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SOLUTION OF THE ROBIN PROBLEM
FOR THE LAPLACE EQUATION
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Abstract. For open sets with a piecewise smooth boundary it is shown that we can
express a solution of the Robin problem for the Laplace equation in the form of a single
layer potential of a signed measure which is given by a concrete series.
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Suppose that G C R™ (m > 2) is an open set with a non-void compact boundary
OG. Fix a nonnegative element A of €’(0G) (= the Banach space of all finite signed
Borel measures with support in G with the total variation as a norm) and suppose
that the single layer potential % A is bounded and continuous on JG. Here

Uv(x) = /m ha(y) dv(y),

where v € €'(0G),
ha(y) = (m —2) 7 A7z —y*7™,

A is the area of the unit sphere in R™. It was shown in [24] that % A is bounded
and continuous on JG if and only if

lim sup / hy () dA(z) = 0,
r=0+ yeoa
% (yir)
where % (z;r) = {y € R™; |y — 2| < r}. According to [14], Lemma 2.18 this is
true if there are constants o > m — 2 and k > 0 such that A\(% (z;7)) < kr® for all
z € R™ and all » > 0.

* Supported by GACR Grant No. 201/96/0431
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If G has a smooth boundary, u € €*(clG) is a harmonic function on G' and

0
au + fu=gon 0G

on
where f, g € €(0G) (= the space of all bounded continuous functions on G equipped
with the maximum norm) and n is the exterior unit normal of G, then for ¢ € 2
(= the space of all compactly supported infinitely differentiable functions in R™) we
have

(1) / @gd%mflz/V<P‘vud%m+/ ofud Ay, ;.
oG G oG

Here .74, is the k-dimensional Hausdorff measure normalized such that .77, is the
Lebesgue measure in R*. If we denote by .7 the restriction of J#, 1 onto G and
by N€u the distribution

(2) (p, NCu) = / Vo - Vudit,
G

then (1) has the form

(3) NCu+ fut = gi.

Here N€u is a characterization in the sense of distributions of the normal derivative
of wu.

The formula (3) motivates our definition of the solution of the Robin problem for
the Laplace equation

(4) Au=01in G,
N+ ul = p,

where pu € €' (0G) (compare [14], [23]). From now on G C R™ is a general open set
with a non-void compact boundary 0G.

We introduce in R™ the fine topology, i.e. the weakest topology in which all su-
perharmonic functions in R™ are continuous (see [3]). This topology is stronger than
ordinary topology. Since the set of fine isolated points of cl G is polar (see [3], Chap-
ter VII, §6, §4) and A does not charge polar sets ([17], Chapter II, §1 and p. 222)
A-a.a. points z of cl G are in the fine closure of clG \ {z}.

If w is a harmonic function on G such that

(5) / V|, < oo
H
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for all bounded open subsets H of G we define the weak normal derivative N%u of
u as a distribution
(o, NCu) = / Vo - Vudi,
G

for p € 2.

Let u € €' (0G). Now we formulate the Robin problem for the Laplace equation
(4) as follows: Find a function u € L'()\) on clG, the closure of G, harmonic on
G and fine continuous in A-a.a. points of JG for which |Vu| is integrable over all
bounded open subsets of G and N%u + u = p.

As in [25] we will look for a solution of the Robin problem in the form of the
single layer potential % v, where v € €¢'(0G). We will prove that if G has a smooth
boundary or m = 3 and G has a piecewise-smooth boundary then there is a solution
of the Robin problem with the boundary condition p if and ouly if 4(90H) = 0 for all
bounded components H of c1 G for which A(OH) = 0. In this case we can express the
solution in the form of the single layer potential % v where v is given by a concrete
series.

Notation. €.(0G) will stand for the subspace of those u € €’ (0G) for which
there exists a continuous function %, on R™ coinciding with % on R™ \ 9G. It
was shown in [27] that if v € €'(0G) and the restriction of % v onto 9G is finite and

continuous then % v is finite and continuous in R™ and v € %/(0G). For example
A € €L(0G).

Lemma 1. Let v € €'(0G), u € €.(0G). Suppose that u = A or #;,(0G) = 0.
Then % v is harmonic on G, finite and fine continuous at |u|-a.a. points of 0G,
v € LY)\) and |Vu| is integrable over all bounded open subsets of G. Here
|p| = p+ + p~, where p = p* — =~ is the Jordan decomposition of . If

(6) ey = sup Z \(x)
rz€0G
then
(") [ravian<all,
G

where ||v|| is the total variation of v. If v € €.(0G) then %.v = % v at |]-a.a. points.

Proof. v is a harmonic function on G such that (5) holds for v = Z v and all
bounded open subsets H of G (see [14], Remark on p. 9). Because Zv™, v~ are
superharmonic functions they are continuous with respect to the fine topology. Put
M = {z € 0G; %|v|(z) = oco}. Then % v is finite and continuous with respect to
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the fine topology on clG\ M. Moreover, if v € €. (0G) then Z.v =% v on clG\ M.
Since M is polar its Newtonian capacity is null (see [17], Chapter III, §1 and p. 222).
Since p has a finite energy by [21], Lemma 6 and [17], Theorem 1.20 the measure |y
has a finite energy as well and |u|(M) = 0 by [17], Theorem 2.1

/W/u\d/\ < /%Md/\: /%A div] < ex vl
oG oG oG

O

Remark 1. Let v € ' (0G). We have seen that for A-a.a. points z € 9G we have
 |v|(z) < oo. Fix such a point. Fix a > 1 and denote P,(z) = {z € G; |z — x| <
adist(z, 0G)}, where dist(z, 0G) = inf{|z—y|; y € OG}. Suppose that = € cl P, (x).
Then

(8) lim  %v(z) =%Zv(x).

