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SOLUTION OF THE ROBIN PROBLEM

FOR THE LAPLACE EQUATION

Dagmar Medková,* Praha

(Received November 28, 1997)

Abstract. For open sets with a piecewise smooth boundary it is shown that we can
express a solution of the Robin problem for the Laplace equation in the form of a single
layer potential of a signed measure which is given by a concrete series.
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Suppose that G ⊂ �
m (m > 2) is an open set with a non-void compact boundary

∂G. Fix a nonnegative element λ of C ′(∂G) (= the Banach space of all finite signed

Borel measures with support in ∂G with the total variation as a norm) and suppose
that the single layer potential U λ is bounded and continuous on ∂G. Here

U ν(x) =
∫

�m

hx(y) dν(y),

where ν ∈ C ′(∂G),
hx(y) = (m− 2)−1A−1|x− y|2−m,

A is the area of the unit sphere in �m . It was shown in [24] that U λ is bounded
and continuous on ∂G if and only if

lim
r→0+

sup
y∈∂G

∫

U (y;r)

hy(x) dλ(x) = 0,

where U (x; r) = {y ∈ �
m ; |y − x| < r}. According to [14], Lemma 2.18 this is

true if there are constants α > m− 2 and k > 0 such that λ(U (x; r)) � krα for all

x ∈ �
m and all r > 0.
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If G has a smooth boundary, u ∈ C 1(clG) is a harmonic function on G and

∂u

∂n
+ fu = g on ∂G

where f, g ∈ C (∂G) (= the space of all bounded continuous functions on ∂G equipped
with the maximum norm) and n is the exterior unit normal of G, then for ϕ ∈ D

(= the space of all compactly supported infinitely differentiable functions in �m ) we
have

(1)
∫

∂G

ϕg dHm−1 =
∫

G

∇ ϕ · ∇ u dHm +
∫

∂G

ϕfu dHm−1.

Here Hk is the k-dimensional Hausdorff measure normalized such that Hk is the
Lebesgue measure in �k . If we denote by H the restriction of Hm−1 onto ∂G and

by NGu the distribution

(2) 〈ϕ,NGu〉 =
∫

G

∇ϕ · ∇u dHm

then (1) has the form

(3) NGu+ fuH = gH .

Here NGu is a characterization in the sense of distributions of the normal derivative
of u.

The formula (3) motivates our definition of the solution of the Robin problem for
the Laplace equation

∆u = 0 in G,(4)

NGu+ uλ = µ,

where µ ∈ C ′(∂G) (compare [14], [23]). From now on G ⊂ �
m is a general open set

with a non-void compact boundary ∂G.

We introduce in �m the fine topology, i.e. the weakest topology in which all su-
perharmonic functions in �m are continuous (see [3]). This topology is stronger than

ordinary topology. Since the set of fine isolated points of clG is polar (see [3], Chap-
ter VII, §6, §4) and λ does not charge polar sets ([17], Chapter II, §1 and p. 222)

λ-a.a. points x of clG are in the fine closure of clG \ {x}.
If u is a harmonic function on G such that

(5)
∫

H

|∇u| dHm <∞
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for all bounded open subsets H of G we define the weak normal derivative NGu of

u as a distribution
〈ϕ,NGu〉 =

∫

G

∇ϕ · ∇u dHm

for ϕ ∈ D .
Let µ ∈ C ′(∂G). Now we formulate the Robin problem for the Laplace equation

(4) as follows: Find a function u ∈ L1(λ) on clG, the closure of G, harmonic on
G and fine continuous in λ-a.a. points of ∂G for which |∇u| is integrable over all
bounded open subsets of G and NGu+ uλ = µ.
As in [25] we will look for a solution of the Robin problem in the form of the

single layer potential U ν, where ν ∈ C ′(∂G). We will prove that if G has a smooth
boundary or m = 3 and G has a piecewise-smooth boundary then there is a solution

of the Robin problem with the boundary condition µ if and only if µ(∂H) = 0 for all
bounded components H of clG for which λ(∂H) = 0. In this case we can express the

solution in the form of the single layer potential U ν where ν is given by a concrete
series.

��������. C ′
c(∂G) will stand for the subspace of those µ ∈ C ′(∂G) for which

there exists a continuous function Ucµ on �m coinciding with U µ on �m \ ∂G. It
was shown in [27] that if ν ∈ C ′(∂G) and the restriction of U ν onto ∂G is finite and
continuous then U ν is finite and continuous in �m and ν ∈ C ′

c(∂G). For example

λ ∈ C ′
c(∂G).

Lemma 1. Let ν ∈ C ′(∂G), µ ∈ C ′
c(∂G). Suppose that µ = λ or Hm(∂G) = 0.

Then U ν is harmonic on G, finite and fine continuous at |µ|-a.a. points of ∂G,
U ν ∈ L1(λ) and |∇u| is integrable over all bounded open subsets of G. Here
|µ| = µ+ + µ−, where µ = µ+ − µ− is the Jordan decomposition of µ. If

(6) cλ = sup
x∈∂G

U λ(x)

then

(7)
∫

∂G

|U ν| dλ � cλ‖ν‖,

where ‖ν‖ is the total variation of ν. If ν ∈ C ′
c(∂G) then Ucν = U ν at |µ|-a.a. points.

�����. U ν is a harmonic function on G such that (5) holds for u = U ν and all
bounded open subsets H of G (see [14], Remark on p. 9). Because U ν+, U ν− are

superharmonic functions they are continuous with respect to the fine topology. Put
M = {x ∈ ∂G ; U |ν|(x) = ∞}. Then U ν is finite and continuous with respect to

135



the fine topology on clG \M . Moreover, if ν ∈ C ′
c(∂G) then Ucν = U ν on clG \M .

SinceM is polar its Newtonian capacity is null (see [17], Chapter III, §1 and p. 222).
Since µ has a finite energy by [21], Lemma 6 and [17], Theorem 1.20 the measure |µ|
has a finite energy as well and |µ|(M) = 0 by [17], Theorem 2.1

∫

∂G

|U ν| dλ �
∫

∂G

U |ν| dλ =
∫

∂G

U λ d|ν| � cλ‖ν‖.

�

	
���� 1. Let ν ∈ C ′(∂G). We have seen that for λ-a.a. points x ∈ ∂G we have
U |ν|(x) < ∞. Fix such a point. Fix α > 1 and denote Pα(x) = {z ∈ G ; |z − x| �
α dist(z, ∂G)}, where dist(z, ∂G) = inf{|z−y| ; y ∈ ∂G}. Suppose that x ∈ clPα(x).

Then

(8) lim
z∈Pα(x),z→x

U ν(z) = U ν(x).

