2∑

s=1

(
f ′s(uhτ (t− τ))

∂uhτ (t− τ)
∂xs

− f ′s(u(t− τ))
∂u(t− τ)
∂xs

)
v dx

=

σ∗(3)︷ ︸︸ ︷
∑

i∈I

∫

Ti

2∑

s=1

(f ′s(uhτ (t− τ)) − f ′s(u(t− τ)))
∂uhτ (t− τ)

∂xs
v dx

+
∑

i∈I

∫

Ti

2∑

s=1

f ′s(u(t− τ))

(
∂uhτ(t− τ)

∂xs
− ∂u(t− τ)

∂xs

)
v dx.

Using the mean value theorem in the integral form, we find that

|σ∗(3)| � max
ξ∈[−M,M ]

max
s=1,2

|f ′′s (ξ)|
∑

i∈I

∫

Ti

|uhτ (t− τ) − u(t− τ)| |∇uhτ (t− τ)| |v| dx

� c ‖uhτ (t− τ) − u(t− τ)‖L2(Ω) ‖uhτ (t− τ)‖Xh
.

Since ψ(t) = 0 for t � T , the substitution t := t− τ yields

∣∣∣∣
∫ T

0

[
b̃h(uhτ (t− τ), v) − b(u(t− τ), v)

]
ψ(t) dt

∣∣∣∣(9.25)

� c
(
‖uhτ − u‖2L2(QT ) + τ‖u

0
h − u0‖2L2(Ω)

)1/2 (
‖Jh uhτ‖2F + τ‖u0h‖2Xh

)1/2

+

∣∣∣∣
∫ T

0
ψ(t+ τ)

∑

i∈I

∫

Ti

2∑

s=1

f ′s(u(t))

(
∂uhτ(t)
∂xs

− ∂u(t)
∂xs

)
v dxdt

+ τ
∑

i∈I

∫

Ti

2∑

s=1

f ′s(u
0)

(
∂u0h
∂xs

− ∂u0

∂xs

)
v dx

∣∣∣∣ −→ 0 as h, τ → 0

due to (9.19), (9.20) and (6.7) valid for ϕ = u0.
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Similar calculation yields the estimate

∣∣∣∣
∫ T

0
(b(u(t− τ), v)− b(u(t), v))ψ(t) dt

∣∣∣∣(9.26)

� c

∫ T

0

∫

Ω
|u(x, t− τ) − u(x, t)|2 dxdt ‖v‖H1(Ω) → 0 as h, τ → 0,

which is a consequence of the continuity in the mean of u ∈ L2(Q̃T ). (Cf., e.g., [25],
Theorem 2.4.2.)

Now (9.23)–(9.26) immediately imply (9.22). �

Lemma 18. Let ψ(t) ∈ C∞0 ([0, T )) and let vhτ , ghτ be two sequences such that

vh → v strongly in L2(Ω),(9.27)

ghτ (t) = g
k = g(·, tk), ∀t ∈ [tk, tk+1),(9.28)

where g satisfies (2.10). Then

(9.29)
∫ T

0
(ghτ (t), vh)ψ(t) dt→

∫ T

0
(g(t), v)ψ(t) dt as h, τ → 0.

�����. Obviously, by (2.10) and (9.27),

∣∣∣∣
∫ T

0
((ghτ (t), vh)− (g(t), v))ψ(t) dt

∣∣∣∣(9.30)

� c

∫ T

0
‖ghτ (t)‖L2(Ω)‖vh − v‖L2(Ω) dt

+ c
∫ T

0
‖ghτ(t)− g(t)‖L2(Ω)‖v‖L2(Ω) dt

� c‖vh − v‖L2(Ω) + c

(∫ T

0
‖ghτ (t)− g(t)‖2L2(Ω) dt

)1/2
.

In virtue of the uniform continuity of the mapping g : [0, T ]→ L2(Ω), we have

∫ T

0
‖ghτ(t)− g(t)‖2L2(Ω) dt =

r−1∑

k=0

∫ tk+1

tk

‖g(tk)− g(t)‖2L2(Ω) dt→ 0 as τ → 0.

This, (9.27) and (9.30) yield (9.29). �
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Finally, using (6.1), (6.7) and (9.5) we conclude that

(9.31) (u0h, vh)→ (u0, v) as h→ 0.