2EPy(x),z—x

Proof. Fixe > 0. Since Z|v|(z) < oo there is r > 0 such that

€ —
[ rwan < S
OGN (z;r)

Since
ly—z| <[y —z|+|z—2[<(a+ 1)y — 2|
for z € P,(z),y € OG, we have
h@drl <@+ [ )y <5

4
OGN (x;r) OGN (x;r)

Since
zZ / h.(y)dv
OG\ (x;r)

is a continuous function in x there is 6 > 0 such that for z € % (z;J) we have

h.(y)dv — / he(y) dv| < %
OG\% (z;r) OG\ (z;r)
and thus for z € % (x;0) N P, (z) we have |Zv(z) — %v(z)| < e. O
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Remark 2. If G is a finite set then A = 0. Suppose now that OG is an infinite
set. Choose a simple sequence {z, } C OG such that z,, converges to xy as n — oc.
Choose a sequence {a,} of positive numbers such that

o0
Zan|x0 — xn|2*m < 0.
n=1

If we put

v(M)= Y ay

T, €M

then % v(zg) < oo but Zv(x,) = oo for all integer numbers n. Using the lower-
semicontinuity of % v we obtain that

Uv(xg) < limsup Zv(x) = oo

z€G,x—x0

in spite of % v(zo) being finite.
Remark 3. It was shown in [14] that N¢% v € €' (0G) for each v € €'(0G) if

and only if V& < oo, where

VY = sup v%(x),
z€0G

v (z) = sup{/ V ¢-VhydH,; v € D,|pl <1,spte C R™ \{x}} for z € R™.
G

There are more geometrical characterizations of v“(z) which ensure V¢ < oo for

k

G convex or for G with 0G C | L;, where L; are (m — 1)-dimensional Ljapunov
i=1

surfaces (i.e. of class €'*). Denote by

0.G = {$ e R™; &G(:U) > O,L_iRm\G($) > 0}

the essential boundary of G where
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where n (60, z) is the number of all points of 9.G N {z +t0; t > 0} (see [5]). This
expression is a modification of a similar expression in [14]. As a consequence we see
that V¢ < 1 if G is convex. Since v%(z) < V¥ + 1 by [14], Theorem 2.16, we see
that if

i=1
and G4, ...,G,, are convex then V¢ < n.

Let us recall another characterization of v“(z) using the notion of an interior
normal in Federer’s sense. If z € R™ and @ is a unit vector such that the symmetric
difference of G and the half-space {x € R™; (z — z) - § > 0} has m-dimensional
density zero at z then n®(z) = 0 is termed the interior normal of G at z in Federer’s
sense. (The symmetric difference of B and C' is equal to (B\ C)U (C \ B).) If there
is no interior normal of G at z in this sense, we denote by n“(z) the zero vector in
R™. The set {y € R™; |n% ( )| > 0} is called the reduced boundary of G' and will
be denoted by dG. Clearly dG C 0.G.

If 57,-1(0.G), the perimeter of G, is finite then 57, _1(0.G \ §G) = 0 (see [6],
Theorem 4.5.6) and

/|n ()] o1 ()

for each z € R™ (see [14], Lemma 2.15).

Lemma 2. NY(%v) + (%v)\ € €'(0G) for each v € €¢'(0G) if and only if
VE < oo, If VG < 0o then 7: v+ NY(%v)+ (%v))\ is a bounded linear operator
on ¢'(0G) and ||| < V& + 1+ cy. (If we want to emphasize that T depends on G
we will write 7€ instead of T.)

Proof. Lemma 1 yields that v — (%v)X is a bounded linear operator on
%' (0G) with a norm majorized by cy. The rest is a conclusion of [14], Theorem 1.13.
O

Remark 4. Lemma 2 was proved in [23] under more general conditions.

Remark 5. We will assume that V¢ < oo and dG = 9(clG).Then for each
z € R™ there exists
. (X (1) N G)
dg(x) = lim
c(w) = lim Hon (U (2;7))
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(see [14], Lemma 2.9). According to [14], Observation 1.5, Proposition 2.8 and
Lemma 2.15 we have
NCYv(M) = / dg(z) dv(z) — / / n%(y) - Vhe(y) dn_1(y) dv(x)

M
G (0GNM)

for each v € ¥'(0G) and a Borel set M. (This relation holds even if G # 9(clG).)

If we denote for f € €(0G) (= the space of all bounded continuous function on
OG equipped with the maximum norm) and = € 9G

W f(x) = da(z)f(z) — - F)n% () - Vha(y) A1 (y),
Vi) =% (f\)(x)

then W& V are bounded linear operators on ¢ (9G) and N¢%: v — NE(%v)
is the dual operator of W and 7 is the dual operator of (W& + V) (see [14],
Proposition 2.5, Proposition 2.20, [24], Proposition 9 and [23], Proposition 8). V
is a compact operator on % (9G) by [24], Proposition 9. Since 7 — NY% is the
dual operator of V, it is compact, too (see [32], Chapter IV, Theorem 4.1). If 7
is a Fredholm operator then N9% and W& are Fredholm operators, too (see [32],
Chapter V, Theorem 3.1, Chapter VII, Theorem 3.5) and clG has finitely many
components by [21], Lemma 3.

