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Abstract. The space of divergence-free functions with vanishing normal flux on the bound-
ary is approximated by subspaces of finite elements that have the same property. The easiest
way of generating basis functions in these subspaces is considered.
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1. Introduction

The goal of the paper is to construct finite element subspaces of the spaces of

divergence-free functions. Such a problem is frequently met when we treat numer-
ically some phenomena in continuum mechanics, electromagnetism, heat and fluid

flow problems, etc.

In this paper we shall describe an internal finite element approximation of the

following space which appears in variational formulations of a considerable number
of problems, see, e.g., [1], [2], [4], [5], [6]:

(1.1) H0(
0
div; Ω) =

{
�q ∈ [L2(Ω)]d | (�q,∇z)0 = 0 ∀z ∈ H1(Ω)

}
, d = 2, 3.

We will deal only with the three-dimensional case: Ω ⊂ �
3 is a bounded domain

with a Lipschitz continuous boundary ∂Ω, (· , ·)0 is the inner product in [L2(Ω)]l,
l = 1, 2, 3, Hk(Ω) is the standard Sobolev space with the norm ‖ · ‖k and �l · �w is the
standard inner product of vectors �l and �w in �3 .
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In this work we will generalize the results which were obtained in [3] for wider

class of domains.

2. Auxiliary results

First we recall some known important facts.

Introduce a space of vector-functions the divergence of which exists in the sense
of distributions (see, for example, [1])

(2.1) H(div; Ω) =
{
�q ∈ [L2(Ω)]3 | ∃ϕ ∈ L2(Ω): (�q,∇z)0+(ϕ, z)0 = 0 ∀z ∈ H10 (Ω)

}

and its subspace of divergence-free (so-called solenoidal) functions

(2.2) H(
0
div; Ω) =

{
�q ∈ [L2(Ω)]3 | (�q,∇z)0 = 0 ∀z ∈ H10 (Ω)

}
.

Note that for both spaces the test-functions z vanish on the boundary ∂Ω, so there

are no conditions upon the normal flux �n · �q on ∂Ω, where �n is the outward normal
to Ω.

Let �w = (w1, w2, w3) ∈ [H1(Ω)]3 and z ∈ C∞
0 (Ω) be arbitrary functions. Then

(curl �w,∇z)0 = (�w, curl∇z)0 = 0 due to the Green formula, where

(2.3) curl �w = (∂2w3 − ∂3w2, ∂3w1 − ∂1w3, ∂1w2 − ∂2w1).

Hence, the density C∞
0 (Ω) in H10 (Ω) implies

(2.4) curl �w ∈ H(
0
div; Ω) ∀�w ∈ [H1(Ω)]3.

Recall (see [1, p. 16]) that the functional �q → �n · �q |∂Ω defined on [C∞(Ω)]3 can
be extended by continuity to a linear continuous mapping from the space H(div; Ω)

into H−1/2(∂Ω), where the latter is the dual space to the space of traces H1/2(∂Ω)
of functions from H1(Ω). In this case, the Green formula takes the form

(2.5) (�q,∇z)0 + (div �q, z)0 = 〈�n · �q, z〉∂Ω ∀�q ∈ H(div; Ω) ∀z ∈ H1(Ω),

where 〈·, ·〉∂Ω denotes the duality pairing between H−1/2(∂Ω) and H1/2(∂Ω).
Now we will formulate and prove Theorem 2.1.

Theorem 2.1. Let �l = (l1, l2, l3) be a constant vector in �3 and Ω ⊂ �
3 a

bounded domain with a Lipschitz continuous boundary. Then

(2.6) H0(
0
div; Ω) = curlW,
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where

(2.7) W =
{

�w = (w1, w2, w3) ∈ [H1(Ω)]3 | �n · curl �w = 0 on ∂Ω, �l · �w = 0 in Ω
}
.

�����. To prove this theorem we use an idea similar to that which was used to
prove Theorem 3.2 in [1].

Let �w ∈ W be given. Then

(curl �w,∇z)0 = (− div curl �w, z)0 + 〈�n · curl �w, z〉∂Ω = 0 ∀z ∈ H1(Ω)

(see formulae (2.4), (2.5)). Hence, it follows from curl �w ∈ H0(div
0; Ω) that

(2.8) H0(
0
div; Ω) ⊃ curlW.

Conversely, let �q = (q1, q2, q3) ∈ H0(div
0; Ω), i.e.,

div �q = 0 in Ω,

〈�q · �n, 1〉∂Ω = 0.

