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RANDOMNESS AND SYMMETRY

Nguyen Van Ho, Hanoi
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Abstract. Let Xi, 1 � i � N , be N independent random variables (i.r.v.) with distribu-
tion functions (d.f.) Fi(x,Θ), 1 � i � N , respectively, where Θ is a real parameter. Assume
furthermore that Fi(·, 0) = F (·) for 1 � i � N .
Let R = (R1, . . . , RN ) and R+ = (R+1 , . . . , R+N ) be the rank vectors ofX = (X1, . . . , XN )

and |X| = (|X1|, . . . , |XN |), respectively, and let V = (V1, . . . , VN ) be the sign vector of X.
The locally most powerful rank tests (LMPRT) S = S(R) and the locally most powerful
signed rank tests (LMPSRT) S = S(R+, V ) will be found for testing Θ = 0 against Θ > 0
or Θ < 0 with F being arbitrary and with F symmetric, respectively.
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1. Introduction and notation

Let

F0 = {F : F is an absolute continuous d.f. on �},
F1 = {F : F ∈ F0, F (−x) = 1− F (x), x ∈ �}.

Let X = (X1, . . . , XN ) be a vector of N i.r.v’s. The hypothesis H0 (H1) means

that X1, . . . , XN have the same d.f. F ∈ F0(F ∈ F1).
For h = 0, 1 let us consider the following alternatives:

K 1
h (∆) =

{
X has a density qΘ(x) =

N∏

i=1

fi(xi; Θ), Θ ∈ ∆
}

,(1.1)

K 2
h (∆) =

{
X has a d.f. QΘ(x) =

N∏

i=1

Gi(F (xi); Θ), F ∈ Fh, Θ ∈ ∆
}

(1.2)
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where ∆ = ∆+ = (0, a) or ∆ = ∆− = (−a, 0) for some a ∈ (0,∞], and for each
Θ ∈ ∆̃ = ∆ ∪ {0} we have:
(i) fi(x,Θ) is a density on � such that fi(x, 0) = f(x), 1 � i � N , and for the

case h = 1, f(−x) = f(x).

(ii) Gi(y,Θ) is a d.f. on (0, 1) such that Gi(y, 0) = y, 1 � i � N .
Recall that

(1.3) P (R = r
∣∣H0) = 1/N !

for each r ∈ R—the space of N ! permutations of (1, . . . , N),

(1.4) P (R+ = r, V = v
∣∣H1) = 1/2

N ·N !

for r ∈ R, v ∈ V—the space of 2N sequences v = (v1, . . . , vN ) with vi = 1 or −1.
Let X(1) � . . . � X(N) (|X |(1) � . . . � |X |(N)) be the order statistics of X (of

|X |). Then X(·) = (X(1), . . . , X(N)) and R are mutually independent under H0. The
same conclusion is true for |X |(·) = (|X |(1), . . . , |X |(N)), R+ and V under H1.

The LMPRT’s for testing H0 against K j
0 (∆) (abbr. for {H0, K

j
0 (∆)}), j = 1, 2,

are investigated in Section 2, and the LMPSRT for {H1, K
j
1 (∆)}, j = 1, 2, in Section

3.

2. The locally most powerful rank tests of randomness

Two theorems will be given in this section for {H0, K 1
0 (∆)} and {H0, K 2

0 (∆)},
respectively. These results generalize Theorem II.4.8. [3] as well as those of
Lehmann [5], Gibbons [1].

Theorem 2.1. Let K 1
0 (∆) be defined by (1.1). Suppose for 1 � i � N

(i) f ′i(x,Θ) = ∂fi(x,Θ)/∂Θ exists, Θ ∈ ∆̃, and it is continuous at Θ = 0 for a.e.
x ∈ �, where f ′i(x, 0) is understood to be a one-sided derivative.

(ii) lim
Θ→0

∫∞
−∞ |f ′i(x,Θ)| dx =

∫∞
−∞ |f ′i(x, 0)| dx < ∞.

Denote

(2.1) A(k, i) = E{f ′i(X(k), 0)/f(X(k))}

where X(1), . . . , X(N) are order statistics of N i.r.v.’s with the same density f(x).
Then the test with critical region

(2.2) S(R) =
N∑

i=1

A(Ri, i) � λ (resp. � λ)
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is the LMPRT for {H0, K 1
0 (∆

+)} (for {H0, K 1
0 (∆

−)}) at the corresponding level.