Lemma 3. Let clG have finitely many components. Let u € €'(0G) for which
there is a solution of the Robin problem with the boundary condition u (i.e. there
exists a harmonic function u for which NSu + uX\ = u). Then pu(0H) = 0 for each
bounded component H of cl G such that A(0H) = 0.

Proof. Let H be a bounded component of ¢l G such that A(OH) = 0. Choose
v € P such that ¢ =1 on H and ¢ =0 on clG \ H. Then

p(OH) = (o, Nu + u)) = /

Vu-Vapd%er/ up dA = 0.
G

oG
g

Notation. Let L be a linear space over the field of real numbers. We will
denote by "L the set of all elements of the form = + iy where z,y € L. If the sum
of two elements of ~L and the multiplication of an element of ~L by a complex
number are defined in the obvious way then ~L becomes a linear space over the field
of complex numbers. Let () be a linear operator acting on L. The same symbol will
denote the extension of @ to "L defined by Q(z +iy) = Q(z) +iQ(y). If an operator
Q on L possesses an inverse operator Q—!, then the extension of Q=1 to ~L is an
inverse operator (on “L) of the extension of @ to "L.
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If @ is a bounded linear operator on the complex space L we denote by o(Q) the
spectrum of Q). We denote by ®(Q) the set of all complex number « for which ol —Q
is Fredholm, where I is the identity operator. We denote by (@) the unbounded
component of (Q).

Lemma 4. J,({z € 0G; dg(x) # 0}) = 0. If there is a one-to-one sequence
{zn} C OG such that

a= lim dg(x,),
n—oo

then o ¢ Q7). If moreover dg(xy,) = « for each n then o ¢ ®(7). In particular,
1 & &(r). If 7 is a Fredholm operator then the set {x € 0G; dg(x) = 0} is finite
and 7,(0G) = 0.

Proof. Since G has a finite perimeter, jfm,l(gG) < oo and J4,—1({z € IG;
0 < dg () < 1}\dG) = 0 by [6], Theorem 4.5.6. Denote My = {x € dG; dg(x) = 1}.
Since dgpm\g(x) = 0 for each x € M; C R™ \ G we obtain J7,(M;) = 0 by [34],
Theorem 1.3.8 (or [18], Theorem 29.2).

Fix z € 0G, v € €'(0G). Then

(NCUv — dg(2)v)({z}) = / [da(y) — da(x)] dv(y)
OGN{z}

- / / n%(2) - Vhy(2) dst,_1(2) dv(y) =0
oG J{x}

and (dg(z)I — NC%) (€' (9G)) C {pu € €' (0G); u({z}) = 0}.

Suppose now that there is a one-to-one sequence {z,} C 9G such that

a= 'nlggc da(xy).

If dg(zn,) = « for each n then codim(N¢Zv — ol)(¢'(0G)) = oo and a ¢
®(NC%) = ®(7) (see Remark 5 and [32], Chapter V, Theorem 3.1). Suppose
now that the sequence dg(z,) is one-to-one. Then dg(z,,), a € o(N9%). Since all
points of o(N“% )N Q(NY% ) are isolated points of o(N“% ) by [12], Satz 51.4, we
obtain a ¢ Q(NY%) = Q(7) (see Remark 5 and [32], Chapter V, Theorem 3.1).

Since 0G = O(R™ \ clG) we have jfm,l(gG) > 0 by Isoperimetric Lemma (see
[14], p. 50) and % Z O(7). O

Definition. We will say that W is Plemelj’s operator if W is a bounded linear
operator acting on "¢ (0G) whose dual W' maps "¢/(0G) into itself and

1 €7CNIG) = W (Uupt) = Ue(W' ).
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Lemma 5. If 5#,(0G) = 0 then W& + V is Plemelj’s operator.

Proof. WY is Plemelj’s operator by Plemelj’s exchange theorem ([14], p. 68).
Let u € €.(0G). Since (Z.p)", (Z.p)~ are bounded functions on G and % X is
bounded and continuous on OG, % ((Z.p)™\) and % ((Z.;1)~\) are bounded and
continuous on G by [24], Proposition 6. Regularity principle ([17],Theorem 1.7)
yields that % ((Zep)t\), % ((Z.1)~\) are finite continuous functions in R™. The
function % (% p)\) = U (Uep)N) = U ((Uepr)™ N) — % (%)~ M) is continuous by
Lemma 1. Thus Vu = (Zp)X € €.(0G) and V(%.p) = U ((Uep)N) = % (V') =
UV ). U

Since the condition .74, (0G) = 0 plays no role in the proof of Lemma 4.5 in [14]
the following lemma holds:

Lemma 6. Let pu,, € €.(0G) (n=1,2,...), > |lunll < 00, I ||%epin|| < 0o. Then
w=> pn € €.(0G) and
Ue = Z%CMTL'

Lemma 7. Let W be Plemelj’s operator. Then all operators (W + al) with
|o| > ||W| have Plemelj’s inverses. If (W + 31)~! is Plemelj’s operator with
(W + BI)~1|| < K then also all operators (W + ~I) with |y — 8| < 1/K possess
Plemelj’s inverses.

Proof. The proof is the same as the proof of Lemma 4.6 in [14], where we
substitute 7" by W and T, by W + ~1. O
Lemma 8. Let W be Plemelj’s operator. All operators (W — ~vI) with v €

QW) \ o(W) possess inverses that are Plemelj’s.

