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41 (1996) APPLICATIONS OF MATHEMATICS No. 4, 367-398 

FINITE ELEMENT VARIATIONAL CRIMES IN THE CASE 

OF SEMIREGULAR ELEMENTS 

ALEXANDER 2ENISEK, Brno1 

(Received December 6, 1995) 

Summary. The finite element method for a strongly elliptic mixed boundary value prob­
lem is analyzed in the domain il whose boundary dQ is formed by two circles Ti, V2 with the 
same center So a nd radii Hi, P2 = PI + Q, where g -C Pi • On one circle the homogeneous 
Dirichlet boundary condition and on the other one the nonhomogeneous Neumann bound­
ary condition are prescribed. Both possibilities for u = 0 are considered. The standard 
finite elements satisfying the minimum angle condition are in this case inconvenient; thus 
triangles obeying only the maximum angle condition and narrow quadrilaterals are used. 
The restrictions of test functions on triangles are linear functions while on quadrilaterals 
they are four-node isoparametric functions. Both the effect of numerical integration and 
that of approximation of the boundary are analyzed. The rate of convergence 0(h) in the 
norm of the Sobolev space H is proved under the following conditions: 1. the data are 
sufficiently smooth; 2. the lengths bM and hM of the smallest and largest sides, respectively, 
of every element M (M = T, K) satisfy the relations C\h2

M ^ bM ^ O2^M where T stands 
for a triangle and K for a quadrilateral. 

Keywords: finite element method, elliptic problems, semiregular elements, maximum 
angle condition, variational crimes 

A MS classification: 65N30 
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1 . FORMULATION OF THE PROBLEM 

We shall consider the boundary value problem 

(i) - £ ^ ( ^ ) =/(*), *en, 

(2) u = 0 on Vi, 
2 Q 

(3) 5 ] k — n i ( n ) = g onT2, 
. , дxi 
г=l 

where ft is a two-dimensional bounded domain with the boundary dft = Vi u r 2 , Vi 

and T 2 being the circles with radii Ri and R2 = R\ + Q, respectively. We assume 

that the circles Ti, T2 have the same center So and that 

(4) Ri » Q. 

The symbols rii(G) (i = 1,2) denote the components of the unit outward normal to 

dG. 

A weak solution of problem (l)-(3) is a solution of the following variational prob­

lem (which can be obtained from (l)-(3) by means of Green's theorem in a standard 

way). 

1. Problem. Let ft be a bounded domain with a Lipschitz continuous boundary 

afi = riur 2. Let 

(5) V = {veHl(Q): v = 0 on Vx}, 

(6) a(w,v) = 5 Z / / ki(x) — —dx1dx2, 
i = i 

(7) L(v) = LQ(v) + Lr(v) = [[ vfdxidx2 + [ vqds, 
JJn Jv2 

where 

(8) fc6^°°(n), few^(n), q = Q\r2, QeC2(U), 

(9) ki(x) ^ Mo > 0, 

U being a neighbourhood of T2 (i.e., a domain containing T 2). Find u e V such that 

(10) a(u,v) = L(v) VvGV. 
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Assumptions (8)-(9) guarantee that the symmetric bilinear form (6) is bounded 

and strongly coercive and that the linear form (7) is continuous. (Of course, this 

also holds when / G L2(Sl) and q G L2(T2). We assume (8) because of numerical 

integration.) 

2. Lemma. Let a solution u G V of Problem 1 satisfy u G H2(ft). Then relation 
(I) holds almost everywhere in ft and relation (3) holds almost everywhere on T2. 

The proof is omitted. Also the following lemma is well-known: 

3. Lemma. If (9) holds then Problem 1 has a unique solution. 

We shall solve Problem 1 approximately by the finite element method. To this end 
let us approximate 1^ by a regular polygon V2h with vertices Q\,..., Qn such that 
every segment QiQi+i has no common point with T\. Let the vertices P\,.. .,Pn 

of the polygon T ^ approximating Ti be obtained in the following way: Pi is the 
intersection of the segment SoQi with IV The symbol ft,h will denote the polygonal 
domain with the boundary dflh. 