We can extend �q (according to [1, pp. 27–28]) to the whole space so that the extended

function �̃q ∈ [L2(�3 )]3 would be still divergence-free and have a compact support.
Let q̂j be the Fourier transform of qj , j = 1, 2, 3,

(2.9) q̂j(ξ) =
∫

�3

e−2i�x·ξ q̃j(x) dx, ξ ∈ �3 .

Here i is the imaginary unit, i.e., i2 = −1. In what follows we will write �3ξ for the
three-dimensional space with coordinates (ξ1, ξ2, ξ3). The condition div �̃q = 0 implies
that

(2.10)
3∑

i=1

ξiq̂i = 0.

We seek a function �̂ϕ in [L2(�3ξ )]
3 such that curl �ϕ = �̃q, i.e.,

(2.11)





q̂1 = 2i�(ξ2ϕ̂3 − ξ3ϕ̂2),

q̂2 = 2i�(ξ3ϕ̂1 − ξ1ϕ̂3),

q̂3 = 2i�(ξ1ϕ̂2 − ξ2ϕ̂1).
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Obviously, the third equation of (2.11) is a consequence of the first two and equa-

tion (2.10), hence, in fact, we have only two equations to define three unknown
functions ϕ̂1, ϕ̂2, ϕ̂3.
Further, we add the following third condition which is suitable for our purposes:

(2.12)
3∑

i=1

liϕi = 0

which, after the Fourier transform, takes the form

(2.13)
3∑

i=1

liϕ̂i = 0,

due to the fact that �l is a constant vector. Equation (2.13) is the third relation
connecting the functions ϕ̂1, ϕ̂2, ϕ̂3.

Hence, taking the first two equations from system (2.11) and equation (2.13) we
obtain the system

(2.14)





ξ2ϕ̂3 − ξ3ϕ̂2 =
q̂1
2�i

,

ξ3ϕ̂1 − ξ1ϕ̂3 =
q̂2
2�i

,

l1ϕ̂1 + l2ϕ̂2 + l3ϕ̂3 = 0.

In the matrix form it may be rewritten as follows:

(2.15)



0 −ξ3 ξ2

ξ3 0 −ξ1
l1 l2 l3







ϕ̂1

ϕ̂2
ϕ̂3


 =




q̂1/2�i

q̂2/2�i
0


 .

The solution is

(2.16)




ϕ̂1
ϕ̂2

ϕ̂3


 = 1

2�iξ3�l · �ξ




ξ1l2q̂1 + ξ3l3q̂2 + ξ2l2q̂2
−ξ3l3q̂1 − ξ1l1q̂1 − ξ2l1q̂2

ξ3l2q̂1 − ξ3l1q̂2


 .

The function defined by (2.16) represents the unique solution of system (2.14), be-

cause the determinant of the matrix in (2.15) is not zero.
Now, we have the following facts:

1) q̂j are holomorphic in �3ξ , since the supports of q̃j are compact (see [1, p. 27]).
2) The Fourier transform is a linear continuous operator from L2(�3 ) to L2(�3ξ ),

hence q̂j ∈ L2(�3ξ ), j = 1, 2, 3.
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We recall the following theorem:

Theorem 2.2. Let k and d be any integers. Then

u(x) ∈ Hk(�d ) ⇐⇒ ξαû(ξ) ∈ L2(�d
ξ ) ∀α such that |α| � k

(see, for example, [7]), where the sign “ ˆ ” means the Fourier transform.

According to Theorem 2.2, in order to get ϕj ∈ H1(Ω), j = 1, 2, 3, we shall prove
the following theorem.

Theorem 2.3. The statements
(a) ξjϕ̂i(ξ) ∈ L2(�3ξ ), i, j = 1, 2, 3,

(b) ϕ̂i(ξ) ∈ L2(�3ξ ), i = 1, 2, 3

are valid, where ϕ̂i(ξ) and �3ξ are described above.

�����. Condition (a) can be proved immediately from formula (2.10). We also
have

|ϕ̂i| �
C(|q̂j |+ |q̂k|)

‖ξ‖ ,

where C > 0 is a constant. Hence, we must check only the boundedness of ϕ̂i in the

neighbourhood of zero.

Condition (2.10) implies

(2.17) q̂i(0) = 0.

