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Abstract. The paper gives the answer to the question of the number and qualitative
character of stationary points of an autonomous detailed balanced kinetical system.
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1. Introduction

Throughout this paper � denotes the set of integers, � the set of real numbers, �n

the space of n-dimensional real column vectors, �n
�0 (�

n
>0 ) the nonnegative (positive)

orthant in �n , 〈u|v〉 the inner product of vectors u and v and ‖u‖ the corresponding
norm ‖u‖ := 〈u|u〉1/2. A∗ denotes the conjugate transpose of the matrix A (A∗ :=
AT ). If A ∈ �r×s is an r × s matrix, then coli(A) denotes the i-th column of the

matrix A and A(i1, . . . , in) denotes the principal submatrix of A which consists of
i1-th, . . ., in-th columns and rows of the matrix A.

In [1] an interesting class of nonlinear ordinary differential equations, widely used
in chemistry, physical chemistry and biology, the so called kinetical systems, was

introduced:

Definition 1.1. Consider n × m matrices C = [cij ], C′ = [c′ij ], where cij ,
c′ij ∈ ��0 and A = [aij ] := C − C′, 0 < L := rank(A) < n. Let rj , dj : � → [0,∞)
be continuous functions and let G = [Gj ] be a m-dimensional vector such that

Gj(t, y) := −rj(t)
n∏

k=1

y
ckj

k + dj(t)
n∏

k=1

y
c′

kj

k .

The system of equations

(1) ẏ = AG(t, y), (t, y) ∈ � × �n ,
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is called the kinetical system (KS).

������ 1. In what follows we shall always suppose that the principal
submatrix A(1, . . . , L) is nonsingular.

Since rank(A) < n there is a real d×n matrix U = [uij ] of the rank d = n−L such

that UA = 0. It is clear that for any vector b ∈ �d the L–dimensional linear manifold
L(U, b) := {y ∈ �n : Uy = b} is an invariant set of (1). Other important (positively)
invariant sets of (1) are the nonnegative orthant �n

�0 and the set H := L(U, b)∩�n
�0 .

From the point of view of applications the most important case occurs if the elements

uij are nonnegative integers and
d∑

i=1
uij > 0 for j = 1, . . . , n. Such matrix U is called

the nonnegative formula matrix in [1]. As follows from Remark 1 there is a unique

real L× n matrix Z = [zij ] such that

colj(A) =
L∑

i=1

coli(A)zij for j = 1, . . . , m.

Among all kinetical systems a very interesting subclass exists, which consists of all
kinetical systems fulfilling the conditions

(2)
L∏

i=1

[
di(t)
ri(t)

]zij

=
dj(t)
rj(t)

for j = 1, . . . , m.

Such systems, denoted in [1] as detailed balanced kinetical systems, are in strong

correspondence with critical points of (1) fulfilling the conditions Gj(t, y) = 0 for
j = 1, . . . , m, called in [1] balanced critical points.

Supposing the hypotheses

H1 there is at least one nonnegative formula matrix U – one of them is chosen fixed.

H2 there exists a vector b ∈ �d
>0 such that there is a nonnegative solution y ∈ �d

�0
of Uy = b, that is the set H := L(U, b) ∩ �n

�0 is not empty. One such vector is
chosen fixed.

H3 ri(t), di(t) � ξi > 0 for i = 1, . . . , m.
H4 if y = [y1, . . . , yn] is a nonnegative solution of (1), then yi �≡ 0 on the right
maximal interval of existence [t0,∞) for i = 1, . . . , n.

The following theorem was proved in [1] for the autonomous kinetical system

(3) ẏ = AG(y).

Theorem 1.2. Suppose that the detailed balanced system (3) satisfies H1, H2,
H3, H4. If the stationary points of (3) are isolated, then (3) has exactly one stationary
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point uniformly stable with respect to the set H , other stationary points (if they

exist) being unstable.

Notice that H1 and H2 mean, that Theorem 1.2 in fact concerns the “differential-
algebraic” system

(4) ẏ = AG(y), y ∈ H.

In this sense Theorem 1.2 speaks about critical points, stability, closure, isolated
points and so on.

This article fulfils the gap in Theorem 1.2 concerning the number and properties
of stationary points of (4). The method used is the method of linearization. Perhaps

the interesting point is that sometimes it is not the best way to use information about
even linear first integrals of the system explored for the reduction of the system to
a lower-dimensional one. At least in this case this is the path leading to the swamp

of “common polynomial systems” and it is well known that for polynomial systems
to answer even the simplest question is sometimes extremely difficult.