We divide each segment PiQi by the points A\, A\,..., Ai
rn_x into m parts of the 

same length in such a way that we have formally Al
0 = Pi, Al

m = Qt-. The points 
A1- are the vertices of quadrilaterals into which the domain Qh is divided. In order 
to simplify our considerations we divide every quadrilateral Ax

rn_1A
t
m~*1QiQi+i into 

two triangles. This simplification will be removed in Theorem 31. 
We admit to use narrow quadrilaterals and narrow triangles. This means that we 

shall have 

(II) £<h 
m 

in our considerations, where h is the length of the greatest segment in the division 
of Vth. The corresponding division consisting of closed quadrilaterals K and closed 
triangles T will be denoted by @h. 

We shall assume that k{ G Wl'°°(ft), / G TV1'00(ft), where ft is such that ft/, C ft 
for sufficiently small h. When we consider the functions fcx- and / in ft^ we shall use 
symbols fct- and / . In the opposite case the original symbols fet- and / will be used. 

The discrete problem is now formulated in an almost standard way. (The expres­
sion "almost" concerns the approximation of the term Lr(v) which will need some 
space.) We define spaces 

Xh = {v G C(ft^): v\K = a four-node isoparametric function MK G @h, 

v\T = a linear polynomial VT G @h} 
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and 

(13) ^ = { ^ 4 : ^ 0 0 1 1 ^ } . 

We set 

(14) ah(v,w)=^2 ^idx~-^dXldx2 ^ ^ G H 1 ^ ) 

and 

(15) L%(v)=[J vfdXldx2 VveXh. 

To define LT
h(v) is more complicated. We start with a suitable expression of Lr(v), 

where v is the natural extension of v € Vh (in more detail see Notation 23). In 
connection with these considerations we shall use the symbols x,y instead of 0:1,2:2. 

According to the definition and properties of the line integral we can write 

4 

Lr(v)= f qvds = J2j qvds 
J l 2 k=lJL2 

where V2 is a quarter of the circle V2 with the endpoints Bk, Bk+i, where B1 = 

[-V2R2/2,V2R2/2], B2 = [V2R2/2,V2R2/2], B3 = [V2R2/2,-V2R2/2], B4 = 

[~V2R2/2, -y/2R2/2] and £?5 = B\. Let the points Q i , . . . , Qn be chosen in such a 
way tha t n = 4N and # 1 = Q i , B2 = QN+i, B3 = Q2N+1, B4 = Q3N+i. Let us 
denote 

xx := -V2R2/2, xN+x := V2R2/2, Vl := -y/2R2/2, yN+Y := V2R2/2, 

xr := xx + (r - l)(a;Al+i - ^ i ) /N , yr '= yi + (r - l)(yN+i - yi)/N (r = 1,..., jY + 1), 

g(t) := y/iq-t* 

Then we can write 

LrM(v) := f qvds = V f q(x,g(x))v(x,g(x))y/l + [g'(x)]*dx, 
jrf> fT[Jx,. 

LT^(v) := f qvds = V r + 1 q(g(y),y)v(g(y),y)Wl + tff'G/)]2 dy, 
•!r2

21
 r = 1 Jy,-

Lr^(v) := f qvds = J2 fX'+1 q(x, -g(x))v(x, -g(x)Wl + [g'(x)Y dx, 
•!rf > r = 1 Jxr 

Lr^(v) := f qvds = V r + 1 q(-g(y),y)v(-g(y),y)Wl + [g'(y)}2dy. 
JT24) r = i Jy<-
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Let £r, r\r be the local coordinate system oriented in the same way as the system x, 

y, with the origin at the point Qr and with such an axis fr that its nonnegative part 
contains the segment QrQr+\. Let ar be the angle made by the axis £r with the axis 
x. Then in the case of T2 ' 

x = x(^r,r\r) := xr + £r cosa r — r\r s ina r , 
(16) 

y = y(€r,rir) ~g(xr) + £ r s ina r + 77rcosar 

is the orthogonal transformation between the systems x,y and £r, r)r. 
Let us denote 