From 1) we have

q̂i(ξ) =
3∑

j=1

ξj
∂q̂i

∂ξj
(0) +O(‖ξ‖2)

in a neighbourhood of 0. Here ‖ξ‖ means the usual Euclidean norm of the vector
�ξ = (ξ1, ξ2, ξ3). Hence, �̂ϕ is bounded as ξ → 0. �

By restricting the inverse transform �ϕ of �̂ϕ to Ω, we get a function �ϕ ∈ [H1(Ω)]3
such that

curl �ϕ = �q

and, moreover, the important identity �l · �ϕ = 0 is valid. Note that in [1] and [3] the

vector �l is, in fact, equal to (0, 0, 1). �
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3. Equilibrium finite elements

Let Wh be an arbitrary finite element space of W whose functions are continuous
and piecewise polynomial on some partition of Ω. We define the space of equilibrium

finite elements as
Qh = curlWh.

Due to Theorem 2.1, Qh is a subspace of H0(div
0; Ω). Recall (see [3], Corollary of

Theorem 1) that, if {Wh} is a system of finite element subspaces of W such that the

union
⋃
h

Wh is dense in W with respect to the ‖ · ‖1 norm, then
⋃
h

Qh is dense in

H0(div
0; Ω) in the ‖ · ‖0 norm.

Definition 3.1. A domain Ω ⊂ �
3 is said to belong to the class L∗ if it can be

transformed by a rotation in �3 to the domain Ω
′
from the class L (see [3]), i.e.,

(i) Ω
′
is a bounded domain with a Lipschitz boundary,

(ii) there exists a simply connected domain ω ⊂ �
2 and a positive function F : ω →

�
1 (in general discontinuous) such that

Ω
′
=

{
(x1, x2, x3) ∈ �3 | (x1, x2) ∈ ω, 0 < x3 < F (x1, x2)

}
.

������ 3.1. Denote by ∂Ω0 the base of the domain Ω, i.e., ω is the image of
∂Ω0 under the above rotation. Then there exists a constant vector �l ∈ �

3 which is

perpendicular to the base of such a domain.

Further we shall require the following property of finite element subspaces (Ω ∈ L∗
with the vector �l) to be valid:

(3.1) �w ∈ Wh =⇒ �◦
w ∈ Wh,

where

(3.2)
�◦
w(x1, x2, x3) = �w(x01, x

0
2, x

0
3)

and the points

x0 = (x01, x
0
2, x

0
3) ∈ ∂Ω0, x = (x1, x2, x3) ∈ Ω

are connected by the following relation:

(3.3) xi − x0i = α · li, i = 1, 2, 3 (α is a constant),
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i.e., the point x0 is the projection of the point x onto the base of the domain along

the vector �l.
For simplicity we choose the vector �l to be of the unit length, i.e.,

(3.4) ‖�l‖ = (l21 + l22 + l23)
1/2 = 1.

Note that the operator curl : Wh → Qh = curlWh is not bijective in general, so

we need to define Vh ⊂ Wh such that curl: Vh → Qh is bijective.
The next theorem generalizes Theorem 2 from [3].

Theorem 3.1. Let Ω ∈ L∗, let the vector �l correspond to this domain (see

Remark 3.1), let Wh ⊂ W satisfy (3.2) and Qh = curlWh. Then for the space

Vh ⊂ Wh such that

Vh =
{
�v ∈ Wh | �v = 0 on ∂Ω0

}

the mapping

curl : Vh → Qh ⊂ H0(
0
div; Ω)

is bijective.

�����. Injectivity. If curl�v = 0 for some �v ∈ Wh then there exists s ∈ H1(Ω)
(note that Ω is simply connected) such that

�v = grad s.

Moreover, s ∈ H2(Ω) ⊂ C(Ω). Hence, s is continuous in Ω and, of course, s is a
piecewise polynomial function. Due to these facts the following formula makes sense:

s(x1, x2, x3) = s(x01, x
0
2, x

0
3) +

∫ x

x0

∂s

∂�l
dξ,

where the point (x01, x
0
2, x

0
3) ∈ ∂Ω0 is the projection of the point (x1, x2, x3) to the

base of Ω along the vector �l. It is obvious that

∂s

∂�l
= �l · ∇s = �l · �v = 0,

which implies that s(x) = s(x0).
Since �v = 0 on ∂Ω0, we get that s is constant on ∂Ω0 and, then, in the whole

domain Ω. This means that �v ≡ 0 in Ω.
Surjectivity. Let �q ∈ Qh be an arbitrary vector function. According to Theorem 2.1,
there exists a continuous piecewise polynomial function �w = (w1, w2, w3) such that

�w ∈ Wh, �l · �w = 0 and
�q = curl �w.
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Let �v = �w− �◦
w, where

�◦
w = (

�◦
w1,

�◦
w2,

�◦
w3) is defined by (3.2) and (3.3). Then �v = 0 on

∂Ω0 and �v ∈ Vh ⊂ Wh.

