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Abstract. In this paper we study a unidirectional and elastic fiber composite. We use
the homogenization method to obtain numerical results of the plane strain bulk modulus
and the transverse shear modulus. The results are compared with the Hashin-Shtrikman
bounds and are found to be close to the lower bounds in both cases. This indicates that the
lower bounds might be used as a first approximation of the plane strain bulk modulus and
the transverse shear modulus. We also point out the connection with the Hashin-Shtrikman
bounds and the Halpin-Tsai equations. Optimal bounds on the fitting parameters in the
Halpin-Tsai equations have been formulated.
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1. Introduction

Fiber reinforced composite materials have become an important class of engineer-
ing materials. A common feature for such materials is that the locally heterogeneous

material behaves like a homogeneous one when the characteristic sizes of the inclu-
sions are much smaller than the whole sample. A multiphase material of this type

can be described by the effective properties which are obtained by some type of aver-
aging. One way to proceed is to use the so called homogenization theory, developed

in the studies of partial differential equations. Another way is to find bounds for the
effective properties.

For design purposes, it is often desirable to have simple and rapid computational
procedures for estimating the effective properties. Halpin and Tsai have suggested

simple equations for this. These equations depend on a parameter which must be
estimated.
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In this paper we compare results obtained by the homogenization method with the

Hashin-Shtrikman bounds. We will also point out the close connection between the
Hashin-Shtrikman bounds and the Halpin-Tsai equations, see Section 2. Furthermore
we formulate bounds on the fitting parameter in the Halpin-Tsai equations, see

Section 3.
We start by considering a body which occupies a region Ω in �3 . We introduce a

Cartesian coordinate system (xi). Moreover, let us introduce σ = (σij), e = (eij),
f = (fi), t = (ti), u = (ui) and n = (ni) as the stress tensor, the strain tensor, the

internal force field, the surface force field, the displacement field and the outer unit
normal to the boundary ∂Ω of Ω, respectively.

The governing equilibrium equations are




− ∂

∂xj
Cijklekl(u) = fi in Ω,

ui = 0 on Γ1 and Cijklekl(u)nj = ti on Γ2,

where Γ1 ∪ Γ2 = ∂Ω.
Let us now assume that the body consists of two or more different linear elastic

materials which are periodically distributed in the sense that we can define a unit cell

(Y) which is periodically repeated. We introduce a local variable y = x
ε . Assume that

Cε
ijkl = Cijkl(xε ) = Cijkl(y) is Y-periodic. By Y-periodic we mean that Cijkl(y1) =

Cijkl(y2) whenever y1 and y2 have the same positions in the corresponding cells. This
means that ε is a parameter for varying the fineness of the cell structure. We also

assume that the functions Cijkl are real-valued, measurable and satisfy the coercivity
and boundedness conditions

λξijξij � Cε
ijklξklξij � βξijξij

for every symmetric real-valued tensors ξij where 0 < λ � β < ∞. Physically this
means that the strain energy is positive and bounded.
Now we study the following class of problems:

(1)





− ∂

∂xj
Cε

ijklekl(uε) = fε
i in Ω,

uε
i = 0 on Γ1 and C

ε
ijklekl(uε)nj = ti on Γ2.

We emphasize that if ε is small, i.e., if we have a fine microstructure, then the
functions Cε

ijkl will oscillate very rapidly. Therefore a direct numerical treatment is

impossible and we have to attack the problem by making some average or by using
the homogenization procedure.
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The main idea in the homogenization theory is to approximate the solutions uε

of (1) by means of a function u which solves the so called homogenized problem
corresponding to a homogeneous material, with the constant elasticity tensor Cijkl.
The homogenized tensor Cijkl may be interpreted as the physical parameters of a

homogeneous material, whose overall response is close to that of the heterogeneous
periodic material, when the sizes of the cells tend to zero. The main problem is to

find the homogenized tensor Cijkl.
The first step in this homogenization procedure is to assume a two scales expansion

of uε(x) and fε(x) on the forms

uε
i (x) = u

(0)
i (x, y) + εu

(1)
i (x, y) + ε

2u
(2)
i (x, y) + . . . ,

and
fε

i (x) = f
(0)
i (x, y) + εf

(1)
i (x, y) + ε

2f
(2)
i (x, y) + . . . ,

where u(n)i (x, y) and f
(n)
i (x, y), n = 0, 1, 2 . . . , are Y -periodic in the variable y.

Next, we use the main homogenization theorem.