(17) qnAtr,rjr) '= q(x(£r, TJr), 2/(fr, *7r)), 

(18) vn,r(£r,r)r) := v(x(^r,7?r),2/(^r,r?r)) 

and let 
77r = <Dr(£r), £r € [0,/r] 

be the analytic expression of the arc 

y = g(x), x e [xr,xr+i] 

in the system £r, r]r. Then, according to the theorem on invariance of the line integral 
with respect to an orthogonal transformation, 

rxr+\ 
/ q(x,g(x))v(x,g(x))y/l + [g'(x)]2dx 

Jxv 

rir _ 
= / (ln,r(^r,^r(Cr))Vn,r(^r,^r(^r))\/l + k r (£r)] 2d£ r 

JO 

where lr = dist(Q r, Qr+i) and vn,r is the natural extension of the function vn^r. Let 
us note that in the case of the circle T2 we have 

(19) VrKr) = -B2COS^- + y(.R2COS-^-) + Zr£r " & 

where or is the angle made by the segments SQQr and SoQr+i, S0 being the center 
of the circle r 2 . 

The preceding relations give 

(20) Lr^(v) := [ qvds 
Jr^2) 

j ^ fir 
= Z2 ^n,r(Cr,^r(^r))Vn,r(^r,^r(^r))\/l + [<Pr(€r)]2 d£r 

r=lJ° 
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and we can define an approximation Lh \v) of LT^\v) by 

(21) Ll{1\v) = Yl / 9»,r«r,V>r«r)K,r(fr,0)der. 

The expressions of Lr(2\v), Lr(3)(l7), Lr(4)(l7) and their approximations L^2\v), 

Lh \v), Lh\v) are similar to (20) and (21), respectively. As 

(22) Lr(v) = J2Lr{k)(v) 
k = l 

we have 

(23) ££(«)--E-?w(«). 

The symbols ah(v, w), L%(v) and L^(v), where v, w G Xh, will denote the approxi­

mations of a,h(v, w), Lh(v) and L\(v), respectively, when using numerical integration. 

For all v, w € Xh we have 

2 Nт дv 
(24) ah(v,w)= Y^ £ ^ - W 0 Д ( i т , j ) ^ 

TЄ-^h i = 1 з=1 т 

дw 
ЭXІ 

mes 2 Т 
T 

'KeS'h i = 1 - 7 - 1 

where X T J and XKJ are the integration points on a triangle T and quadrilateral 

K, respectively, and UJT0J and UJK0,J are the corresponding coefficients of the given 

integration formulas (prescribed on the reference triangle T 0 and reference square 

KQ, respectively). The symbol JK(€I,&) denotes the Jacobian of transformation 

(33) which maps the reference square I\~0 one-to-one onto K. The points [£ij,C2j] 

are integration points prescribed on K$ and 

XK,J = [xi (£ i j , 6 j ) , z f (flj.&j)]. 

As to XT,J (and urp0,j) we mention the simplest possibilities: NT = 1, 2^T0,j = 1> 
XT,J = PQ (the center of gravity of T); NT = 3, 2CJT0,J = | , £T,j = -P/ (the 
vertices of T) - both formulas are of the first degree of precision (d = 1). If NT = 3, 
2U;T0,J = | and XTJ = Qj (the midpoints of the sides) then d = 2. 
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Similarly, for all u, w G Xh we have 

(25) 

NT 
Lh(v)= ] £ Y,2uJT0jv(xTj)f(xTj)rnes2T 

Te9hi=i 

NK 

+ Yl ^2UKojH^Kj)f(XKj)\JK(^lj^2j)l 

Finally, 

(26) ^^(v) = ^^lrPrjqnASrj,<Pr(Sr,j))VnASrj,0) 

N Nr 

EE 
Г = l j = l 

where srj are integration points on the segment [0,lr] and /3rj the corresponding 

coefficients of the given integration formula. (For d = 1 we have either Nr = 1, 

/3r>i = 1, sr,i = lr/2, or IVr = 2, /3rj = | , sr>i = 0, sr,2 = lr\ for d = 2 we have 

Nr = 3, /3r>i = /3r,3 = g, /3rj2 = g, $r,l = 0, Sr,2 = /r/2, S r,3 = / r . ) 

Now we can define the approximate problem: 

4. Problem. Find uh G Vh such that 

(27) ah(uh,v) = Lh(v) Vv e Vh. 

2. AN ABSTRACT ERROR ESTIMATE 

5. Definition. Let u G H2(fi). We define Qhu G Xh by 

<2/î |---- = <3/<-w = the four-node isoparametric interpolant of it, 

Qh.u\-j; ^ — ITu — the linear interpolant of u. 