2. Asymptotic properties

Let us start with the following remark.

������ 2. Consider a system of “differential–algebraic” equations

ẋ = AF (x),(5)

Ux = c,

where x and c are real n vectors, A is a real n×m matrix of rank L, U is a real d×n

matrix of rank d, L + d = n, Ld �= 0 such that UA = 0 and F is a real sufficiently
smooth m vector. Let x̃ be a stationary point of (5). The transformation y = x− x̃

of (5) yields the system

ẏ = Jy + f(y),(6)

Uy = 0,

where UJ = Uf(y) = 0, J := A∂xF (x̃), f := AO(‖y‖2) (O is the Landau order
symbol). Since UJ = 0 and rank(U) = d, at least d eigenvalues of J are equal to
zero and there is a nonsingular real matrix T such that

T−1JT =

[
B 0
0 C

]
,
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where B is an L×L matrix and C is a d×d matrix with zero eigenvalues only. After

a linear change of the variable y = Tξ the system (6) becomes

ξ̇ = T−1JTξ + T−1f(Tξ),

UT ξ = 0,

or after denoting ξ = [ξL, ξd]T , ξL ∈ �
L , ξd ∈ �

d , V = [VL, Vd] := UT , VL ∈
�

d×L , Vd ∈ �d×d and h := T−1f , h = [hL, hd]T , hL(ξ) ∈ �L , hd(ξ) ∈ �d ,

(7)
d
dt

[
ξL

ξd

]
=

[
B 0

0 C

] [
ξL

ξd

]
+

[
hL(ξL, ξd)

hd(ξL, ξd)

]
,

(8) V ξ = 0.

If the Jacobian matrix J has L nonzero eigenvalues, then B is nonsingular,

(9) [VL, Vd ]

[
B 0

0 0

]
= 0,

hence VL = 0 and Vd is nonsingular. From (8) we have ξd = 0 and the system (7)–(8)

is equivalent to the L dimensional system

(10) ż = Bz + hL(z, 0),

where z = ξL. Any assertion made about (10) yields implications for system (5)
which are easily traced back using the above transformations. The asymptotic be-

haviour of (5) is therefore determined by the asymptotic behaviour of (10). One of
simple consequences is that if for a stationary point x̃ the Jacobian matrix of (5) has

exactly L eigenvalues with negative real parts, then x̃ is asymptotically stable with
respect to the set L(U, c) := {x ∈ �n : Ux = c}.

In the proof of Theorem 2.4 we use two algebraic lemmas of independent interest.

Lemma 2.1. Let A be a complex n×m matrix of rank r, then the Gram matrix

A∗A (or AA∗) of A a) is a positive semidefinite matrix, b) is a matrix of rank r.

�����. Suppose n � m and consider the case A∗A, the other cases being
similar. a) It is clear that the matrix A∗A is a Hermitian matrix. For each m-

dimensional complex vector x, 〈x|A∗Ax〉 = 〈Ax|Ax〉 = ‖Ax‖2 � 0, hence A∗A is
positive semidefinite. b) Since A∗A is positive semidefinite of rank s, there is a

unitary m×m matrix U such that

A∗A = U∗ diag[d1, . . . , ds, 0, . . . , 0]U,

114



where di > 0 for i = 1, . . . , s. Then

diag[d1, . . . , ds, 0, . . . , 0] = UA∗AU∗ = (AU∗)∗(AU∗),

hence

〈coli(AU∗)| colj(AU∗)〉 =
{

di if i = j ∈ {1, . . . , s}
0 otherwise,

in particular coli(AU∗) are linearly independent for i = 1, . . . , s and coli(AU∗) = on

for i = s+ 1, . . . , m, where on is the n-dimensional zero vector. Therefore

AU∗ = [col1(AU∗), . . . , cols(AU∗), on, . . . , on]

or

A = [col1(AU∗), . . . , cols(AU∗), on, . . . , on]U,

and r = rank(A) = rank[col1(AU∗), . . . , cols(AU∗), on, . . . , on] = s = rank(A∗A).

�

Lemma 2.2. Let Λ = diag[y1, . . . , yn] be a positive definite real matrix and V =
[vij ] a real positive definite n matrix, then all eigenvalues of the matrix

(11) A = V Λ

are positive.