�����. This theorem generalizes Th.II.4.8 in [3], and it is proved similarly. One

must replace in the proof of the latter the density d(x,∆ci) by fi(x,Θ), ḋ by f ′i , ∆
by Θ, and note that fi(x, 0) = f(x), 1 � i � N . �

Theorem 2.2. Let K 2
0 (∆) be defined by (1.2). Suppose for 1 � i � N

(iii) gi(y,Θ) = ∂Gi(y,Θ)/∂y exists for Θ ∈ ∆̃, 0 < y < 1,

(iv) g′i(y,Θ) = ∂gi(y,Θ)/∂Θ exists for Θ ∈ ∆̃, 0 < y < 1, and it is continuous at
Θ = 0 for a.e. y ∈ (0, 1), where g′i(y, 0) is the one-sided derivative,

(v) lim
Θ→0

∫ 1
0 |g′i(y,Θ)| dy =

∫ 1
0 |g′i(y, 0)| dy < ∞.

Denote

(2.3) a(k, i) = E{g′i(U(k), 0)}, 1 � i � N

where U(1), . . . , U(N) are order statistics of N i.r.v.’s with the same uniform distrib-

ution on (0, 1).
Then the test with critical region

(2.4) S(R) =
N∑

i=1

a(Ri, i) � λ (resp. � λ)

is the LMPRT for {H0, K 2
0 (∆

+)} ({H0, K 2
0 (∆

−)}) at the respective level.

�����. It follows from Th.2.1. In fact, for

fi(x,Θ) = gi(F (x),Θ)f(x), where f(x) = dF (x)/ dx,

the conditions (iv)–(v) are equivalent to (i)–(ii). Since Gi(y, 0) = y, g(y, 0) = 1,

0 < y < 1, then f ′i(x, 0)/f(x) = g′i(F (x), 0). Therefore A(k, i) = a(k, i). �

�����	
 2.1. Let, for 0 < y < 1,

Gi(y,Θ) =

{
(1−Θ)y +Θy2, 1 � i � m,

y, m+ 1 � i � N.

Then, for 1 � k � N ,

a(k, i) =

{
−1 + 2k/(N + 1), 1 � i � m,

0, m+ 1 � i � N,

because E{U(k)} = k/(N + 1), 1 � k � N .
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Theorem 2.2 implies that the two-sample test with critical region

(2.5) S(R) =
m∑

i=1

Ri � λ

is the LMPRT for testing H0 against

K 2
0 (∆

+) =
{
QF
Θ(x) =

m∏

i=1

[(1−Θ)F (xi)+ΘF 2(xi)]·
N∏

i=m+1

F (xi), 0 < Θ < 1, F ∈ F0
}

at the respective level.
This is the case considered by Lehmann [5].

�����	
 2.2. If Gi(y,Θ) = (1 − Θci)y + Θciy
2, 0 < Θci < 1, then a(k, i) =

ci[2k/(N + 1)− 1]. Theorem 2.2 implies that the test of Wilcoxon type with critical
region

(2.6) S(R) =
N∑

i=1

ciRi � λ

is the LMPRT for testing H0 against

K 2
0 (∆

+) =
{
QF
Θ =

N∏

i=1

[(1−Θci)F (xi)+ΘciF
2(xi)], Θ > 0, 0 < Θci < 1, F ∈ F0

}

at the respective level.

�����	
 2.3. For

Gi(y,Θ) =

{
y1+Θ, 1 � i � m,

1− (1− y)1+Θ, m+ 1 � i � N,

noting that

E{ln U(k)} = −
N−k∑

j=0

1/(N − j),

E{ln (1− U(k))} = −
k−1∑

j=0

1/(N − j) (see (25)–(26), p. 83, [3])

and
N∑

i=1

i−1∑

j=0

1/(N − j) = N,
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one obtains from Theorem 2.2 that the test with critical region

(2.7) S(R) =
m∑

i=1

a(Ri) � λ,

where

(2.8) a(k) =
k−1∑

j=0

[1/(N − j)]−
N−k∑

j=0

[1/(N − j)], 1 � k � N,

is the LMPRT for testing H0 against

K 2
0 (∆

+) =
{
QF
Θ(x) =

m∏

i=1

[F (xi)]
1+Θ

N∏

i=m+1

[1− (1 − F (xi))
1+Θ],

Θ > 0, F ∈ F0
}

at the corresponding level.