6. Lemma. Let To be the circle with a center So and radius RQ = Ri — g. Let 

H be a bounded domain such that dtt = r 0 U T 2 . There exists a linear and bounded 

extension operator E: H2(Q) -» H2(fi) such that the constant C appearing in the 

inequality 

ll--(«)ll2,5 < c N k n v « e II2(°) 

does not depend on R\/Q. 

Lemma 6 follows from the considerations introduced in [6, pp. 20-22]. 
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7. Theorem. Let u G H2(Q), u := E(u) and let the condition 

(28) \\v\\lUh ^ Cah(v,v) Vv G Vh, Vft < ft0 

be satisfied, where fto is sufficiently small. Then Problem 4 has a unique solution 

v>h G Vh and we have 

(29) \\u-uh\\i^h <tC(\\Qhu-u\\1Sih+ sup 
V w£Vh 

\ah(Qhu,w) - ah(QhU,w)\ 

\\W\\l#h 
w^O 

\L%(w)-L%(w)\ \LJ(w) - Lj(w)\ \ah(u,w)-Lh(w)\ 
' v li H ~>~ b u p ii i, i b u p n n 

^GV, INIi,n/4 weVh IMIi.n,. ^eV/. IMIi.n,. 
I U ^ O t / j^O I / J ^ O 

P r o o f . Inequality (28) and the Lax-Milgram lemma guarantee that Problem 4 
has a unique solution uh G Vh. 

Now we prove estimate (29). Let us denote 

(30) v := QhU - uh. 

Then by (28) and (27) we have 

\\Qhu - uh\\
2
1Qh ^ Cah(Qhu - uh,v) = C{ah(Qhu,v) - Lh(v)} 

= C{ah(Qhu, v) - ah(Qhu, v) - Lh(v) + Lh(v) - Lh(v) 

+ah(u, v) + ah(Qhu - u, v)}. 

This estimate, the triangular inequality, the boundedness oiah(QhU — u,v) and (30) 
imply (29). • 

Our first aim is to prove that condition (28) is satisfied. This will be done in 
Section 4 where we also estimate the second, third and fourth terms appearing on 
the right-hand side of (29). These terms express the error of numerical integration. 

The estimate of the first term, which expresses the interpolation error, is intro­
duced in Section 3. This estimate follows from the known interpolation theorems. 
The fifth term, which expresses the error due to the approximation of the boundary, 
will be estimated in the Section 5. 
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3. T H E INTERPOLATION ERROR 

Now we shall estimate the first term appearing on the right-hand side of (29). 

8. Theorem. We have 

\\QhU-u\\i,nh ^ C7i||t-||i.n 

where the constant C is independent ofh, u and the division @h-

The proof follows from the definition of QhU, Lemma 6 and the following two 
lemmas. 

9. Lemma. Let K be a narrow quadrilateral with parallel long sides. Let 

u e H2(K). Then we have 

\\u - QKU\\0,K ^ (C5 + 12 K ) h2
K\u\2tK, 

\ hK sin fjK J 

\u - QKU\IJ< ^ [cn + . ) . * \u\2,K 

\ sinaK/ sinpx 
where QKU is the four-node isoparametric interpolant ofu on K, hK is the length of 

the greatest side of K, a x and (3K (OLK ^ PK) are the angles made by the greatest 

side with the two short sides and SK is the length of the short side at aK- In the 

case £K ^ ^K/12 the constants C5. Cn, C12, C16 satisfy 

C5 = 55.019093, Cn = 12.801823, C12 = 21.658241, C16 = C12C15 = 19.47235264. 

For the proof see [8]. 

10. Lemma. Let u E H2(T) and let ITU be the linear polynomial satisfying 
(ITu)(PT) =u(PT) (i = 1,2,3) where Pf, P2

T. P3
T are the vertices ofT. Then 

\\u - Jri-||i,T ^ ^T||w||2,T 
sin7T' 

where 7 T is the maximum angle of T and the constant C does not depend on T 
and u. 

Lemma 10 is a special case of the interpolation theorem for linear interpolations 
introduced in [4]. (In [4] the spaces W2'P(T) (p > 1) are considered instead of the 
spaces H2(T). The result of [4] generalizes in the case of linear interpolations the 
results introduced in both [1] and [3].) 