�����. It is well known that coefficients pk of the characteristic polynomial of

any matrix B

det(B − λI) = (−λ)n + pn−1(−λ)n−1 + . . .+ p1(−λ) + p0

are the sums of principal minors of order k of the matrixB, pk :=
∑
det(B(i1, . . . , ik))

[2, p. 363].
Let V (i1, . . . , ik) be an arbitrary principal submatrix of V of order k, 1 � k � n

chosen fixed and let ξ ∈ � and u = col[u1, . . . , uk] ∈ �k be an eigenvalue and the
corresponding eigenvector of V (i1, . . . , ik). Let ũ be the vector created from the zero

vector on ∈ �n by replacing its i1-th, . . ., ik-th coordinates by numbers u1, . . . , uk.
Then

0 < 〈V ũ|ũ〉 = 〈V (i1, . . . ik)u|u〉 = 〈ξu|u〉 = ξ‖u‖2

and ξ > 0. Since the determinant of any matrix is equal to the product of its

eigenvalues, det(V (i1, . . . , ik)) > 0 and similarly

det(A(i1, . . . , ik)) = λi1 . . . λik
det(V (i1, . . . , ik)) > 0.
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Therefore all the coefficients p0, . . . , pn−1 of the characteristic polynomial of A are

positive. The matrix A = (
√
Λ)−1(

√
ΛV

√
Λ)(

√
Λ) is similar to the symmetric matrix√

ΛV
√
Λ, hence its eigenvalues are real. It is clear that det(A − λI) � p0 > 0 for

any nonpositive λ, hence all eigenvalues of A are positive. �

Corollary 2.3. If in the previous lemma we replace the positive definite matrix
V by the positive semidefinite matrix V , the eigenvalues of the matrix A will be
nonnegative.

Theorem 2.4. Suppose that the detailed balanced system (4) satisfies H1, H2,
H3, H4. Then any stationary point y ∈ H of (4) is asymptotically stable with respect
to H .

�����. Let the kinetical system (4) be detailed balanced and let J(y) = [Jis(y)]
denote the Jacobian matrix of (4), then on H ∩ �n

>0 we have

Jis(y) =
1
ys

m∑

j=1

(cij − c′ij)

[
− rjcsj

n∏

k=1

y
ckj

k + djc
′
sj

n∏

k=1

y
c′

kj

k

]
.

It follows from H4 that any stationary point ỹ ∈ H of (4) belongs to H ∩�n
>0 . Since

(4) is detailed balanced, ỹ is a balanced stationary point [1, Theorem 2.13], therefore

rj

n∏

k=1

ỹ
ckj

k = dj

n∏

k=1

ỹ
c′

kj

k

holds and

Jis(ỹ) = −
1
ỹs

m∑

j=1

(cij − c′ij)(csj − c′sj)rj

n∏

k=1

ỹ
ckj

k

= − 1
ỹs

m∑

j=1

aijasjrj

n∏

k=1

ỹ
ckj

k

=: − 1
ỹs

vis.

Hence at any stationary point ỹ ∈ H the Jacobian matrix J is the product

J = −V Λ,

where

V = [vis] =

[ m∑

j=1

aijasjrj

n∏

k=1

ỹ
ckj

k

]

is
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and

Λ = diag
[ 1
ỹ1

, . . . ,
1
ỹn

]

are real symmetric n× n matrices. As

V = Adiag

[
r1

n∏

k=1

ỹck1
k , . . . , rm

n∏

k=1

ỹckm

k

]
AT =: ADAT

and ri > 0 i = 1, . . . , m, the matrix V is the Gram matrix of the matrix A
√

D,
therefore V is positive semidefinite and since

√
D is regular, rank(V ) = rank(A) = L.

Therefore the Jacobian matrix of the detailed balanced KS (4) at any stationary
point ỹ ∈ H has exactly L negative eigenvalues and d = n−L zero eigenvalues. This

means that the variational equation ẋ = J(ỹ)x is asymptotically stable with respect
to H and (due to Remark 2) that the stationary point ỹ ∈ H of (4) is stable with

respect to H . �

The direct consequence of Theorem 1.2 and Theorem 2.4 is

Theorem 2.5. Suppose that the detailed balanced system (4) satisfies H1, H2,
H3, H4, then (4) is globally asymptotically stable with respect to the set H .
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