Proof. According to [12], Satz 51.4 the set Q(W) N o (W) is isolated in Q(W).
Now we use the proof of Lemma 4.7 in [14] where we replace the operator T, by the
operator W — ~1I. O

Lemma 9. Suppose that fi,...,f, € "¢ (0G) are linearly independent. Then
there exist fi1,. .., g € 6.(0G) such that

(fi, tj) = 0;; (= Kronecker’s symbol), 1 < i,j < q.

Proof. The proof is the same as the proof of Lemma 4.9 in [14]. g
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Lemma 10. If p is a positive integer, W is Plemelj’s operator and v € Q(W)
then any u € "¢’ (0G) satisfying the homogeneous equation

(W =AI)Pp=0

necessarily belongs to "€.(0G).

Proof. It suffices to suppose that v € o(W’ — ~I). The resolvents of the
operators (W — AI), (W — AI) have poles at v and these poles are of the same
order, say po (cf. [12], Satz 51.4, Theorem 51.1, Satz 50.2). Now we use the proof of
Theorem 4.10 in [14] where we replace the operator T, by the operator (W —al). O

Lemma 11. Let %,(0G) =0, 0 # p € "6.(0G), a € C, (1 —al)p = 0. Then
a > 0. If « =0 then % 1 is locally constant on G and %, = 0 on each component
H of c1G for which \(0H) # 0.

Proof. Denote by &i the complex conjugate of u. According to [21], Lemma 7

we have

o [Uupdu= [ wpdc) = [wmanuns | gk
oG oG
oG C

oG
= [ vt + [k ax
¢ oG
By Lemma 1, [21], Lemma 6, [17], Theorem 1.20, Theorem 1.15 we obtain

/ @/cﬂdu:/ @/—ud,u:/ |V ul? > 0.
oG le; R™

So we obtain

-1
o= U |V%M|2} U \V%m2+/ |02/cu2dA] > 0.
m G oG

If @« = 0 then % p is locally constant on G and

/ |Weps|? X = 0.
oG

Since %, is constant on each component of cl G we obtain %.u = 0 on each com-
ponent H of cl G for which A(0H) # 0. O
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Lemma 12. Let 74,(0G) =0, p,v € 6.(0G), (1) =0, 7(v) = p. Then pp=0.

Proof. We can suppose that p,v € €.(0G). According to Lemma 1 and [21],
Lemma 7 we have

0= U%“ dNG@/VJr/(%u)(%V) d)\] U@/y ANCU +dé(%cu)(@/ﬂ) d)\}

/@/,udT /%VdT /%udu /@/,ud,u

So =0 by [17], Theorem 1.15, [21], Lemma 6 and [17], Theorem 1.20. O

Lemma 13. Let 0 € Q(7),v,u € €'(0G), 7(v) = p. Then p € €.(0G) if and only
if v € €/(0G). If u € € (0G) then Uep € (WE +V)(%(9G)).

Proof. If v € €/(0G) then 7(v) € €.(0G) by Lemma 4 and Lemma 5.

Now let p € €/(0G). We prove that Z.u € (WE + V)("¢(0Q)). If 0 € Kerr
then o € 7€/(0G) by Lemma 10. The number of components of clG is finite by
Remark 5. Denote by Hy, ..., Hj all bounded components of cl G for which A(0H;) =
0. Lemma 11 yields that there are cy,...,c; such that

U.o=c,on H,i=1,...,k,
k
.0 =0 on CIG\UHi'

i=1

Let ¢ € 2 be such that ¢ = %.0 on clG. Using Lemma 1 and Fubini’s theorem we
obtain

k
/@/cudaz /@/udaz/%adu:/%cadu:Zciu(aHi)
oG oG o i=1

/gpdu—(g&, /V%a VUvdi#, +/(%U)(%U)d)\—0
oG oG

Since (W 4+ V)("¢(0Q)) is closed because (W + V) is a Fredholm operator we
conclude that Z.u € (WY 4+ V)( "€ (0G)) by [33], Chapter VII, §5.

Since Ker 7N 7(7¢"(0G)) = 0 by Lemma 4, Lemma 5, Lemma 10 and Lemma 12
and codim 7( "¢’ (0G)) = dimKer7 because 7 is a Fredholm operator with index
0, the space "¢’(90G) is the direct summ of Ker7 and 7( "¢’ (0G)). So there are
v1 € 7(7¢'(0G)) and vy € Ker7 such that v = 11 + vo. Lemma 10 yields that
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vy € "€.(0G). Denote by 7 the restriction of 7 onto 7( "¢’(0G)). Then 7 is in-
vertible. According to [12], Satz 51.4 there is ¢ > 0 such that for 0 < |a| < ¢ the
operator (7 — o) is invertible. Since (t—al)(Ker7) C Ker, (t—al)7(7¢"(0G)) C
7(7¢'(0G)), (7 — al) is invertible for |a| < § and (7 — al)~! is the restriction of
(t — )~ onto 7( "€"(9G)) for a # 0. Denote by W the restriction of (W& 4 V)
onto (W + V)("¢(8G)). We obtain in an analogicous way that (W — o) is in-
vertible for |a| < & and (W — ol)~! is the restriction of (WS + V — alI)~! onto
(WE +V) ("€ (0Q)) for a # 0. Put