375 



4 . T H E EFFECT OF NUMERICAL INTEGRATION 

First we shall analyze the numerical integration on quadrilaterals. Let AT be a 
quadrilateral whose greatest side lies on the axis x\ and let it have the vertices 

Pi (1i,0), P2(0,0), P3(S cos/3,S sin 0), P4(h - e cos a, e sin a) 

where e = dist(Pi,P4), S = dist(P2,P3) and a and (3 are the angles at Pi and P2 , 

respectively. As each quadrilateral belonging to ^ has parallel long sides we have 

(31) b := — = 5 sin a = SsinB. 
m 

Let KQ be the reference square lying in the coordinate system £i, £2 and having the 
vertices P-*(1,0), P2*(0,0), P3*(0,1), P4*(l,l). If we denote 

€3 = S cos (5, £4 = e cos a, e* =83+64 

then the one-to-one mapping of KQ onto K has the form 

(32) xi = h& + e3& - e*&&, x2 = b£2. 

If the side PiP 2 makes an angle <D with the axis x\ and the vertex P2 has coordi­

nates #10, £2o then (32) is substituted by the mapping 

xi =x? (&,&) = ^io + ( ^ i + £362 ~ £*&&) cos<p-6& sin <p, 

%2 = -^(£1,6-) = ^20 + ( ^ i + £362 -e*&&)sin<p + &f2cosp. 

Both transformations (32) and (33) have the same Jacobian 

(34) JK = (h-e*£2)b. 

It should be noted that for n > 1 we have 

Si » ^ - ( 2 K ( P I + A + -£) - 2*(Pi + Z.*)) = ^ - (i = 3,4; 0 ^ A < $(1 - 1/m)). 
2n m nm 

F W t h e r
 u acHi 

n 
The last two relations imply in this case 

(35) Si = cub, di^Ch (i = 3,4). 
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Let us denote 
( 1 ) : = 2 , ( 2 ) : = 1 , Kij = (-l)i+j. 

Then we can write (omitting the subscript K at J) 

PL = "«iiirL (^' = 1'2) 

dxj J d£(i) 
and the theorem on transformation of an integral yields 

/__ x ^ f \~^r dv dw\ -- / v^ r* dv* dw*\ 

(36) I^(X>a^J = Mj£.*Xfr'a& %) 
where 

NK 

(37) EK(F) := 17" F(_i,x2)da;idx2 - ^ w ^ F ^ ) ^ ^ ^ ) ! , 
I "!«• j = i 

-H-i,6):=-?(si(-i,&),*-(-i,&)), 
r r NK 

EKB{F) := / / F*(£i,&)d6 d& - ^c -Koj - 5 "^ ,^ ) , 
J "1KO j — i 

i ax(i) dxw 

(38) 

(39) Xiт-s — f^ir^is 
J дţ{r) дţ{s) 

(40) 

(41) 

(42) 

11 . Lemma. We have 

dk 
ð.i 

< CЛ|fci|i i 0 0 )к, 
0,oo,Л"o 

дv* 

дk* 
дţ2 

< oЬ|fei|l,oo,iЧГ, 

% 
< C 

Әv* 

Ә.i 

0,oo, K 0 

л. 

Әг>* 

З.ť 

0,oo,K0 

(i = l,2), 

O.Л-o 

<C\/^ |^ | l ,K, 

0,K 0 

ðü* 

әç2 o,K0 

< C \ / ^ M i , K . 

The proof of (40) and (42) follows immediately from transformation (33) and 

relations (34), (35). As to estimate (41), it is well-known (see, e.g., the proof of [7, 

Lemma 11.5]). 

12. Lemma. For all bilinear polynomials v*, w* and ip G W1,00(_?_o) we have 

(43) Eкc 
( ,dv*dw*\ 

< C 
дv* 

0,K0 

дw* 

0,K0 

l^|l,oo,K0 
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provided 

(44) EKo(p)=0 V p G ^ 2 , 

where ^ denotes the set of polynomials of degree not greater than k. 

The proof is an immediate consequence of the Bramble-Hilbert lemma and relation 

(41). 