This is the case considered by Gibbons [1].

3. The locally most powerful signed rank tests of symmetry

The following theorems for the symmetry hypothesis generalize the results in [4]
and Theorems II.4.9–10 [3].

Theorem 3.1. LetK 1
1 (∆) be defined by (1.1) with fi satisfying (i)–(ii) of Th. 2.1.

For 1 � i � N , j = 1, 2 denote

fj,i(x) = (1/2)[f ′i(x, 0) + (−1)jf ′i(−x, 0)],(3.1)

Aj(k, i) = E{fj,i(|X |(k))/f(|X |(k))}(3.2)

where |X |(1), . . . , |X |(N) are order statistics in absolute value of N i.r.v.’s with the

same symmetric density f(x). Then the test with critical region

(3.3) S(R+, V ) =
N∑

i=1

[A1(R
+
i , i)Vi +A2(R

+
i , i)] � λ (� λ)

is the LMPSRT for {H1, K 1
1 (∆

+)} (for {H1, K 1
1 (∆

−)}) at the corresponding level.

�����. The proof of Theorem 3.1 is similar to that of Theorems 1–2 in [4].
Therefore we outline only its principal steps.
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Denote

dQΘ = qΘ dx =
N∏

i=1

fi(x,Θ)dxi, Θ ∈ ∆̃,

B(r, v) = {x : R+ = r, V = v}, r ∈ R, v ∈ V ,

QΘ(r, v) = QΘ{B(r, v)}.

Note that Q0 ∈ H1 and dQ0 =
N∏

i=1
f(xi) dxi. Then

LΘ(r, v) = (1/Θ)[QΘ(r, v) −Q0(r, v)](3.4)

=
∫

B(r,v)
. . .

∫
1
Θ

[ N∏

i=1

fi(xi,Θ)−
N∏

i=1

f(xi)
]
dx

=
N∑

i=1

∫

B(r,v)
. . .

∫
Li(x,Θ)dx,

where

Li(x,Θ) = (1/Θ)[fi(xi,Θ)− f(xi)]
i−1∏

j=1

f(x)
N∏

s=i+1

fs(xs,Θ),
0∏

j=1

=
N∏

s=N+1

= 1,

with

lim sup
Θ→0

∫
. . .

∫
|Li(x,Θ)| dx �

∫
|f ′i(x, 0)| dxi(3.5)

=
∫

. . .

∫
|f ′i(x, 0)/f(xi)| dQ0.

The convergence theorem of Scheffé [6] (see also Theorem II.4.2. [3]) implies

(3.6) lim
Θ→0

LΘ(r, v) =
N∑

i=1

∫

B(r,v)
. . .

∫
{f ′i(x, 0)/f(xi)} dQ0.

Since f(−xi) = f(xi) and by (3.1) we have

f1,i(−xi) = −f1,i(xi),

f2,i(−xi) = f2,i(xi),

f ′i(xi, 0) = f1,i(xi) + f2,i(xi),
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it follows from (1.4) and (3.6) that

lim
Θ→0

LΘ(r, v) = (1/2
NN !)

N∑

i=1

∫
. . .

∫ {f ′i(xi, 0)
f(xi)

}
dQ0(x

∣∣R+ = r, V = v)

= (1/2NN !)
N∑

i=1

∫
. . .

∫ {[f1,i(|xi|)
f(|xi|)

]
vi +

[f2,i(|xi|)
f(|xi|)

]}
dQ0(x|R+ = r, V = v)

= (1/2NN !)
N∑

i=1

E{[f1,i(|Xi|)/f(|Xi|)]Vi + [f2,i(|Xi|)/f(|Xi|)]|R+ = r, V = v}

= (1/2NN !)
N∑

i=1

E{[f1,i(|X |(ri))/f(|X |(ri))]Vi + [f2,i(|X |(ri))/f(|X |(ri))]}

= (1/2NN !)
N∑

i=1

[A1(ri, i)vi +A2(ri, i)].

This implies the conclusion of Theorem 3.1 in the same manner as in [4]. �

Theorem 3.2. Let K 2
1 (∆) be defined by (1.2). Let the conditions (iii)–(v) of

Theorem 2.2 be satisfied. Denote for j = 1, 2, 1 � i � N

gj,i(u) = (1/2){g′i[(1 + u)/2; 0] + (−1)jg′i[12 (1− u); 0]},(3.7)

aj(k, i) = E{gj,i(U(k))},(3.8)

where U(1), . . . , U(N) are order statistics of N i.r.v.’s with the same uniform distrib-

ution on (0, 1).