Theorem 1. Consider problem (1). Assume that fε
i ∈ L2(Ω), ti ∈ L2(Γ) and

that Cε
ijkl are Y -periodic. If f

ε
i −→ f

(0)
i in L2(Ω), then, as ε −→ 0,

uε −→ u(0) weakly in [H10 (Ω)]
n,

and

Cε
ijklekl(uε) −→ Cijklekl(u(0)) weakly in L2(Ω) for every i and j,

where

Cijrs =
1
|Y |

∫

Y

(Cijrs + Cijklekl(χrs)) dy,

where χrs is the solution of the cell problem





− ∂

∂yj
(Cijklekl(χrs)) =

∂

∂yj
Cijrs in Y,

χrs is Y -periodic.

A proof of Theorem 1 can be found in e.g. [Jikov, Kozlov & Oleinik, 1994].
Theorem 1 yields that





−Cijkl
∂

∂xj
ekl(u(0)) = 1

|Y |
∫

Y

f
(0)
i dy in Ω,

u
(0)
i = 0 on Γ1 and Cijklekl(u(0))nj = ti on Γ2.
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It can also be proved, see e.g. [Persson, Persson, Svanstedt & Wyller, 1993] that

the lowest order approximation of the stress field can be expressed as

σ
(0)
ij (x, y) = (Cijrs(y) + Cijklekly(χrs(y)))ersx(u(0)),

where eklx and ekly are defined by

eklx(ψ) =
1
2

(∂ψk

∂xl
+
∂ψl

∂xk

)
and ekly(ψ) =

1
2
(
∂ψk

∂yl
+
∂ψl

∂yk
).

More information about how to apply the homogenization method to elasticity
problems can be found in [Lukkasen, Persson & Wall, 1995]

2. A comparison between the homogenized coefficients and the
Hashin-Shtrikman bounds

Background: There have been intensive studies on how to find bounds on the
effective properties of multiphase materials. One of the best known results are the

Hashin-Shtrikman bounds. Originally, the Hashin-Shtrikman bounds were formu-
lated for isotropic three dimensional mixtures with arbitrary phase geometry, see

[Hashin & Shtrikman, 1963]. In [Hashin, 1965] bounds were derived for transversely
isotropic composites with arbitrary phase geometry. The bounds we consider here

are those for the plane strain bulk modulus k and the transverse shear modulus µ of
a two-phase composite. When x1 and x2 are in the transverse plane and x3 is in the

fiber direction, k and µ are defined by

k =
1
2
(C1111 + C1122) and µ =

1
2
(C1111 − C1122).

It is also assumed that the composite is well ordered in the sense that both the plane
strain bulk modulus k1 and the transverse shear modulus µ1 of the first material

are bigger than those for the second material, i.e., k1 � k2 and µ1 � µ2, where the
indices refer to the material number.

Theorem 2. For a transversely isotropic and well ordered composite the plane
strain bulk modulus k and the transverse shear modulus µ satisfy

kl � k � ku and µl � µ � µu,
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where

kl = k2 +
m1

1
k1 − k2

+
m2

k2 + µ2

, ku = k1 +
m2

1
k2 − k1

+
m1

k1 + µ1

,

µl = µ2 +
m1

1
µ1 − µ2

+
m2(k2 + 2µ2)
2µ2(k2 + µ2)

, µu = µ1 +
m2

1
µ2 − µ1

+
m1(k1 + 2µ1)
2µ1(k1 + µ1)

,

and mi is the volume fraction of material i, i = 1, 2.

For a proof see the original paper [Hashin, 1965].
Sharpness: The bounds in Theorem 2 are the best possible in the sense that we

can find phase geometries such that they are attained. For the bulk modulus Hashin
and Rosen, [Hashin & Rosen, 1964] showed that the lower bound is obtained in the

limit, if we fill the space with composite cylinders that consist of a cylindrical core
of material 1 surrounded by a cylinder of material 2, see Figure 1. Each composite

cylinder is assumed to have the same volume fraction of material 1. The upper bound
is attained by switching the place of the materials.

Fig. 1. Hashin-Shtrikman structure

The optimality of the transverse shear modulus remained open for a long time.
However, Milton and Kohn, [Milton & Kohn, 1988] used the Hashin-Shtrikman vari-

ational principles, see [Hashin & Shtrikman, 1963] or [Hashin, 1983], to derive a
tensor inequality on the effective elasticity tensor of a two-phase composite. Lipton

used this result to obtain an optimal tensor inequality, see [Lipton, 1991]. The ten-
sor inequality includes the bounds originally derived by Hashin (1965). Moreover,

it follows that Hashin’s bounds on the transverse shear modulus are attained by
rank 3 laminar microgeometries. For more information about bounds we also refer

to [Cherkaev & Gibiansky, 1993], [Milton, 1990] and [Lukkasen, Persson & Wall,
1995].

A striking numerical experiment: Now we consider a unidirectional fiber
composite consisting of carbon and epoxy. For the sake of simplicity we just compute
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the transversal effective components. To compute the effective plane strain bulk

modulus k and the effective transverse shear modulus µ we use the homogenization
method, described in Section 1. We use the following data on ki and µi:

(2)

Carbon: k1 = 10.42GPa µ1 = 6.25GPa,

Epoxy: k2 = 3.70GPa µ2 = 1.11GPa.