�����. Fix ε > 0. Since U |ν|(x) <∞ there is r > 0 such that
∫

∂G∩U (x;r)

hx(y) d|ν| <
ε

4
(α+ 1)2−m.

Since

|y − x| � |y − z|+ |x− z| � (α+ 1)|y − z|

for z ∈ Pα(x), y ∈ ∂G, we have
∫

∂G∩U (x;r)

hz(y) d|ν| � (α+ 1)m−2
∫

∂G∩U (x;r)

hx(y) d|ν| <
ε

4
.

Since

z �→
∫

∂G\U (x;r)

hz(y) dν

is a continuous function in x there is δ > 0 such that for z ∈ U (x; δ) we have

∣∣∣∣∣

∫

∂G\U (x;r)

hz(y) dν −
∫

∂G\U (x;r)

hx(y) dν

∣∣∣∣∣ <
ε

2

and thus for z ∈ U (x; δ) ∩ Pα(x) we have |U ν(x) −U ν(z)| < ε. �
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���� 2. If ∂G is a finite set then λ = 0. Suppose now that ∂G is an infinite

set. Choose a simple sequence {xn} ⊂ ∂G such that xn converges to x0 as n → ∞.
Choose a sequence {an} of positive numbers such that

∞∑

n=1

an|x0 − xn|2−m <∞.

If we put

ν(M) =
∑

xn∈M

an

then U ν(x0) < ∞ but U ν(xn) = ∞ for all integer numbers n. Using the lower-
semicontinuity of U ν we obtain that

U ν(x0) < lim sup
x∈G,x→x0

U ν(x) =∞

in spite of U ν(x0) being finite.

	
���� 3. It was shown in [14] that NGU ν ∈ C ′(∂G) for each ν ∈ C ′(∂G) if
and only if V G <∞, where

V G = sup
x∈∂G

vG(x),

vG(x) = sup

{∫

G

∇ ϕ · ∇hx dHm ; ϕ ∈ D , |ϕ| � 1, sptϕ ⊂ �
m \ {x}

}
for x ∈ �

m .

There are more geometrical characterizations of vG(x) which ensure V G < ∞ for

G convex or for G with ∂G ⊂
k⋃

i=1
Li, where Li are (m − 1)-dimensional Ljapunov

surfaces (i.e. of class C 1+α). Denote by

∂eG = {x ∈ �
m ; dG(x) > 0, d�m\G(x) > 0}

the essential boundary of G where

dM (x) = lim sup
r→0+

Hm(M ∩U (x; r))
Hm(U (x; r))

is the upper density of M at x. Then

vG(x) =
1
A

∫

∂U (0;1)

n(θ, x) dHm−1(θ),
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where n(θ, x) is the number of all points of ∂eG ∩ {x + tθ ; t > 0} (see [5]). This
expression is a modification of a similar expression in [14]. As a consequence we see
that V G � 1

2 if G is convex. Since v
G(x) � V G + 1

2 by [14],Theorem 2.16, we see
that if

∂G ⊂
n⋃

i=1

∂Gi

and G1, . . . , Gn are convex then V G � n.

Let us recall another characterization of vG(x) using the notion of an interior
normal in Federer’s sense. If z ∈ �

m and θ is a unit vector such that the symmetric

difference of G and the half-space {x ∈ �
m ; (x − z) · θ > 0} has m-dimensional

density zero at z then nG(z) = θ is termed the interior normal of G at z in Federer’s

sense. (The symmetric difference of B and C is equal to (B \C)∪ (C \B).) If there
is no interior normal of G at z in this sense, we denote by nG(z) the zero vector in

�
m . The set {y ∈ �

m ; |nG(y)| > 0} is called the reduced boundary of G and will
be denoted by ∂̂G. Clearly ∂̂G ⊂ ∂eG.

If Hm−1(∂eG), the perimeter of G, is finite then Hm−1(∂eG \ ∂̂G) = 0 (see [6],
Theorem 4.5.6) and

vG(x) =
∫

∂̂G

|nG(y) · ∇hx(y)| dHm−1(y)

for each x ∈ �
m (see [14], Lemma 2.15).

Lemma 2. NG(U ν) + (U ν)λ ∈ C ′(∂G) for each ν ∈ C ′(∂G) if and only if

V G <∞. If V G <∞ then τ : ν �→ NG(U ν) + (U ν)λ is a bounded linear operator
on C ′(∂G) and ‖τ‖ � V G + 1 + cλ. (If we want to emphasize that τ depends on G

we will write τG instead of τ .)

�����. Lemma 1 yields that ν �→ (U ν)λ is a bounded linear operator on

C ′(∂G) with a norm majorized by cλ. The rest is a conclusion of [14], Theorem 1.13.
�

	
���� 4. Lemma 2 was proved in [23] under more general conditions.

	
���� 5. We will assume that V G < ∞ and ∂G = ∂(clG).Then for each
x ∈ �

m there exists

dG(x) = lim
r→0+

Hm(U (x; r) ∩G)
Hm(U (x; r))
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(see [14], Lemma 2.9). According to [14], Observation 1.5, Proposition 2.8 and

Lemma 2.15 we have

NGU ν(M) =
∫

M

dG(x) dν(x) −
∫

∂G

∫

(∂G∩M)

nG(y) · ∇hx(y) dHm−1(y) dν(x)

for each ν ∈ C ′(∂G) and a Borel set M . (This relation holds even if ∂G �= ∂(clG).)
If we denote for f ∈ C (∂G) (= the space of all bounded continuous function on

∂G equipped with the maximum norm) and x ∈ ∂G

WGf(x) = dG(x)f(x) −
∫

∂G

f(y)nG(y) · ∇hx(y) dHm−1(y),

V f(x) = U (fλ)(x)

then WG, V are bounded linear operators on C (∂G) and NGU : ν �→ NG(U ν)

is the dual operator of WG and τ is the dual operator of (WG + V ) (see [14],
Proposition 2.5, Proposition 2.20, [24], Proposition 9 and [23], Proposition 8). V
is a compact operator on C (∂G) by [24], Proposition 9. Since τ − NGU is the

dual operator of V , it is compact, too (see [32], Chapter IV, Theorem 4.1). If τ
is a Fredholm operator then NGU and WG are Fredholm operators, too (see [32],

Chapter V, Theorem 3.1, Chapter VII, Theorem 3.5) and clG has finitely many
components by [21], Lemma 3.

Lemma 3. Let clG have finitely many components. Let µ ∈ C ′(∂G) for which
there is a solution of the Robin problem with the boundary condition µ (i.e. there

exists a harmonic function u for which NGu + uλ = µ). Then µ(∂H) = 0 for each
bounded component H of clG such that λ(∂H) = 0.