Then the test with critical region

(3.9) S(R+, V ) =
N∑

i=1

{a1(R+i , i)Vi + a2(R
+
i , i)} � λ (� λ)

is the LMPSRT for {H1, K 2
1 (∆

+)} (for {H1, K 2
1 (∆

−)}) at the respective level.

�����. Note that

fi(x, 0) = f(x) = dF (x)/dx, F ∈ F1,

fi(x,Θ) = gi(F (x),Θ) · f(x),
f ′i(x,Θ) = g′i(F (x),Θ) · f(x),

f ′i(x, 0)/f(x) = g′i(F (x), 0).
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Then, by (3.1) and F (−x) = 1− F (x),

(3.10) fj,i(x)/f(x) = (1/2)[g′i(F (x), 0) + (−1)jg′i(1− F (x), 0)].

Since |X | has a d.f. 2F (x)− 1 provided X has a d.f. F (x), hence setting

2F (|X |)− 1 = U,

we see that U has the uniform distribution on (0, 1). Therefore

F (|X |(k)) = [12 (1 + U(k))],

and 1−F (|X |(k)) has the same distribution as 12 (1−U(k)) and, by (3.2), (3.8), (3.10),

Aj(k, i) = aj(k, i), j = 1, 2, 1 � i, k � N.

Thus Theorem 3.1 implies Theorem 3.2. �

�����	
 3.1. For K 2
1 (∆) with Gi(y,Θ) as in Example 2.1:

Gi(y,Θ) =

{
(1−Θ)y +Θy2, 1 � i � m,

y, m+ 1 � i � N,

one has for 0 < u < 1

g′i([
1
2 (1± u)], 0) =

{
±u, 1 � i � m,

0, m+ 1 � i � N,

g1,i(u) =

{
u, 1 � i � m,

0, m+ 1 � i � N,

g2,i(u) = 0, 1 � i � N.

Then the test with critical region

(3.11) S(R+, V ) =
m∑

i=1

R+i Vi � λ

is the LMPSRT for {H1, K 2
1 (∆

+)} at the respective level.

100



�����	
 3.2. For K 2
1 (∆) with QF

Θ as in Example 2.2:

QF
Θ(x) =

N∏

i=1

[(1 −Θci)F (xi) + ΘciF
2(xi)], F ∈ F1, 0 < Θci < 1,

one can verify that the LMPSRT for {H1, K 2
1 (∆

+)} is determined by the critical
region

(3.12) S(R+, V ) =
N∑

i=1

ciR
+
i Vi � λ.

�����	
 3.3. For K 1
1 (∆

+) with qΘ(x) =
N∏

i=1
f(xi − Θ), Θ > 0, where f is

symmetric and continuously differentiable, one has

f ′i(x,Θ) = −f ′(x−Θ), f ′i(x, 0) = −f ′(x), f ′i(−x, 0) = f ′(x),

f1,i(x) = −f ′(x), f2,i = 0,

A1(k, i) = −E{f ′(|X |(k))/f(|X |(k))} = Af
1 (k), A2(k, i) = 0.

It follows from Theorem 3.1 that the test with critical region

N∑

i=1

Af
1 (R

+
i ) · Vi � λ

is the LMPSRT for {H1, K 1
1 (∆

+)}. This coincides with Th.II.4.9. [3].
�����	
 3.4. For K 1

1 (∆
+) with

qΘ(x) =
m∏

i=1

e−Θf(e−Θxi)
N∏

i=m+1

f(xi),Θ > 0,

where f is symmetric and continuously differentiable, one has

f ′i(x, 0) =

{
−f(x)− xf ′(x), 1 � i � m,

0, m+ 1 � i � N,

hence f2,i = f ′i , f1,i = 0, 1 � i � N and

A1(k, i) = 0, 1 � i � N, A2(k, i) = 0, m+ 1 � i � N,

A2(k, i) = E{−1− |X |(k) · f ′(|X |(k))/f(|X |(k))} = Af
2 (k), 1 � i � m.

This result is identical with Th. II.4.10. [3]: The test with critical region

m∑

i=1

Af
2 (R

+
i ) � λ

is the LMPSRT for {H1, K 1
1 (∆

+)} at the respective level.
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