In our numerical calculations we model the composite by a hexagonal fiber array,

this fiberpacking is known to be transversely isotropic. Note that the materials
considered are well ordered. The effective moduli were computed for six different

volume fractions of fibers (m1). The results of these calculations are presented in
Table 1.

m1 0.35 0.45 0.55 0.65 0.75 0.85

k (GPa) 4.94 5.41 5.97 6.64 7.46 8.50
µ (GPa) 1.75 2.04 2.42 2.91 3.54 4.38

Table 1.

Now we want to compare these results with the Hashin-Shtrikman bounds, see The-
orem 2. In Figures 2 and 3 below the numerical results and the Hashin-Shtrikman

bounds are plotted.

*

*
*

*

K

*

*

H-S lower

H-S upper

m10 10.80.60.40.20
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6
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4

Fig. 2. Numerical results and Hashin-Shtrikman bounds for the bulk modulus.

A physical explanation: We observe that the numerical results are close to the
lower bounds. A physical explanation of this can be given for the plane strain bulk

modulus. As previously mentioned the bounds were optimal. For k the lower bound
was reached by filling the body with coated cylinders with material 1 inside. In the
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Fig. 3. Numerical results and Hashin-Shtrikman bounds for the shear modulus.

numerical calculations we used a hexagonal fiber array which means that instead
of cylinders the body was filled with regular hexagons with a circular inclusion of

material 1. Due to the similar geometries, see Figure 4, it is reasonable to believe
that the results for these structures would be close to each other.

Fig. 4. Coated regular hexagon and coated cylinder.

The numerical results indicate that the lower bounds kl and µl could be used to
obtain good approximations of k and µ. In the next section we discuss the connection

between the Hashin-Shtrikman lower bounds and the Halpin-Tsai equations.

3. Bounds on the fitting parameter in the Halpin-Tsai equations

for µ and k

For design purposes, it is often desirable to have simple and rapid computational
procedures for estimating composite properties. Halpin and Tsai have developed

simple equations for this purpose, see e.g. [Halpin & Kardos, 1976] or [Agarwal
& Broutman, 1990]. The equations are based on a micromechanic analysis where

the composite is assumed to consist of composite cylinders. Let p be an effective
composite property. The Halpin-Tsai equation for p has the form
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(3)
p

p2
=
1 + ξpηm1
1− ηm1

, where η =

p1
p2 − 1
p1
p2 + ξp

,

and ξp is a fitting parameter, in this paper p = µ or p = k.

������ 1. It was suggested by Halpin and Tsai [Halpin & Kardos, 1976] that
the fitting parameter for µ and k may be chosen as

ξµ =
k2

k2 + 2µ2
and ξk =

µ2
k2
,

respectively.

The equation (3) motivates that we study the function p defined by

p(ξp,m1) = p2
1 + ξpηm1
1− ηm1

, where η =

p1
p2 − 1
p1
p2 + ξp

and 0 � ξp <∞ , 0 � m1 � 1.

The function p has the following properties:
(i) p is an increasing function in m1 for every fixed ξp and

p(ξp, 0) = p2 and p(ξp, 1) = p1;

(ii) p is an increasing function in ξp for every fixed m1;

(iii)

(4) p(0,m1) =
1

m1
p1 +

1−m1
p2

.

This is the harmonic mean also known as the lower Reuss-Voigt bound, see

Figures 5 and 7.
(iv)

(5) p(ξp,m1) −→ m1k1 +m2k2 as ξp −→∞.

This is the arithmetic mean also known as the upper Reuss-Voigt bound, see

Figures 5 and 7.

Theorem 3. The approximation of µ by the Halpin-Tsai equation (3) is equal

to the lower Hashin-Shtrikman bound for ξµ =
k2

k2 + 2µ2
and to the upper Hashin-

Shtrikman bound for ξµ =
µ1k1

µ2(k1 + 2µ1)
.
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�����. We note that

µ(ξµ,m1) = µ2

1 +
k2

k2 + 2µ2

µ1
µ2 − 1

µ1
µ2 +

k2
k2 + 2µ2

m1

1−
µ1
µ2 − 1

µ1
µ2 +

k2
k2 + 2µ2

m1

=
µ1µ2(k2 + 2µ2) + k2µ22 + k2µ2(µ1 − µ2)m1

µ1(k2 + 2µ2) + k2µ2 − (k2 + 2µ2)(µ1 − µ2)m1
.