K= sup1 max(H(%faI)_lﬂ,H(Wfaf)_lﬂ).
la|<56

Choose « such that 0 < |a| < min(16, K~!). Then

o

=Y (e [(F - el

k=0
Thus o
=7 =Y (~a)* [(F—al) 1]

k=0

Put i = (—a)"[(7 — al) " e Then ]l < (JalK)"K ] and 5 lunl] <

0o. Since p € F.(0G), Lemma 8, Lemma 5 and Lemma 4 yield that u, =

(=)™ (1 — aI) 7"y € €(0G) and Uepin, = (—a)" (W +V — al) " 1% p.
Since Z.p € (WE + V)("¢(9G)) we have

|Zetinll = (=) [( W — aD) " g < (0l K K| %ep]
and v1 =Y, € 6/ (0G) by Lemma 6. O

Theorem 1. Let 0 € Q(7), u € "¢'(0G). Then there is a harmonic function u on
G which is a solution of the Robin problem

(9) N +ul = p,
if and only if p € €§(0G) ( = the space of such v € "¢’ (0G) that v(OH) = 0 for

each bounded component H of clG for which A(OH) = 0). If u € 65(0G) then there
is a unique v € "6{(0G) such that

(10) () = u
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and for this v the single layer potential % v is a solution of (9). Moreover, v €

¢! (0G) if and only if u € "6.(0G).

Proof. According to Remark 5, cIG has finitely many components. If for
u € 7€' (0G) there is a solution of the Robin problem (9) then u € 6}(0G) by
Lemma 3. Since v solves (9) for p = 7(v) we have 7( "¢'(0G)) C %;(0G).
Denote by Hi,. .., H; all bounded components of cl G for which A(0H;) = 0. Since
codim 64 (0G) = j and 7 is a Fredholm operator with index 0 (see [12], Satz 51.1) it
suffices to prove that codim7( "¢’ (9G)) = dimKer 7 < j. By Lemma 4, Lemma 5
and Lemma 10 we have Ker7 C "¢.(0G). Lemma 11 yields that for u € Ker 7 there
are ci,...,c; such that

Upp=c;on Hiji=1,....7,

J
%C,uzoonch\UHi.

i=1

Ifci =co=...=c; =0 then

/@/udu:/%cuduzo
aG oG

by virtue of Lemma 1, and ¢ = 0 by [21], Lemma 6, [17], Theorem 1.20, Theorem 1.15.
Thus dim Ker(7) < j.

Since Kerr N 7( "¢’ (0G)) = ) by Lemma 4, Lemma 5, Lemma 10 and Lemma 12
and codim7( "¢’(0G)) = dimKer 7, the space "¢”’(0G) is the direct sum of Kerr
and 7( "¢"(0G)) = E5(0G). So T(64(0G)) = €3(0G) and T is injective on 65 (0G).

The rest is a consequence of Lemma 13. O

Remark 6. Let p € 4/ (0G). If

lir(r)l sup / hy(z) d|p|(z) =0,
=Y+ yedG
% (yir)

then % 1 is a finite continuous function in R™ and thus p € %/ (0G) ([24]). Now
suppose that C is such a constant that (% (z;r)) < Cr™~! for each x € R™,
r > 0, where J is the restriction of 4%,,_1 onto dG. (This condition is true for
C = Am(m +2)™(V 4 1)r™=! by [14], Corollary 2.17.) Fix p, m — 1 < p < oc.
Putq:%ifp<oo,qzlifp:oo. If u = fH, where f € LP() then

(11) Iull < (OGN £, < [C(diam 6G) ™~ D] | 5],
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by the Schwarz inequality, where
1/p
11, ={ [ 167 a ) tor < .
oG

|| fllp is the s#-supremum of |f| for p = co. Fix z € R™, R > 0. Then using the

Schwarz inequality we obtain

1/aq
h@lf @) @) < A m =27 | [ el @],
U (z;R) U (% R)

oo 1/q
<A = DR S a2 )\ (2O |
k=0

00 1/q
< Ail(m o 2)71R27m |:0le Z 2(k+1)q(m2)k(m1):| ||f||p

k=0
< A (m — )~ R2-mgm =21 — ga(m=2)=(m=D)}~Va plm/aca/a| |

Continuity of % p is an easy consequence of this inequality and thus p € €.(0G).
Since

sup % |p|(x) < sup % |u|(x)
reR™ z€0G

by the maximum principle (see [17], p. 91), we obtain
_, (diam 9G)(m—1)/a+2=m

1/gom—2 4—1
(12> xsel'gz”%“’(“(x) <C 92 A (m - 2) [1 _ 2q(m—2)—(m—1)]1/q HfHP

Example 1. Let 1 <p < m—1. Since G = 9(clG) # 0, Isoperimetric Lemma
([14], p. 50) yields that 4,-1(0G) > 0. Fix z € 0G. Put f(y) = |y — 2|~ where

1<ax m771. Since
AU (z;7)) < Am(m +2)™(VE +1/2)rm 1

for each r > 0 by [14], Corollary 2.17, we obtain

oo

/\f|” A <Y (27 diam G) PO (U (227 F(diam G)) \ % (2; 275 (diam G)))
k=0

Am(m +2)™(VE + 320227 F(diam G)]" 1 P < o0,

M2

<

=~
I
<
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so f € LP(J). Since there is § > 0 such that for each r < diam G
AU (2;7)) = fr™!
by Isoperimetric Lemma ([14], p. 50),

U(f)(2)
1

P m 22(2*’C diam G)7“7m+2,}f(02/(z; Q*k(diam OGN\ % (z; 27k71(diam G)))

—a—m+2 X
> (dlaznG Z% Z 29— k dlamG))>[2k(a+m—2) _ 2(k—1)(a+m—2)]
(diaHlG')(H—m_2 i k- m—1,k —9 - —2
e e 5[2 (dlamG))] ok(atm )(1 — g~ (atm )) = 0.
(m—2)A Pt

Since % (f 7€) is a lower semicontinuous function ([17], Theorem 1.3) we have fZ ¢
CL(0G).