�����. Let H be a bounded component of clG such that λ(∂H) = 0. Choose

ϕ ∈ D such that ϕ = 1 on H and ϕ = 0 on clG \H . Then

µ(∂H) = 〈ϕ,NGu+ uλ〉 =
∫

G

∇u · ∇ϕdHm +
∫

∂G

uϕdλ = 0.

�

��������. Let L be a linear space over the field of real numbers. We will
denote by L̂ the set of all elements of the form x + iy where x, y ∈ L. If the sum

of two elements of L̂ and the multiplication of an element of L̂ by a complex
number are defined in the obvious way then L̂ becomes a linear space over the field

of complex numbers. Let Q be a linear operator acting on L. The same symbol will
denote the extension of Q to L̂ defined by Q(x+iy) = Q(x)+ iQ(y). If an operator

Q on L possesses an inverse operator Q−1, then the extension of Q−1 to L̂ is an
inverse operator (on L̂) of the extension of Q to L̂.
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If Q is a bounded linear operator on the complex space L we denote by σ(Q) the

spectrum of Q. We denote by Φ(Q) the set of all complex number α for which αI−Q
is Fredholm, where I is the identity operator. We denote by Ω(Q) the unbounded
component of Φ(Q).

Lemma 4. Hm({x ∈ ∂G ; dG(x) �= 0}) = 0. If there is a one-to-one sequence
{xn} ⊂ ∂G such that

α = lim
n→∞

dG(xn),

then α �∈ Ω(τ). If moreover dG(xn) = α for each n then α �∈ Φ(τ). In particular,
1
2 �∈ Φ(τ). If τ is a Fredholm operator then the set {x ∈ ∂G ; dG(x) = 0} is finite
and Hm(∂G) = 0.

�����. Since G has a finite perimeter, Hm−1(∂̂G) < ∞ and Hm−1({x ∈ ∂G ;
0 < dG(x) < 1}\∂̂G) = 0 by [6], Theorem 4.5.6. DenoteM1 = {x ∈ ∂G ; dG(x) = 1}.
Since d�m\G(x) = 0 for each x ∈ M1 ⊂ �

m \ G we obtain Hm(M1) = 0 by [34],
Theorem 1.3.8 (or [18], Theorem 29.2).

Fix x ∈ ∂G, ν ∈ C ′(∂G). Then

(NGU ν − dG(x)ν)({x}) =
∫

∂G∩{x}

[dG(y)− dG(x)] dν(y)

−
∫

∂G

∫

{x}
nG(z) · ∇hy(z) dHm−1(z) dν(y) = 0

and (dG(x)I −NGU )(C ′(∂G)) ⊂ {µ ∈ C ′(∂G) ; µ({x}) = 0}.
Suppose now that there is a one-to-one sequence {xn} ⊂ ∂G such that

α = lim
n→∞

dG(xn).

If dG(xn) = α for each n then codim(NGU ν − αI)(C ′(∂G)) = ∞ and α �∈
Φ(NGU ) = Φ(τ) (see Remark 5 and [32], Chapter V, Theorem 3.1). Suppose
now that the sequence dG(xn) is one-to-one. Then dG(xn), α ∈ σ(NGU ). Since all

points of σ(NGU )∩Ω(NGU ) are isolated points of σ(NGU ) by [12], Satz 51.4, we
obtain α �∈ Ω(NGU ) = Ω(τ) (see Remark 5 and [32], Chapter V, Theorem 3.1).

Since ∂G = ∂(�m \ clG) we have Hm−1(∂̂G) > 0 by Isoperimetric Lemma (see
[14], p. 50) and 12 �∈ Φ(τ). �

Definition. We will say that W is Plemelj’s operator if W is a bounded linear

operator acting on Ĉ (∂G) whose dual W ′ maps Ĉ ′
c(∂G) into itself and

µ ∈ Ĉ ′
c(∂G) =⇒W (Ucµ) = Uc(W ′µ).
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Lemma 5. If Hm(∂G) = 0 then WG + V is Plemelj’s operator.

�����. WG is Plemelj’s operator by Plemelj’s exchange theorem ([14], p. 68).
Let µ ∈ C ′

c(∂G). Since (Ucµ)+, (Ucµ)− are bounded functions on ∂G and U λ is

bounded and continuous on ∂G, U ((Ucµ)+λ) and U ((Ucµ)−λ) are bounded and
continuous on ∂G by [24], Proposition 6. Regularity principle ([17],Theorem 1.7)

yields that U ((Ucµ)+λ), U ((Ucµ)−λ) are finite continuous functions in �m . The
function U ((U µ)λ) = U ((Ucµ)λ) = U ((Ucµ)+λ) −U ((Ucµ)−λ) is continuous by
Lemma 1. Thus V µ = (U µ)λ ∈ C ′

c(∂G) and V (Ucµ) = U ((Ucµ)λ) = U (V ′µ) =

Uc(V ′µ). �

Since the condition Hm(∂G) = 0 plays no role in the proof of Lemma 4.5 in [14]
the following lemma holds:

Lemma 6. Let µn ∈ C ′
c(∂G) (n = 1, 2, . . .),

∑ ‖µn‖ <∞,∑ ‖Ucµn‖ <∞. Then
µ =

∑
µn ∈ C ′

c(∂G) and

Ucµ =
∑

n

Ucµn.

Lemma 7. Let W be Plemelj’s operator. Then all operators (W + αI) with

|α| > ‖W‖ have Plemelj’s inverses. If (W + βI)−1 is Plemelj’s operator with
‖(W + βI)−1‖ � K then also all operators (W + γI) with |γ − β| < 1/K possess
Plemelj’s inverses.

�����. The proof is the same as the proof of Lemma 4.6 in [14], where we

substitute T by W and Tγ by W + γI. �

Lemma 8. Let W be Plemelj’s operator. All operators (W − γI) with γ ∈
Ω(W ) \ σ(W ) possess inverses that are Plemelj’s.

�����. According to [12], Satz 51.4 the set Ω(W ) ∩ σ(W ) is isolated in Ω(W ).
Now we use the proof of Lemma 4.7 in [14] where we replace the operator Tγ by the

operator W − γI. �

Lemma 9. Suppose that f1, . . . , fq ∈ Ĉ (∂G) are linearly independent. Then
there exist µ1, . . . , µq ∈ Ĉ ′

c(∂G) such that

〈fi, µj〉 = δij (= Kronecker’s symbol), 1 � i, j � q.