13. Theorem. Let (44) hold. Then we have 

(45) 
/ v ^ r дv дw 
l f-' г дxi дxi 

^ C/imax| |k i | | i j 0 0 ,A>|i,Kk|i,K Vv, w € Xh. 
ť=l,2 

P r o o f . We start with the special case (32). According to (34), (35), (39) and 
(40), 

(46) |k îX l l l | l ,oo,Ko = k í j \ d b ) 

<oд|fcî|l.oo,łfo + ^ll*ïHo,oo,Ko 

l,oo,A"o 

_д_ 
ð& 

ц ь2 

bh{l - є*ţ2/h) 

l-є*Ь/h)) 

l,oo,K0 

0,oo,K0 

(47) 

(48) |*2*X211 |l,oo,Ko = 

< C 7 6 p i | | i , o o , Ä - , 

X112 = X121 = X122 = 0, 

__? 
bh 

>- fдxЛ 
^\дb) 

l,oo,Ko 

<CЬҺЏ2\\i,o0,к, 

(49) 

(50) 

(51) 

|*2X212Іl,oo,.fŕo = 
-„. 1 <9:Ti <9:Ti 

J ð& ð& 

r .Лeз/g*-Ci) 2 

2 l - є * & / Л 

l,OO,K0 

l,oo,K0 

, ( Л - e * & ) ( є з - є * & ) 
2 (ft-e*&)& 

: 1 dxi dx\ 

J 5 & 3& 

^ C*/.|Mll,oo,K, 
l,oo,K0 

1^2X221 |l,OO,K0 = < С Л | | Л 2 | | 1 , о о , к , 
l,oo,K0 

|k2X222|l,oo,K0 = ik'1 P 1 1 

*2Пa& l,oo,K0 

* 2 ( 1 - T & 
l,oo,K0 

< C y P 2 | | l , o o Ж . 

Combining (46)-(51) with (36) and (43) we obtain (45) by means of (42). 

As the Jacobian J of both transformations (32) and (33) is the same the proof in 

the general case (33) is very similar; thus we omit it. • 
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14. Remark. In the cases when relation (35) is not satisfied (however, the long 

sides are parallel) the assertion of Theorem 13 can be proved provided 

EKo(P)=o V p e ^ 4 . 

15. Remark. The case of a quadrilateral K with parallel long sides is a special 

case of quadrilaterals K satisfying the condition 

(52) Issina — Ssm/3\ ^ Cbh. 

It can be proved that the results of Theorem 13 and Remark 14 can be extended to 

the case (52). 

The effect of numerical integration in the case of narrow triangles must be analyzed 

more carefully than in the case of regular triangles. Let T be an arbitrary triangle 

lying in the plane #i , x2 and let To be the triangle with vertices (0,0), (1,0), (0,1) 

lying in the plane £i, £2 • Let 

(53) ^1 =£'1 (&,&), X2=X2{ţi,ţ2) 

be the linear transformation which maps Fo one-to-one onto T (for its form see, for 
example, [7, Theorem 9.1]) and let £1 = £1(2; 1,2:2), £2 = £2(^1,^2) be its inverse. 

16. Lemma. Let v € C(T) and let 

«*(&,&) =wM6,&),x2(&,6)). 

Then we have 

(54) E дv* дÇr 

.дĘr"дx~ 
r=l 

ŠC\J\ -1/2 v l l ,T 
0,To 

where J is the Jacobian of (53). 

P r o o f . The symbol 6{j will denote the Kronecker delta. We have (d£r/dxi are 
constants) 

E дv* дÇr 

r=1Җдx~ 
0,Io ^ r — L ' 

= ' " 7 | _ 1 1 IT {^XLI6U + S~262i) dXldX2 ^ C | J | _ 1 | t ; | i - r ' 
which gives (54). D 
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The error functional ET and ET0 on a triangle T and the reference triangle Fo, 

respectively, are defined in a similar way as EK and EK0 (see (37) and (38)). 

17. Theorem. Let 

(55) 

Then we have 

Eтo(p) = 0 V p Є ^ o -

(56) E iS^k— — 
T \ í= í %dxidxi J 

^ C/гmax | fci |i ł 0 0 |т|^|i,т|^|i,т Vv, w Є K^. 