Lemma 14. Let 0 € Q(7). Then

(13) xlenafG da(z) > 0.

Let A be absolutely continuous with respect to ¢, the restriction of 7,1 onto dG.
Let v,u € €'(0G) and 7(v) = p. Then v is absolutely continuous with respect to
¢ if and only if p is absolutely continuous with respect to .

Proof. If there is € G such that dg(z) = 0 then N°% ("%¢"(0G)) C {0 €
“¢'(0G); o({x}) = 0}. Let H be the component of c1G such that z € H. Since
OG = O(clG) # () there is y € OH \ {x}. Then §, — 6, &€ N°% ("¢'(0G)) which
is a contradiction with Theorem 1. (4, means the Dirac measure concentrated at
the point z.) Lemma 4 yields the relation (13). So v is absolutely continuous with
respect to JZ if and only if p is absolutely continuous with respect to S by [23],
Proposition 12. O

Lemma 15. Let 7 be a Fredholm operator and o > 0 and o(7)N{3 € C; |B—a| >
a} C {0}. Then there are constants ¢ € (1,00), ¢ € (0,1) such that for each

€ 65(0G) and integer number n
al\" n
) ol < carta

w9 §
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If p € 64 (OG) then there is a unique v € 6}(0G) such that 7(v) = . This v is given
by

(15) u:i<—7_aa])ng.

n=0

The single layer potential % v is a solution of the Robin problem N%u + u\ = p.
Proof.  Since res(27 — 1) = sup{|8]; B € C\ ®(17 — I)} < 1 there are

¢ € (1,00),q € (0,1) such that (14) holds for each i € €}(0G) by Lemma 4, Lemma 5,

Lemma 10, Lemma 12, Theorem 1 and [21], Proposition 3. The series (15) converges

—al
(T a)u—l—]uzﬁ.
o «

Thus 7(v) = 1 and we can use Theorem 1. O

and v given by (15) satisfies

Remark 7. If L is a bounded linear operator on the complex Banach space X
we denote by || L||ess the essential norm of L, i.e. the distance of L from the space of
all compact linear operators on X. The essential radius of L is defined by

TessL = Hm (|| L"[|ess)*/"
n—oo
According to [12], Satz 51.8, [7] we have

Tess(L) = sup  |A| = inf pess(L),
AEC\Q(L) P

where p ranges over all norms equivalent to || ||. Thus if there is a € C such that
Tess(T — al) < |af then 0 € Q(7) and we can use Theorem 1. Some sufficient
conditions for reg (T — %I ) < % are known . But it is a question whether there is G
such that 0 € Q(7) and ress(r — 1) > £ under our supposition G = 9(clG). If we
omit the condition G = 9(cl G) we obtain such a set putting G = R™ \ K where K
is an arbitrary compact set of null Lebesgue measure. For such G' we have V& = 0
and if we put A\ = 0 we obtain 7 = N9% = I and thus o(7) = {1},0 € Q(7) and
Tess (T — %I) = %

It is well-known that the condition ress(T — %I ) < % is fulfilled for sets with a
smooth boundary (of class C1T?) (see [15]) and for convex sets (see [26]). R. S. An-
gell, R. E. Kleinman, J. Kral and W. L. Wendland proved that rectangular domains
(i.e. formed from rectangular parallelepipeds) in R have this property (see [2], [16]).
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A. Rathsfeld showed in [29], [30] that polyhedral cones in R? have this property. (By
a polyhedral cone in R? we mean an open set {2 whose boundary is locally a hyper-
surface (i.e. every point of 09 has a neighbourhood in 9Q which is homeomorphic to
R?) and 05 is formed by a finite number of plane angles. By a polyhedral open set
with bounded boundary in R® we mean an open set £ whose boundary is locally a
hypersurface and 02 is formed by a finite number of polygons.) N.V. Grachev and
V. G. Maz’ya obtained independently an analogous result for polyhedral open sets
with bounded boundary in R? (see [11]). (Let us note that there is a polyhedral set
in R® which has not a locally Lipschitz boundary.) In [20] it was shown that the
condition regs (T — %I ) < % has a local character. As a conclusion we obtain that this
condition is fullfiled for G C R® such that for each z € G there are r(z) > 0, a
domain D, which is polyhedral or smooth or convex or a complement of a convex do-
main and a diffeomorphism 1, : % (x;7(z)) — R® of class C'*®, where o > 0, such
that ¥, (G N (z;r(x))) = Dy N (% (z;7(x))). V. G. Maz’ya and N.V. Grachev
proved this condition for several types of sets with “piecewise-smooth” boundary in
the general Euclidean space (see [8]-[10]).