�����. The proof is the same as the proof of Lemma 4.9 in [14]. �
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Lemma 10. If p is a positive integer, W is Plemelj’s operator and γ ∈ Ω(W )
then any µ ∈ Ĉ ′(∂G) satisfying the homogeneous equation

(W ′ − γI)pµ = 0

necessarily belongs to Ĉ ′
c(∂G).

�����. It suffices to suppose that γ ∈ σ(W ′ − γI). The resolvents of the

operators (W − λI), (W − λI)′ have poles at γ and these poles are of the same
order, say p0 (cf. [12], Satz 51.4, Theorem 51.1, Satz 50.2). Now we use the proof of

Theorem 4.10 in [14] where we replace the operator Tα by the operator (W−αI). �

Lemma 11. Let Hm(∂G) = 0, 0 �= µ ∈ Ĉ ′
c(∂G), α ∈ � , (τ − αI)µ = 0. Then

α � 0. If α = 0 then U µ is locally constant on G and Ucµ = 0 on each component
H of clG for which λ(∂H) �= 0.

�����. Denote by µ the complex conjugate of µ. According to [21], Lemma 7

we have

α

∫

∂G

Ucµ dµ =
∫

∂G

Ucµ d(τ(µ)) =
∫

∂G

Ucµ dN
GU µ+

∫

∂G

|Ucµ|2 dλ

=
∫

G

|∇U µ|2 +
∫

∂G

|Ucµ|2 dλ.

By Lemma 1, [21], Lemma 6, [17], Theorem 1.20, Theorem 1.15 we obtain

∫

∂G

Ucµ dµ =
∫

∂G

U µ dµ =
∫

�m

|∇U µ|2 > 0.

So we obtain

α =

[∫

�m

|∇U µ|2
]−1[∫

G

|∇U µ|2 +
∫

∂G

|Ucµ|2 dλ
]

� 0.

If α = 0 then U µ is locally constant on G and

∫

∂G

|Ucµ|2 dλ = 0.

Since Ucµ is constant on each component of clG we obtain Ucµ = 0 on each com-
ponent H of clG for which λ(∂H) �= 0. �

142



Lemma 12. Let Hm(∂G) = 0, µ, ν ∈ Ĉ ′
c(∂G), τ(µ) = 0, τ(ν) = µ. Then µ = 0.

�����. We can suppose that µ, ν ∈ C ′
c(∂G). According to Lemma 1 and [21],

Lemma 7 we have

0 =

[ ∫

∂G

Ucµ dN
GU ν +

∫

∂G

(Ucµ)(U ν) dλ

]
−

[ ∫

∂G

Ucν dN
GU µ+

∫

∂G

(Ucν)(U µ) dλ

]

=
∫

∂G

Ucµ dτ(ν) −
∫

∂G

Ucν dτ(µ) =
∫

∂G

Ucµ dµ =
∫

∂G

U µ dµ.

So µ = 0 by [17], Theorem 1.15, [21], Lemma 6 and [17], Theorem 1.20. �

Lemma 13. Let 0 ∈ Ω(τ), ν, µ ∈ C ′(∂G), τ(ν) = µ. Then µ ∈ C ′
c(∂G) if and only

if ν ∈ C ′
c(∂G). If µ ∈ C ′

c(∂G) then Ucµ ∈ (WG + V )(C (∂G)).

�����. If ν ∈ C ′
c(∂G) then τ(ν) ∈ C ′

c(∂G) by Lemma 4 and Lemma 5.

Now let µ ∈ C ′
c(∂G). We prove that Ucµ ∈ (WG + V )( Ĉ (∂G)). If σ ∈ Ker τ

then σ ∈ Ĉ ′
c(∂G) by Lemma 10. The number of components of clG is finite by

Remark 5. Denote byH1, . . . , Hk all bounded components of clG for which λ(∂Hi) =

0. Lemma 11 yields that there are c1, . . . , cj such that

Ucσ = ci on Hi, i = 1, . . . , k,

Ucσ = 0 on clG \
k⋃

i=1

Hi.

Let ϕ ∈ D be such that ϕ = Ucσ on clG. Using Lemma 1 and Fubini’s theorem we

obtain

∫

∂G

Ucµ dσ =
∫

∂G

U µ dσ =
∫

∂G

U σ dµ =
∫

∂G

Ucσ dµ =
k∑

i=1

ciµ(∂Hi)

=
∫

∂G

ϕdµ = 〈ϕ, τ(ν)〉 =
∫

G

∇Ucσ · ∇U ν dHm +
∫

∂G

(Ucν)(Ucσ) dλ = 0.

Since (WG + V )( Ĉ (∂G)) is closed because (WG + V ) is a Fredholm operator we

conclude that Ucµ ∈ (WG + V )( Ĉ (∂G)) by [33], Chapter VII, §5.

Since Ker τ ∩ τ( Ĉ ′(∂G)) = ∅ by Lemma 4, Lemma 5, Lemma 10 and Lemma 12
and codim τ( Ĉ ′(∂G)) = dimKer τ because τ is a Fredholm operator with index

0, the space Ĉ ′(∂G) is the direct summ of Ker τ and τ( Ĉ ′(∂G)). So there are
ν1 ∈ τ( Ĉ ′(∂G)) and ν2 ∈ Ker τ such that ν = ν1 + ν2. Lemma 10 yields that
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ν2 ∈ Ĉ ′
c(∂G). Denote by τ̃ the restriction of τ onto τ( Ĉ ′(∂G)). Then τ̃ is in-

vertible. According to [12], Satz 51.4 there is δ > 0 such that for 0 < |α| < δ the
operator (τ − αI) is invertible. Since (τ−αI)(Ker τ) ⊂ Ker τ , (τ−αI)τ(̂C ′(∂G)) ⊂
τ( Ĉ ′(∂G)), (τ̃ − αI) is invertible for |α| < δ and (τ̃ − αI)−1 is the restriction of

(τ − αI)−1 onto τ( Ĉ ′(∂G)) for α �= 0. Denote by W̃ the restriction of (WG + V )
onto (WG + V )(̂ C (∂G)). We obtain in an analogicous way that (W̃ − αI) is in-

vertible for |α| < δ and (W̃ − αI)−1 is the restriction of (WG + V − αI)−1 onto
(WG + V )( Ĉ (∂G)) for α �= 0. Put

K = sup
|α|� 12 δ

max
(
‖(τ̃ − αI)−1‖, ‖(W̃ − αI)−1‖

)
.

Choose α such that 0 < |α| < min(12δ,K−1). Then

τ̃−1 =
∞∑

k=0

(−α)k
[
(τ̃ − αI)−1

]k+1
.

Thus

ν1 = τ̃−1(µ) =
∞∑

k=0

(−α)k
[
(τ̃ − αI)−1

]k+1
µ.