P r o o f . We have 

(57) M^K) I-"M* (£)'(£)) 
= | j | 

\ \r=l ^ r UXx / \s=l ^s * , 

= \j\F(h:) 

where the notation F is used for fixed v*, w* and fixed T (i.e., fixed linear functions 
^(^1,^2)). Using the assumption ki G Wli°°(il) and [7, Lemma 11.5] we obtain 

\ғфt)\ ţ ц*;iio,oo,г„ 

<o||fc?||l,oo,Гo 

Г = l 

E ðv* ðfr 

лҖдx~ 
r = l 

0,oo,To 
£ дw* дţs 

j <Э£S a^ i 
0,oo,T0 

0,To 

ðгD* ð^s 

< ð& ӘXІ 
s = l 0,To 

Since v,w G Kh we have u * | T ,w*|T G ̂ 1 and assumption (55) yields 

F(k*) = 0 V k * G ^ 0 . 

Hence the Bramble-Hilbert lemma together with Lemma 16 and relation 

|fc*|l,oo,To < C/#i|l,oo,T 

imply 

\F(k*)\ ^ c\ jr^i^ii,oo,Tkii,Tkii,T. 

This result and (57) give (56). 
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Till now the analysis of the effect of numerical integration has been done only for 

triangles satisfying the minimum angle condition. Theorem 17 holds for arbitrary 

triangles with straight sides (not only for triangles satisfying the maximum angle 

condition). 

For v, w € Vh we have 

ah(v,w) = ah(v,w) - {ah(v,w) -ah(v,w)}, 

ah(v,W)-ah(v,w)=J2 EK fc^-gij + £ -3r K ^ j ^ j , 
Kes>h \*= 1 / re®h ^i=1 ' 

Using these relations we obtain from Theorems 13 and 17 (details are similar as 
in the proof of [7, Theorem 11.8]; we use also an inequality of the type [7, (29.1)] 
which together with (9) implies I M I i ^ ^ Cah(v,v))\ 

18. Corollary. Condition (28) is satisfied. 

19. Theorem. Let 

EKO(P) = O Vpe&2, ETO(P) = O Vpe&o. 

Then we have for u e H2(Q) 

/.ox \ah(Qhu,w) -ah(Qhu,w)\ ~ 
(58) sup -— ^ -I ^ Chmax fe ^ 5 1 * 2 , 0 

wevh INIi,nh l = 1 '2 

w^O 

where the constant C does not depend on u, k{, and h. 

P r o o f . Relation (58) follows from Theorems 13, 17 and Lemmas 9, 10. Details 
are the same as in the proof of [7, Theorem 11.12]. • 

20. Theorem. Let 

EKo{p) = 0 Vp € 9% (or Vp e .Si), 

ETO(P)=O V p e ^ o 

where £l\ is the set of all bilinear polynomials. Then we have 

(59) sup I ^ H - ^ M I ^ cwi|li00i-V5^n, 
wevh l|w||i.nh 
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where the constant C does not depend on f and h. 

P r o o f . The following chain of inequalities is based on standard arguments and 

the preceding results (for simplicity we write / instead of / ) : 

\EK(wf)\ = \EKo(f*w*JK)\ ^ C\f*w*JK\0^Ko 

^ Cl|/*J/d|i)CX),K()|w*|o,oo,Ko ^ C|/*J/dl,oo,K0||w*||o,K0 

^ C(|/*|l,oo,Kol^K|o,oo,K0 + |/*|o,oo,K0I^K|l,oo,K())||wI*||o,Ko 

< C(hK\f\l9QOtKhKbK + \f\o,oo,Kb2
KhK)(bKhK)-^2\\w\\0,K 

< ChKy/mes2 K||/||i,oo,K||Hlo,K. 

Similarly, 
\ET(W})\ = \JT\ • \ETo(f*™*)\ ^ C\JT\ • \f*W*\0,oo,T0 

^ C\JT\ • ||tu71i,oo,To ^ Cmes2T|ti>7*|i,oo,To 

^ Cmes2T(|u)*|i,00,ro|/*|o,0o,To + |W*|O,OO,T0|/*|I,OO,T0) 

< Cmes2T(|w*|i)r0|/|o,oo,T + |u'*|o,ToliT|/|i,oo,T) 

^ C/irN/mes2r||/||i,0o,T||t«||i,T. 

Summing and using the Cauchy inequality we obtain (59) because 

\L%(w) - L%(w)\ < Y, \EKM)\ + £ l-M«-7)|. 