Now we check whether the relation

�q = curl�v

holds.

In fact, we must show that

curl
�◦
w = 0 in Ω.

Let us introduce the following convenient notation:

(3.5)





∂
◦
w3

∂x2
− ∂

◦
w2

∂x3
= ∆1,

∂
◦
w1

∂x3
− ∂

◦
w3

∂x1
= ∆2,

∂
◦
w2

∂x1
− ∂

◦
w1

∂x2
= ∆3.

Since
�◦
w is, in fact, the trace of �w on ∂Ω0 along the vector �l we have the following

obvious conditions:

(3.6)
3∑

i=1

li
∂
◦
wj

∂xi
= 0, j = 1, 2, 3 in Ω.

As �l · �◦w = 0, we also have

(3.7)
3∑

i=1

li
◦
wi = 0 in Ω.

And, of course, the following condition will be taken into account:

(3.8) �n · curl �◦w
∣∣
∂Ω0
= 0.

For simplicity, we suppose that l3 �= 0. Then (3.7) yields

◦
w3 = −

l2
l3

◦
w2 −

l1
l3

◦
w1.
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Hence,

∆1 =
∂
◦
w3

∂x2
− ∂

◦
w2

∂x3

=
∂

∂x2

(
− l2

l3

◦
w2 −

l1
l3

◦
w1

)
− ∂

∂x3

◦
w2

= − 1
l3

(
l2

∂
◦
w2

∂x2
+ l1

∂
◦
w1

∂x2
+ l3

∂
◦
w2

∂x3

)

= − 1
l3

(
l1

∂
◦
w2

∂x1
+ l2

∂
◦
w2

∂x2
+ l3

∂
◦
w2

∂x3
+ l1

∂
◦
w1

∂x2
− l1

∂
◦
w2

∂x1

)

=
l1
l3
∆3.

and consequently,
l3∆1 = l1∆3.

It is easy to check that if l3 is zero then the above equality also holds. Similar

argument leads to the equalities l2∆1 = l1∆2 and l3∆2 = l2∆3.
These equalities constitute the system

(3.9)





l3∆1 = l1∆3,

l2∆1 = l1∆2,

l3∆2 = l2∆3.

Obviously, only two equalities from system (3.9) are independent. Condition (3.8)
implies

l1∆1 + l2∆2 + l3∆3 = 0

(since ‖�l‖ = 1 and �l = −�n on ∂Ω0, if Ω ∈ L∗).
Taking the system 




l3∆1 − l1∆3 = 0,

l2∆1 − l1∆2 = 0,

l1∆1 + l2∆2 + l3∆3 = 0,

with zero right-hand side, we see that, if

det




l3 0 −l1
l2 −l1 0

l1 l2 l3


 = −l1 · ‖�l‖ = −l1 �= 0,

then the only solution is ∆1 = ∆2 = ∆3 = 0. Obviously, if l1 = 0, then we take
other two equations from (3.9). �
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Note that we have to form finite elements according to the position of the base of

such domains in the space, so conditions (3.2) and (3.3) are quite natural and can
be easily satisfied when employing prismatic or rectangular C0-elements.
Also, the restriction �l · �w = 0 is not very difficult, because �l is a constant vector.

Namely, the basis in Vh can be easily obtained from the finite element basis of finite
element subspaces of H1(Ω).

References

[1] V. Girault, P. A. Raviart: Finite Element Approximation of the Navier-Stokes Equa-
tions. Springer-Verlag, Berlin, 1979.

[2] I. Hlaváček, M. Křížek: Internal finite element approximations in the dual variational
methods for second order elliptic problems with curved boundaries. Apl. Mat. 29 (1984),
52–69.

[3] M. Křížek, P. Neittaanmäki: Internal FE approximation of spaces of divergence-free
functions in 3-dimensional domains. Internat. J. Numer. Methods Fluids 6 (1986),
811–817.

[4] M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems
and Applications. Longman Scientific & Technical, Harlow, 1990.

[5] J. C. Nedelec: Eléments finis mixtes incompressibles pour l’equation de Stokes dans �3 .
Numer. Math. 39 (1982), 97–112.

[6] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam, 1979.
[7] V. S. Vladimirov: Equations of Mathematical Physics. Marcel Dekker, New York, 1971.

Author’s address: Sergey Korotov, Department of Mathematics, University of
Jyväskylä, P. O. Box 35, SF-40351 Jyväskylä, Finland, e-mail: korotov@math.jyu.fi.

242


		webmaster@dml.cz
	2020-07-02T09:21:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