Put µn = (−α)n[(τ̃ − αI)−1]n+1µ. Then ‖µn‖ � (|α|K)nK‖µ‖ and ∑ ‖µn‖ �
∞. Since µ ∈ C ′

c(∂G), Lemma 8, Lemma 5 and Lemma 4 yield that µn =
(−α)n[(τ − αI)−1]n+1µ ∈ C ′

c(∂G) and Ucµn = (−α)n[(WG + V − αI)−1]n+1Ucµ.

Since Ucµ ∈ (WG + V )( Ĉ (∂G)) we have

‖Ucµn‖ = ‖(−α)n[( W̃ − αI)−1]n+1Ucµ‖ � (|α|K)nK‖Ucµ‖

and ν1 =
∑
µn ∈ Ĉ ′

c(∂G) by Lemma 6. �

Theorem 1. Let 0 ∈ Ω(τ), µ ∈̂C ′(∂G). Then there is a harmonic function u on
G which is a solution of the Robin problem

(9) NGu+ uλ = µ,

if and only if µ ∈ C ′
0(∂G) ( = the space of such ν ∈ Ĉ ′(∂G) that ν(∂H) = 0 for

each bounded component H of clG for which λ(∂H) = 0). If µ ∈ C ′
0(∂G) then there

is a unique ν ∈ Ĉ ′
0(∂G) such that

(10) τ(ν) = µ
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and for this ν the single layer potential U ν is a solution of (9). Moreover, ν ∈
Ĉ ′

c(∂G) if and only if µ ∈̂C ′
c(∂G).

�����. According to Remark 5, clG has finitely many components. If for

µ ∈ Ĉ ′(∂G) there is a solution of the Robin problem (9) then µ ∈ C ′
0(∂G) by

Lemma 3. Since U ν solves (9) for µ = τ(ν) we have τ( Ĉ ′(∂G)) ⊂ C ′
0(∂G).

Denote by H1, . . . , Hj all bounded components of clG for which λ(∂Hi) = 0. Since
codimC ′

0(∂G) = j and τ is a Fredholm operator with index 0 (see [12], Satz 51.1) it

suffices to prove that codim τ( Ĉ ′(∂G)) = dimKer τ � j. By Lemma 4, Lemma 5
and Lemma 10 we have Ker τ ⊂ Ĉ ′

c(∂G). Lemma 11 yields that for µ ∈ Ker τ there
are c1, . . . , cj such that

Ucµ = ci on Hi, i = 1, . . . , j,

Ucµ = 0 on cl G \
j⋃

i=1

Hi.

If c1 = c2 = . . . = cj = 0 then

∫

∂G

U µ dµ =
∫

∂G

Ucµ dµ = 0

by virtue of Lemma 1, and µ = 0 by [21], Lemma 6, [17], Theorem 1.20, Theorem 1.15.
Thus dimKer(τ) � j.

Since Ker τ ∩ τ( Ĉ ′(∂G)) = ∅ by Lemma 4, Lemma 5, Lemma 10 and Lemma 12
and codim τ( Ĉ ′(∂G)) = dimKer τ , the space Ĉ ′(∂G) is the direct sum of Ker τ

and τ( Ĉ ′(∂G)) = C ′
0(∂G). So τ(C

′
0(∂G)) = C ′

0(∂G) and τ is injective on C ′
0(∂G).

The rest is a consequence of Lemma 13. �

	
���� 6. Let µ ∈ C ′(∂G). If

lim
r→0+

sup
y∈∂G

∫

U (y;r)

hy(x) d|µ|(x) = 0,

then U µ is a finite continuous function in �
m and thus µ ∈ C ′

c(∂G) ([24]). Now
suppose that C is such a constant that H (U (x; r)) � Crm−1 for each x ∈ �

m ,

r > 0, where H is the restriction of Hm−1 onto ∂̂G. (This condition is true for
C = Am(m + 2)m(V G + 1

2 )r
m−1 by [14], Corollary 2.17.) Fix p, m − 1 < p � ∞.

Put q = p
p−1 if p <∞, q = 1 if p =∞. If µ = fH , where f ∈ Lp(H ) then

(11) ‖µ‖ � (H (∂G))1/q‖f‖p �
[
C(diam ∂G)(m−1)]1/q‖f‖p
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by the Schwarz inequality, where

‖f‖p =

{∫

∂G

|f |p dH
}1/p

for p <∞,

‖f‖p is the H -supremum of |f | for p = ∞. Fix z ∈ �
m , R > 0. Then using the

Schwarz inequality we obtain

∫

U (z;R)

hz(x)|f(x)| dH (x) � A−1(m− 2)−1
[ ∫

U (z;R)

|z − x|q(2−m) dH (x)

]1/q

‖f‖p

� A−1(m− 2)−1R2−m

[ ∞∑

k=0

2(k+1)q(m−2)H
(
U (z; 2−kR) \U (z; 2−(k+1)R)

)]1/q

‖f‖p

� A−1(m− 2)−1R2−m

[
CRm−1

∞∑

k=0

2(k+1)q(m−2)−k(m−1)
]1/q

‖f‖p

� A−1(m− 2)−1R2−m2m−2[1− 2q(m−2)−(m−1)]−1/qR(m−1)/qC1/q‖f‖p.

Continuity of U µ is an easy consequence of this inequality and thus µ ∈ C ′
c(∂G).

Since

sup
x∈�m

U |µ|(x) � sup
x∈∂G

U |µ|(x)

by the maximum principle (see [17], p. 91), we obtain

(12) sup
x∈�m

U |µ|(x) � C1/q2m−2A−1(m− 2)−1 (diam ∂G)
(m−1)/q+2−m

[1− 2q(m−2)−(m−1)]1/q
‖f‖p.


�����
 1. Let 1 � p < m− 1. Since ∂G = ∂(clG) �= ∅, Isoperimetric Lemma
([14], p. 50) yields that Hm−1(∂̂G) > 0. Fix z ∈ ∂̂G. Put f(y) = |y − z|−α where

1 < α < m−1
p . Since

H (U (z; r)) � Am(m+ 2)m(V G + 1/2)rm−1

for each r > 0 by [14], Corollary 2.17, we obtain

∫
|f |p dH �

∞∑

k=0

(2−k−1 diamG)−pαH
(
U (z; 2−k(diamG)) \U (z; 2−k−1(diamG))

)

�
∞∑

k=0

Am(m+ 2)m(V G + 12 )2
pα[2−k(diamG)]m−1−pα <∞,
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so f ∈ Lp(H ). Since there is β > 0 such that for each r < diamG

H (U (z; r)) � βrm−1

by Isoperimetric Lemma ([14], p. 50),

U (fH )(z)

� 1
(m− 2)A

∞∑

k=0

(2−k diamG)−α−m+2H
(
U (z; 2−k(diamG)) \U (z; 2−k−1(diamG))

)

� (diamG)
−α−m+2

(m− 2)A

∞∑

k=1

H
(
U (z; 2−k(diamG))

)
[2k(α+m−2) − 2(k−1)(α+m−2)]

� (diamG)
α+m−2

(m− 2)A
∞∑

k=1

β
[
2−k(diamG))

]m−1
2k(α+m−2)(1− 2−(α+m−2)) =∞.