If we have ress(7 — 51) < 3 and G # 9(cl G) we can use this theory, too. Denote
by .# the set of all isolated points of OG. Then .# is finite by [21], Lemma 1
and for G = G U .# we have G = 9(clG). Let now u € ¢'(9G). We denote
by p. the restriction of y onto 8é(c 0G) and by us the restriction of u onto .#.
The set cl G = clG has finitely many components (see Remark 5) and a necessary
condition for the existence of a solution of the Robin problem for G with the boundary
condition s is that u(dH) = 0 for each bounded component H of cl G = cl G such
that A(OH) = 0. Suppose that this condition is fulfilled. Let now v € ¢’ (9G). Since
NC%v, = v, and (% vs)\ € €'(0G), the necessary condition for 7€ = u leads to
the equation Té(VT) = iy — (% ps)M\. Let now H be a bounded component of cl G
such that A(OH) = 0. Since u(0H) = 0 we have

po@m) = [ @uon = =0 = | (@nr= (S0t ~0.

H

Theorem 1 yields that there is v, € €'(dG) for which TG(Ur) =ty — (% ps) M\

Theorem 2. Let ress(T — %I) < % (see Remark 7). For A = 0 put ag = %,
for A #Z 0 put ag = %(VG + 1+ ¢y)). Then for each o > g there are constants

do € (1,00), go € (0,1) such that for each p € 6}(0G) and a natural number n

r—al\"
(16) H( ) uHédaqglul-

[e%
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If i € 65(0G) then there is a unique v € 63(0G) such that T(v) = p and this v is
given by

(17) u:i<_ T_a‘”)ng.

n=0

The single layer potential % v is a solution of the Robin problem N%u + u\ = p. If
A =0 then

I/—/,c-i-z (2r—1 2]—27']

Proof. Put C = R™\clG. Since 7,(0G) = 0 by Lemma 4, V¢ = V¢ < oo
and N°% =1 — N°% (see Remark 5). Thus o(7) N {8; |3 — 3| > 4} C (0, 2aq)
by Lemma 2, Lemma 4, Lemma 5, Lemma 10 and Lemma 11. If a > ag then
o(r) N {83 18— al > a} C (0,2a0) N {5 |8 —al > a} = {0} because {5; |3 1 >
1} 2 {B; |B—al = a}. The rest is a consequence of Lemma 15 and [21], Theorem 1.

O

Corollary 1. Let ress(7 — 31) < 4. Then ,_1(0G) < 00, A1 (0G—0G) = 0,

0 < inf{dg(z); = € 0G} < sup{da(z); = € 0G} < 1. Suppose that A\ = f# where
f € LY(s#). If we denote for h € "L* (), x € 0G

Th(z) / h(y)nS () - Vhy(x) A () + U (hH) () f ()
then Th € "LY(2#) and T: h — Th is a bounded linear operator on "L (). Let
ag have the same sense as in Theorem 2. Then for each o > «g there are constants

deo € (1,00), qo € (0,1) such that for each natural number n and g € “L*(5#), for
which (9) € 65(0G), we have

T—al\"
(18) [(2=2)" o] < daczlon

Let g € L' () and suppose that g# € €;(0G). Then there is a unique h € "L ()
such that g = 7(h¢) and h# € 635(0G). The function h is given by the series

(19) hé(aI;T)ng.

If f =0 then

=g+ [-@T - 1)’ [2I - 2T]g.

7=0
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Proof. Denote C = R™ \ clG. Since #,(0G) = 0 by Lemma 4 we have
NY% + N°% = I (see Remark 5). The assumption and Remark 5 yield that
0€ QIN®%)NQNCY). Lemma 14 yields that

0< inf d < d <1
g o) < 2 dole)

Thus H#,_1(9G) < 0o, Hp_1(0G — dG) = 0 by [6], Theorem 4.5.6. The rest is a
consequence of Theorem 2 and Lemma 14. O

Corollary 2. Let ress(T — 1) < %, 1 € 64(0G). Then there is v € "¢/ (9G) such
that 7(v) = p if and only if p € "€ (0G). If u € "€, (0G) then v € "€.(0G) for each
v € "¢'(0G) such that 7(v) = p. Let o have the same sense as in Theorem 2. Then

for each o > « there are constants d € (1,00), ¢ € (0,1) depending only on G and
a such that for p € €5(0G) N\"E€(0G),

T—al\"
(20) Hn = <_ ) Ea un:%c(,un)» ’I’L:071,27...
« «
we have
(21) sup |un(z)| < dg"™ sup |Zep|.
z€clG z€0G
Thus
(22) Z Uy, = UV
n=0

where v is given by (17) and the series in (22) converges absolutely and uniformly
on cl G to the continuous solution %.v of the Robin problem N%u+ U\ = pi. Define
on"¢!(0G) a norm p by

(23) p(p) = llull + sup [%pl.
r€0G

Then "€ (0G) is a Banach space with respect to the norm p. The operator T maps
“¢!(0G) into €. (0G) and is bounded with respect to the norm p. If 1 € "€.(0G) N
64 (0G) then the series (17) converges with respect to the norm p.

Ifm—1 < s < oo then there is a constant d such that for each u = g3 € 64(9G),
where g € L°(5), we have

sup un ()] + [lpnll < dsq"[lglls

zeclG
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where u,, is given by (20) (u € 65(0G)) and for v € €5(0G) N €.(0G) given by (17)
we have

sup |%v(z)| + [lv] < dsllglls-
zeclG

If X\ = 0 then analogous results hold for py = (31 — 2N9% ),

pin = (I —2NC)"(2I —2N“% ), n € N.