Moreover, add and subtract k2µ22 + 2µ
3
2 + m1µ

2
2(k2 + 2µ2) + m1µ1µ2(k2 + 2µ2) in

the numerator, add and subtract (1−m1)(k2 + 2µ2)µ2 in the denominator and use
1−m1 = m2. Then a straightforward calculation gives

µ1(ξµ,m1)

=
µ2{2µ2(k2 + µ2) + (1 −m1)(k2 + 2µ2)(µ1 − µ2)}+m12µ2(µ1 − µ2)(k2 + µ2)

2µ2(k2 + µ2) + (1−m1)(k2 + 2µ2)(µ1 − µ2)

= µ2 +
m1

1
µ1 − µ2

+
m2(k2 + 2µ2)
2µ2(k2 + µ2)

= µl.

The result for the upper bound follows by a similar calculation. �

By (4), (5), Theorem 3 and the fact that µ is a continuously increasing function
in ξµ we conclude that we have a continuous scale of functions. The “end point

functions” correspond to the Reuss-Voigt bounds and there are intermediate states
that correspond to the Hashin-Shtrikman bounds, see Figure 5.

4

u

3

1
2

m10 10.80.60.40.20

6

5

4

3

2

Fig. 5. 1. µ(0,m1), 2. µ
(

k2
k2+2µ2

,m1
)
, 3. µ

(
µ1k1

µ2(k1+2µ1)
,m1

)
and 4. µ(∞,m1).
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As a consequence we can formulate the following bounds on the fitting parameter

in the Halpin-Tsai equation:

Corollary 4. The fitting parameter ξµ in the Halpin-Tsai equation for the trans-
verse shear modulus µ must satisfy

k2
k2 + 2µ2

� ξµ � µ1k1
µ2(k1 + 2µ1)

.

The numerical results indicate that µ is close to, but above, the lower Hashin-
Shtrikman bound, see Figure 3. This shows that the values on µ obtained by using

the suggested value on ξµ, see Remark 1, in the Halpin-Tsai equation are too low.
By using Corollary 4 and the material data given in (2) we conclude that in our

example ξµ has to satisfy the following condition:

0.6 ≈ k2
k2 + 2µ2

� ξµ � µ1k1
µ2(k1 + 2µ1)

≈ 2.6.

In Figure 6 we have used ξµ = 0.9 to fit the curve to the numerical results.

 1

 2
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5
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Fig. 6. 1. µ
(

k2
k2+2µ2

,m1
)
, 2. µ(0.9,m1).

Let us now study the corresponding problem for the plane strain bulk modulus k.

Theorem 5. The approximation of k defined as in (3) is equal to the lower
Hashin-Shtrikman bound for ξk =

µ2
k2
and to the Hashin-Shtrikman upper bound for

ξk =
µ1
k2
.
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�����. The proof is similar to that of Theorem 3 so we leave the details to the

reader. �

By (4), (5), Theorem 5 and the fact that k is a continuous increasing function
in ξk we conclude that we have a continuous scale of functions. The “end point

functions” correspond to the Reuss-Voigt bounds and there are intermediate states
that correspond to the Hashin-Shtrikman bounds, see Figure 7.
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Fig. 7. 1. k(0,m1), 2. k
(

µ2
k2
,m1

)
, 3. k

(
µ1
k2
,m1

)
and 4. k(∞,m1).

We have deduced the following important information:

Corollary 6. The fitting parameter ξk in the Halpin-Tsai equation for the plane
strain bulk modulus k must satisfy

µ2
k2

� ξk � µ1
k2
.

������ 2. If µ1 = µ2 the bounds coincide and we have an exact solution.

As the numerical results indicate the lower bound could be used as a first approxi-

mation of k. This suggests that ξk =
µ2
k2
should be used in the Halpin-Tsai equation

for k. This is in good agreement with Halpin and Tsai’s suggestion, see Remark 1.
It is nonetheless important to observe that it is a lower bound, see Corollary 6.
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4. Concluding remarks

Some supplementary information related to this paper can be found in [Wall,
1994]. In this work we use the homogenization theory to solve a linear elasticity

problem. It is nonetheless important to observe that the method is not restricted
to linear problems and can be applied to other partial differential equations as well.

For other types of problems that have been studied by using this homogenization we
refer to [Bakhvalov & Panasenko, 1989], [Dal Maso, 1993], [Jikov, Kozlov & Oleinik,

1994], [Persson, Persson, Svanstedt & Wyller, 1993] and [Sanchez-Palencia, 1980].

In this work we have formulated bounds on ξk and ξµ independently of each other.
By using the results of Cherkaev and Gibiansky (1993) it is reasonable to believe

that it is possible to characterize the set of all possible couples of the form (ξk, ξµ).
These ideas will be developed in a forthcoming paper.

Acknowledgement. I thank Professor Lars-Erik Persson, Department of Math-
ematics, Lule̊a University, Sweden and Dr Dag Lukkassen, Department of Mathe-

matics, Narvik Intitute of Technology, Norway for helpful comments and discussions
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