Since U (fH ) is a lower semicontinuous function ([17], Theorem 1.3) we have fH �∈
C ′

c(∂G).

Lemma 14. Let 0 ∈ Ω(τ). Then

(13) inf
x∈∂G

dG(x) > 0.

Let λ be absolutely continuous with respect to H , the restriction ofHm−1 onto ∂̂G.

Let ν, µ ∈ C ′(∂G) and τ(ν) = µ. Then ν is absolutely continuous with respect to

H if and only if µ is absolutely continuous with respect to H .

�����. If there is x ∈ ∂G such that dG(x) = 0 then NGU (̂ C ′(∂G)) ⊂ {
 ∈
Ĉ ′(∂G) ; 
({x}) = 0}. Let H be the component of clG such that x ∈ H . Since

∂G = ∂(clG) �= ∅ there is y ∈ ∂H \ {x}. Then δx − δy �∈ NGU (̂ C ′(∂G)) which
is a contradiction with Theorem 1. (δx means the Dirac measure concentrated at
the point x.) Lemma 4 yields the relation (13). So ν is absolutely continuous with

respect to H if and only if µ is absolutely continuous with respect to H by [23],
Proposition 12. �

Lemma 15. Let τ be a Fredholm operator and α > 0 and σ(τ)∩{β ∈ � ; |β−α| �
α} ⊂ {0}. Then there are constants c ∈ 〈1,∞), q ∈ (0, 1) such that for each
µ ∈ C ′

0(∂G) and integer number n

(14)

∥∥∥∥
(
τ − αI

α

)n

µ

∥∥∥∥ � Cqn‖µ‖.
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If µ ∈ C ′
0(∂G) then there is a unique ν ∈ C ′

0(∂G) such that τ(ν) = µ. This ν is given

by

(15) ν =
∞∑

n=0

(
−τ − αI

α

)n
µ

α
.

The single layer potential U ν is a solution of the Robin problem NGu+ uλ = µ.

�����. Since ress( 1ατ − I) ≡ sup{|β| ; β ∈ � \ Φ( 1ατ − I)} < 1 there are

c ∈ 〈1,∞), q ∈ (0, 1) such that (14) holds for each µ ∈ C ′
0(∂G) by Lemma 4, Lemma 5,

Lemma 10, Lemma 12, Theorem 1 and [21], Proposition 3. The series (15) converges
and ν given by (15) satisfies

(
τ − αI

α

)
ν + Iν =

µ

α
.

Thus τ(ν) = µ and we can use Theorem 1. �

	
���� 7. If L is a bounded linear operator on the complex Banach space X
we denote by ‖L‖ess the essential norm of L, i.e. the distance of L from the space of
all compact linear operators on X . The essential radius of L is defined by

ressL = lim
n→∞

(‖Ln‖ess)1/n.

According to [12], Satz 51.8, [7] we have

ress(L) = sup
λ∈�\Ω(L)

|λ| = inf
p
pess(L),

where p ranges over all norms equivalent to ‖ ‖. Thus if there is α ∈ � such that

ress(τ − αI) < |α| then 0 ∈ Ω(τ) and we can use Theorem 1. Some sufficient
conditions for ress(τ − 1

2I) <
1
2 are known . But it is a question whether there is G

such that 0 ∈ Ω(τ) and ress(τ − 1
2I) � 1

2 under our supposition ∂G = ∂(clG). If we
omit the condition ∂G = ∂(clG) we obtain such a set putting G = �

m \K where K
is an arbitrary compact set of null Lebesgue measure. For such G we have V G = 0
and if we put λ = 0 we obtain τ = NGU = I and thus σ(τ) = {1}, 0 ∈ Ω(τ) and
ress(τ − 1

2I) =
1
2 .

It is well-known that the condition ress(τ − 1
2I) <

1
2 is fulfilled for sets with a

smooth boundary (of class C1+α) (see [15]) and for convex sets (see [26]). R. S. An-

gell, R. E. Kleinman, J. Král and W. L. Wendland proved that rectangular domains
(i.e. formed from rectangular parallelepipeds) in �3 have this property (see [2], [16]).
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A. Rathsfeld showed in [29], [30] that polyhedral cones in �3 have this property. (By

a polyhedral cone in �3 we mean an open set Ω whose boundary is locally a hyper-
surface (i.e. every point of ∂Ω has a neighbourhood in ∂Ω which is homeomorphic to
�
2 ) and ∂Ω is formed by a finite number of plane angles. By a polyhedral open set

with bounded boundary in �3 we mean an open set Ω whose boundary is locally a
hypersurface and ∂Ω is formed by a finite number of polygons.) N.V. Grachev and

V.G. Maz’ya obtained independently an analogous result for polyhedral open sets
with bounded boundary in �3 (see [11]). (Let us note that there is a polyhedral set

in �
3 which has not a locally Lipschitz boundary.) In [20] it was shown that the

condition ress(τ − 1
2I) <

1
2 has a local character. As a conclusion we obtain that this

condition is fullfiled for G ⊂ �
3 such that for each x ∈ ∂G there are r(x) > 0, a

domain Dx which is polyhedral or smooth or convex or a complement of a convex do-

main and a diffeomorphism ψx : U (x; r(x)) → �
3 of class C1+α, where α > 0, such

that ψx(G ∩ U (x; r(x))) = Dx ∩ ψx(U (x; r(x))). V. G. Maz’ya and N.V. Grachev

proved this condition for several types of sets with “piecewise-smooth” boundary in
the general Euclidean space (see [8]–[10]).

If we have ress(τ − 1
2I) <

1
2 and ∂G �= ∂(clG) we can use this theory, too. Denote

by I the set of all isolated points of ∂G. Then I is finite by [21], Lemma 1

and for G̃ = G ∪ I we have ∂G̃ = ∂(clG). Let now µ ∈ C ′(∂G̃). We denote
by µr the restriction of µ onto ∂G̃(⊂ ∂G) and by µs the restriction of µ onto I .