Now, summarizing (9.1), (9.2), (9.3), (9.4), (9.11), (9.14), (9.22), (9.29) and (9.31),

we see that the limit function u ∈ L2(0, T ;V ) ∩ L∞(QT ) satisfies the identity

−
∫ T

0
(u(t), v)ψ′(t) dt+ ν

∫ T

0
((u(t), v))ψ(t) dt+

∫ T

0
b (u(t), v)ψ(t) dt(9.32)

=
∫ T

0
(g(t), v)ψ(t) dt+ (u0, v)ψ(0), v ∈ C∞0 (Ω), ψ ∈ C∞0 ([0, T )).

Since the space C∞0 (Ω) is dense in V , (9.32) holds for all v ∈ V . Moreover,
C∞0 ((0, T )) ⊂ C∞0 ([0, T )) and identity (9.32) implies (2.17). Hence, u satisfies (2.14)–

(2.15).
It is possible to show that u′ ∈ L2(0, T ;V ∗) and

(9.33) 〈u′(t), v〉+ ν((u(t), v)) + b(u(t), v) = (g(t), v), v ∈ V, a.e. t ∈ (0, T ),

where 〈·, ·〉 is the duality between V ∗ and V . (Cf., e.g., [31], Sec. 8.6.)
If we multiply (9.33) by any ψ ∈ C∞0 ([0, T )), integrate over (0, T ) and transform

the first term with the aid of integration by parts, we obtain the identity

−
∫ T

0
(u(t), v)ψ′(t) dt+ ν

∫ T

0
((u(t), v))ψ(t) dt+

∫ T

0
b (u(t), v)ψ(t) dt(9.34)

=
∫ T

0
(g(t), v)ψ(t) dt+ (u(0), v)ψ(0), v ∈ V, ψ ∈ C∞0 ([0, T )).

The comparison of (9.32) (with v ∈ V ) and (9.34) immediately implies that u(0) =
u0. Hence, we have proved that u is a solution of problem (2.14)–(2.16).
On the basis of the above considerations we come to the following conclusion:

Let us consider approximate solutions of problem (2.14)–(2.16) obtained from
(3.21)–(3.23) with τ, h > 0 satisfying condition (5.13). Then the system of functions

uhτ , whτ defined by (4.1) and (4.2) can be split into sequences converging in the
sense of (8.69) and (8.70). Every limit function of such a sequence is a solution of
problem (2.14)–(2.16). (As we see, we have proved the existence of a weak solution

of (2.1)–(2.3).) Taking into account the uniqueness of the solution of (2.14)–(2.16)
we obtain the convergence of the whole systems {uhτ}, {whτ} to the weak solution
u of problem (2.1)–(2.3). Thus, we come to the main result of this paper:

Theorem 6. Let us assume that the domain Ω ⊂ �
2 is bounded and polygonal

and that conditions (2.9)–(2.11), (3.1)–(3.3), (3.24)–(3.27), (4.3)–(4.5), (5.1) and
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(5.2) are satisfied. For h ∈ (0, h0) and τ ∈ (0, T ) let us construct approximate
solutions with the aid of the finite volume—finite element scheme (3.21)–(3.23) and
define functions uhτ and whτ by (4.1) and (4.2). Then the systems {uhτ}, {whτ}
with h ∈ (0, h0), τ ∈ (0, T ) satisfying the “stability condition” (5.13) fulfil estimates
(5.14) and (7.13)–(7.16). Moreover,

Jhuhτ , Jhwhτ → ωu weakly in L2(0, T ;F ),

uhτ , whτ → u weak-* in L∞(QT ),

uhτ , whτ → u strongly in L2(QT ), as h, τ → 0, h, τ satisfy (5.13),

where u is the unique weak solution of problem (2.1)–(2.3) (i.e., u satisfies (2.14)–
(2.16)).

������ 2. There are several unsolved problems connected with the above

results:
– error estimates and a posteriori error estimates,

– analysis of the problem in a nonpolygonal domain, i.e., the effect of the approx-
imation of a curved boundary,

– analysis of the problem with nonhomogeneous Dirichlet boundary conditions
and/or mixed Dirichlet-Neumann boundary conditions.
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