Proof. Lemma 13 yields that there is v € "6/ (0G) such that 7(v) = p if and
only if p € "€.(0G). Let u € "€L(0G) N 64(0G). Then %.p € (W + V)( "€ (9QG))
by Lemma 13. Fix o > ap. In the proof of Theorem 2 it was shown that o(7) N {g;
|8 —al = a} C {0}. Since 7 is the dual operator of (W + V') (see Remark 5) we have
oc(W+V)N{B; |B—«a| = a} C {0} by [12], Satz 44.2. Since 7 is a Fredholm operator
with index 0 and Ker 72 = Ker 7 by Lemma 4, Lemma, 5, Lemma 10 and Lemma 12,
the operator (W + V) is Fredholm with index 0 and Ker(W + V)2 = Ker(W + V) by
[32], Chapter VII, Theorem 3.5 and [12], Satz 27.1. [21], Proposition 3 yields that
there are constants M € (1,00), ¢ € (0,1) such that for each f € (W +V)("€(0G))
and each natural number n

[la™ (W +V —aD)]" || < Mq"[|f]l

Lemma 4 and Lemma 5 yield that pu,, € "6.(0G) and

=

un%cﬂn%(T“I) EF(WVMI) Yot

fe! fe! fe! fe!
Thus we obtain the estimate (21) by Lemma 13 while Lemma 6 yields the rela-
tion (22).

Let A =0. Put C = R™ \ clG. Since %, (0G) = 0 by Lemma 4, V¢ = V¢ < o0
and N°% = I—NS% (see Remark 5) and ress(NC% — 11) = ress(NY% — 11) < &.
Thus (W) N{B; |3 — 1|} € {0;1}, Ker W2 = Ker W, Ker(W — I)? = Ker(W — I).
[21], Proposition 3 yields that there are constants M € (1,00), ¢ € (0,1) such that
for each f € (W 4+ V)( 7% (0G)) and each natural number n

|(7 —2w)" (21 —2W) f|| < Mq"|| |-
Lemma 4 and Lemma 5 yield that p,, € "¢.(0G) and
Uy = Uepto = %e(31 — 2N U\ = (31 — 2W)Ueps,

Uy, = Uepin = Ue(I — 2NCU) (2L — 2NCU o = (I — 2W )" (21 — 2W)Uopu.
Thus we obtain the estimate (21) by Lemma 13 while Lemma 6 yields the rela-
tion (22).

The rest is a consequence of Remark 6. O
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Remark 8. Suppose 7ess(7 — %I) < % If A =0 we put ag = % IfC=R"\cl G
has a bounded component then N¢% ( "%¢"(0G)) # ~“C'(0G) by Theorem 1 and
there is u € Ker(N°%),u # 0. Since N°% + N% = I we have N®%u = p.
The series (17) diverges for a = % So, our choice of o in Theorem 2 is the best
possible. Now, let A #Z 0. It is a question whether it is possible to choose a better
Ao than %(VG + 1+ ¢y) in Theorem 2. But it is necessary to put Mg > %C)\ as
the following example shows. Let G be bounded. Then there is a positive measure
€ €' (0G) such that Z =1 on G (see [17], Chapter II, §1). Since dg(x) > 0 for
each « € 9G by Corollary 1 and % v is fine continuous we obtain v =1 on cl G by
[3], Chapter VII, §2. Put A = ¢u for ¢ > 0. Then ¢y = ¢, 7(it) = A = cp. The series

(17) diverges for o = Zcy.

Example 2. Put G = {[z1,22,23]; |71] < 1, ]22] < 1, -1 < 23 < O} U
{[t,tya,tys]; 0 <t <1,%2 < |ya| < 2,0<ys < 3} C R Let f, g be continu-
ous functions on JG. Suppose that f is nonnegative and if f = 0 then

[o=0

oG

We would like to find a solution of the problem

Au=0in G,

a_u + fu=g on dG.
on

Notice that G has not a locally Lipschitz boundary, so we cannot use the theory
for Lipschitz domains. In fact, the boundary of GG is not a graph of a function in a
neigbourhood of the point [0, 0, 0]. Let 6 be a unit vector. If there is 6 > 0 such that
each line with the direction @ intersects 0G N % ([0, 0, 0]; 6) N{[x1, 2, x3]; x2 > 0} in
at most one point then 0 € {[t, tys,tys]; t € R, % <yo < %} If there is § > 0 such
that each line with the direction 6 intersects 0GN% ([0, 0, 0]; 6)N{[z1, x2, x3]; 22 < 0}
in at most one point then 6 € {[t, tys, tys]; t € R, —25 <ys < —%} So there is no unit
vector # nor a positive number ¢ such that each line with the direction 8 intersects
OGN (0,0,0];9) in at most one point.

The open set G is not a domain with a locally Lipschitz boundary but it is a
polyhedral domain. Instead of the original problem we can solve the problem

(24) Au=01in G,
NCuU+ u(fH) = g
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Since G is the union of three convex sets, we have V¢ < 3 (see Remark 3). Denote

¢y = sup f(x).
z€0G

Since (% (x;7)) < 121r? for each x € R™, r > 0, because G is a subset of the
union of 12 planes, we have (see Remark 6)

1
E(VG +1+crp) <2+ 24cy.

If o > 2+ 24cy put

o0 n
1-T
=Y (a ) 9.
e e
n=0
Then % (h#) is a continuous function in R* which is a solution of the problem (24)
(see Remark 7, Corollary 1 and Corollary 2).
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