The set cl G = cl G̃ has finitely many components (see Remark 5) and a necessary
condition for the existence of a solution of the Robin problem for G with the boundary

condition µ is that µ(∂H) = 0 for each bounded component H of cl G = cl G̃ such
that λ(∂H) = 0. Suppose that this condition is fulfilled. Let now ν ∈ C ′(∂G). Since
NGU νs = νs and (U νs)λ ∈ C ′(∂G̃), the necessary condition for τGν = µ leads to

the equation τ G̃(νr) = µr − (U µs)λ. Let now H be a bounded component of cl G̃
such that λ(∂H) = 0. Since µ(∂H) = 0 we have

µr(∂H)−
∫

∂H

(U µs)λ = −µs(∂H)−
∫

∂H

(U µs)λ = −(τGµs)(∂H) = 0.

Theorem 1 yields that there is νr ∈ C ′(∂G̃) for which τ G̃(νr) = µr − (U µs)λ.

Theorem 2. Let ress(τ − 1
2I) <

1
2 (see Remark 7). For λ ≡ 0 put α0 = 1

2 ,

for λ �≡ 0 put α0 = 1
2 (V

G + 1 + cλ). Then for each α > α0 there are constants

dα ∈ 〈1,∞), qα ∈ (0, 1) such that for each µ ∈ C ′
0(∂G) and a natural number n

(16)

∥∥∥∥
(
τ − αI

α

)n

µ

∥∥∥∥ � dαq
n
α‖µ‖.
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If µ ∈ C ′
0(∂G) then there is a unique ν ∈ C ′

0(∂G) such that τ(ν) = µ and this ν is

given by

(17) ν =
∞∑

n=0

(
− τ − αI

α

)n
µ

α
.

The single layer potential U ν is a solution of the Robin problem NGu+ uλ = µ. If
λ ≡ 0 then

ν = µ+
∞∑

j=0

[
−(2τ − I)

]j
[2I − 2τ ]µ.

�����. Put C = �
m\clG. Since Hm(∂G) = 0 by Lemma 4, V C = V G < ∞

and NCU = I − NGU (see Remark 5). Thus σ(τ) ∩ {β ; |β − 1
2 | � 1

2} ⊂ 〈0, 2α0〉
by Lemma 2, Lemma 4, Lemma 5, Lemma 10 and Lemma 11. If α > α0 then
σ(τ) ∩ {β ; |β − α| � α} ⊂ 〈0, 2α0〉 ∩ {β ; |β − α| � α} = {0} because {β ; |β − 1

2 | �
1
2} ⊃ {β ; |β−α| � α}. The rest is a consequence of Lemma 15 and [21], Theorem 1.

�

Corollary 1. Let ress(τ − 12I) < 1
2 . ThenHm−1(∂G) <∞,Hm−1(∂G− ∂̂G) = 0,

0 < inf{dG(x) ; x ∈ ∂G} � sup{dG(x) ; x ∈ ∂G} < 1. Suppose that λ = fH where

f ∈ L1(H ). If we denote for h ∈ L̂1(H ), x ∈ ∂G

Th(x) =
1
2
h(x)−

∫

∂̂G

h(y)nG(x) · ∇hy(x) dH (y) +U (hH )(x)f(x)

then Th ∈ L̂1(H ) and T : h �→ Th is a bounded linear operator on L̂1(H ). Let
α0 have the same sense as in Theorem 2. Then for each α > α0 there are constants

dα ∈ 〈1,∞), qα ∈ (0, 1) such that for each natural number n and g ∈ L̂1(H ), for
which (gH ) ∈ C ′

0(∂G), we have

(18)

∥∥∥∥
(
T − αI

α

)n

g

∥∥∥∥ � dαq
n
α‖g‖.

Let g ∈ L1(H ) and suppose that gH ∈ C ′
0(∂G). Then there is a unique h ∈ L̂1(H )

such that gH = τ(hH ) and hH ∈ C ′
0(∂G). The function h is given by the series

(19) h =
∞∑

n=0

(
αI − T

α

)n
g

α
.

If f ≡ 0 then

h = g +
∞∑

j=0

[
−(2T − I)

]j
[2I − 2T ]g.
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�����. Denote C = �
m \ clG. Since Hm(∂G) = 0 by Lemma 4 we have

NGU + NCU = I (see Remark 5). The assumption and Remark 5 yield that
0 ∈ Ω(NGU ) ∩ Ω(NCU ). Lemma 14 yields that

0 < inf
x∈∂G

dG(x) � sup
x∈∂G

dG(x) < 1.

Thus Hm−1(∂G) < ∞, Hm−1(∂G − ∂̂G) = 0 by [6], Theorem 4.5.6. The rest is a

consequence of Theorem 2 and Lemma 14. �

Corollary 2. Let ress(τ − 1
2I) <

1
2 , µ ∈ C ′

0(∂G). Then there is ν ∈ Ĉ ′
c(∂G) such

that τ(ν) = µ if and only if µ ∈ Ĉ ′
c(∂G). If µ ∈ Ĉ ′

c(∂G) then ν ∈ Ĉ ′
c(∂G) for each

ν ∈ Ĉ ′(∂G) such that τ(ν) = µ. Let α0 have the same sense as in Theorem 2. Then

for each α > α0 there are constants d ∈ 〈1,∞), q ∈ (0, 1) depending only on G and
α such that for µ ∈ C ′

0(∂G) ∩̂C ′
c(∂G),

(20) µn =

(
−τ − αI

α

)n
µ

α
, un = Uc(µn), n = 0, 1, 2, . . .

we have

(21) sup
x∈clG

|un(x)| � dqn sup
x∈∂G

|Ucµ|.

Thus

(22)
∞∑

n=0

un = Ucν

where ν is given by (17) and the series in (22) converges absolutely and uniformly

on clG to the continuous solution Ucν of the Robin problem NGu+Uλ = µ. Define
on Ĉ ′

c(∂G) a norm p by

(23) p(µ) = ‖µ‖+ sup
x∈∂G

|Ucµ|.

Then Ĉ ′
c(∂G) is a Banach space with respect to the norm p. The operator τ maps

Ĉ ′
c(∂G) into Ĉ ′

c(∂G) and is bounded with respect to the norm p. If µ ∈ Ĉ ′
c(∂G) ∩

C ′
0(∂G) then the series (17) converges with respect to the norm p.

Ifm−1 < s � ∞ then there is a constant ds such that for each µ = gH ∈ C ′
0(∂G),

where g ∈ Ls(H ), we have

sup
x∈clG

|un(x)| + ‖µn‖ � dsq
n‖g‖s
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where un is given by (20) (µ ∈ C ′
0(∂G)) and for ν ∈ C ′

0(∂G) ∩ C ′
c(∂G) given by (17)

we have

sup
x∈clG

|U ν(x)| + ‖ν‖ � ds‖g‖s.

If λ ≡ 0 then analogous results hold for µ0 = (3I − 2NGU )µ,

µn = (I − 2NGU )n(2I − 2NGU )µ, n ∈ �.

�����. Lemma 13 yields that there is ν ∈ Ĉ ′
c(∂G) such that τ(ν) = µ if and

only if µ ∈ Ĉ ′
c(∂G). Let µ ∈ Ĉ ′

c(∂G) ∩ C ′
0(∂G). Then Ucµ ∈ (W + V )( Ĉ (∂G))

by Lemma 13. Fix α > α0. In the proof of Theorem 2 it was shown that σ(τ) ∩ {β ;
|β−α| � α} ⊂ {0}. Since τ is the dual operator of (W +V ) (see Remark 5) we have
σ(W+V )∩{β ; |β−α| � α} ⊂ {0} by [12], Satz 44.2. Since τ is a Fredholm operator
with index 0 and Ker τ2 = Ker τ by Lemma 4, Lemma 5, Lemma 10 and Lemma 12,

the operator (W +V ) is Fredholm with index 0 and Ker(W +V )2 = Ker(W +V ) by
[32], Chapter VII, Theorem 3.5 and [12], Satz 27.1. [21], Proposition 3 yields that

there are constants M ∈ 〈1,∞), q ∈ (0, 1) such that for each f ∈ (W +V )( Ĉ (∂G))
and each natural number n

∥∥[α−1(W + V − αI)]nf
∥∥ � Mqn‖f‖.

Lemma 4 and Lemma 5 yield that µn ∈ Ĉ ′
c(∂G) and

un = Ucµn = Uc

(
−τ − αI

α

)n
µ

α
=

[
1
α
(−W − V + αI)

]n
Ucµ

α
.

Thus we obtain the estimate (21) by Lemma 13 while Lemma 6 yields the rela-
tion (22).

Let λ ≡ 0. Put C = �
m \ clG. Since Hm(∂G) = 0 by Lemma 4, V C = V G <∞

and NCU = I−NGU (see Remark 5) and ress(NCU − 12I) = ress(NGU − 12I) < 1
2 .

Thus σ(W ) ∩ {β ; |β − 1
2 |} ⊂ {0; 1}, KerW 2 = KerW , Ker(W − I)2 = Ker(W − I).

[21], Proposition 3 yields that there are constants M ∈ 〈1,∞), q ∈ (0, 1) such that
for each f ∈ (W + V )( Ĉ (∂G)) and each natural number n

∥∥(I − 2W )n(2I − 2W )f
∥∥ � Mqn‖f‖.

Lemma 4 and Lemma 5 yield that µn ∈ Ĉ ′
c(∂G) and

u0 = Ucµ0 = Uc(3I − 2NGU )µ = (3I − 2W )Ucµ,

un = Ucµn = Uc(I − 2NGU )n(2I − 2NGU )µ = (I − 2W )n(2I − 2W )Ucµ.

Thus we obtain the estimate (21) by Lemma 13 while Lemma 6 yields the rela-

tion (22).
The rest is a consequence of Remark 6. �
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���� 8. Suppose ress(τ − 1
2I) <

1
2 . If λ ≡ 0 we put α0 = 1

2 . If C = �
m\cl G

has a bounded component then NCU ( Ĉ ′(∂G)) �= Ĉ′(∂G) by Theorem 1 and
there is µ ∈ Ker(NCU ), µ �= 0. Since NCU + NGU = I we have NGU µ = µ.
The series (17) diverges for α = 1

2 . So, our choice of α0 in Theorem 2 is the best

possible. Now, let λ �≡ 0. It is a question whether it is possible to choose a better
λ0 than 1

2 (V
G + 1 + cλ) in Theorem 2. But it is necessary to put λ0 � 1

2cλ as

the following example shows. Let G be bounded. Then there is a positive measure
µ ∈ C ′(∂G) such that U µ = 1 on G (see [17], Chapter II, §1). Since dG(x) > 0 for

each x ∈ ∂G by Corollary 1 and U ν is fine continuous we obtain U ν ≡ 1 on clG by
[3], Chapter VII, §2. Put λ = cµ for c > 0. Then cλ = c, τ(µ) = λ = cµ. The series

(17) diverges for α = 1
2cλ.


�����
 2. Put G = {[x1, x2, x3] ; |x1| < 1, |x2| < 1, −1 < x3 < 0} ∪
{[t, ty2, ty3] ; 0 < t < 1, 13 < |y2| < 2

3 , 0 � y3 <
1
3} ⊂ �

3 . Let f , g be continu-
ous functions on ∂G. Suppose that f is nonnegative and if f ≡ 0 then

∫

∂G

g = 0.

We would like to find a solution of the problem

∆u = 0 in G,
∂u

∂n
+ fu = g on ∂̂G.

Notice that G has not a locally Lipschitz boundary, so we cannot use the theory

for Lipschitz domains. In fact, the boundary of G is not a graph of a function in a
neigbourhood of the point [0, 0, 0]. Let θ be a unit vector. If there is δ > 0 such that
each line with the direction θ intersects ∂G∩U ([0, 0, 0]; δ)∩{[x1, x2, x3] ; x2 > 0} in
at most one point then θ ∈ {[t, ty2, ty3] ; t ∈ �, 13 < y2 <

2
3}. If there is δ > 0 such

that each line with the direction θ intersects ∂G∩U ([0, 0, 0]; δ)∩{[x1, x2, x3] ; x2 < 0}
in at most one point then θ ∈ {[t, ty2, ty3] ; t ∈ �,− 23 < y2 < − 13}. So there is no unit
vector θ nor a positive number δ such that each line with the direction θ intersects

∂G ∩U ([0, 0, 0]; δ) in at most one point.

The open set G is not a domain with a locally Lipschitz boundary but it is a

polyhedral domain. Instead of the original problem we can solve the problem

∆u = 0 in G,(24)

NGu+ u(fH ) = gH .

153



Since G is the union of three convex sets, we have V G � 3 (see Remark 3). Denote

cf = sup
x∈∂G

f(x).

Since H (U (x; r)) � 12�r2 for each x ∈ �
m , r > 0, because ∂G is a subset of the

union of 12 planes, we have (see Remark 6)

1
2
(V G + 1 + cfH ) < 2 + 24cf .

If α > 2 + 24cf put

h =
∞∑

n=0

(
αI − T

α

)n
g

α
.

Then U (hH ) is a continuous function in �3 which is a solution of the problem (24)

(see Remark 7, Corollary 1 and Corollary 2).
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