D 

In order to estimate the effect of numerical integration along T2 we introduce the 
following error functionals: 

rir Nr 

Er(F) := / F(£r) d£r ~ £ lr0rjF(Srj), 
J° j=l 

,1 Nr 

E0(F*):= / F'Wdt-'EPrjF'te) 
JO A--1 i = i 

where 
F*(t):=F(lrt), ť Є / = [0,l]. 

Hence 

(60) Er(F) = lrE0(F*). 

When considering the line integrals we need also the trace inequalities which are 

introduced in the following lemma. 
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21. Lemma. We have 

(61) 

(62) 

IMkan <-=IMkn Vveff^n), 

IMIo,anfc < -^-IMkn,. Vueff^n,,) 

where the constant C does not depend on v, h and g. 

The proofs of (61) and (62) are similar to [5, pp. 15-16]). 

22. Theorem. Let 

Eo{p) = 0 Vpє^2. 

Then we have 

(63) s u p I I ^ ) - 4 > ) I < ^ f c-^( í ) A /55rrT 
wevh I N I i , ^ VQ 
w^O 

where the constant C does not depend on q, g and h and where 

(64) M2(q) = 5max ( 2, — 1 max 
IT2/ (s,i/)ЄГ2 

д2Q 
дx1 , 

д2Q 
дxдy , 

д2Q 
дУ

2 , 
дQ 
дx , 

дQ 
дy 

P r o o f . We denote 

lkn, r | |o , í r := / [wnЛŹr,0)]2d£r, Jo 
< ł Г ( 0 : = W n , r ( U , 0 ) , Í Є I = [0,1]. 

Then we have 

! ) • 

IM;,,ll0,/=l r-
1/2 |Mn,r||0,/,.. 

Further, we set 

(65) 5n,r(£r) '•= q,x,r (£r, <f(£r)), <7n,r(0
 : = Qn,r(lrt). 

Then, according to (60), we have 

(66) Er(qn,rwn,r) = / r £ 0 ( C r < r ) . 

The following chain of inequalities is again evident: 

|£o(qn , r<,r)l < C|$n.r<frlofoof/ < C||tfn,r lkoo, / |< f r |o,oo,/ 

< C|qn,rkoo,/ |K, r | |o,/ ^ C,^|§nfr|2|oolit./r'
1/2||l-Infr||of/r. 

383 



This result together with (66) implies 

N N 

(67) J2\Er(qn,rWn,r)\ < Ch2 max 1 ^ |2,oo,/r V / r
/ 2 | | ^ n , r ||0,/r • " r=l,...,Iv -—--* 

r = l r = l 

The Cauchy inequality yields 

IV 

(68) £ l r
/ 2 | K , r | | o , . , . < л 

r=l \ 
ES 
r = l \ 

Ell^.'-Ho,;,. = VmesiT2h\\wW0X<2)y 
r = l 

Combining (67) and (68) together with the trace inequality (62) we obtain 

(69) y"|-M<1n,rWn,r)| ^ ~ph2 maX \qn%r|2,oo,/r |N|l,ílfc • 
fr[ V*? r=l,...,N 

As qn.rdr^r) is defined by (17) and (16), relations (65)i and (8)3 imply 

qn,r(£r) = q(xr + £r cos a r - (Dr(£r) sin a r , g(xr) + £r s ina r + <Dr(fr) cosa r) 

= Q^^) | («,y)6r^(Q r fQP + 1) ' 

where V2 (Qr,<2r-ri) denotes the part of T2 ' with the end-points Qr, Qr+\. From 

the rule of differentiation of a composite function and from (19) we obtain that 

(70) max |<7n,r|2,oo,z\. < M2(q) 
r=l,...,IV 

where M2(q) is given by (64). Relations (69), (70) imply (63). • 

5. T H E ERROR OF THE APPROXIMATION OF THE BOUNDARY 

The estimate of the last term in (29) will be divided into several lemmas. 

23. Nota t ion . We denote 

(71) Th = fth-Ti, ojh = Q,-Tih. 

Further, let w € Xh. The symbol w is called the natural extension of w and denotes 

the function w: Qh U ft -+ R1 such that w = w on Qh and 

^ I T H . — T 7 = P\fid_f 

where p G ^ i satisfies P\T- = w\^. (T ld C H is the curved triangle which is approxi­

mated by T.) 
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24. Lemma. Let u € H2(Q). Then we have for w eVh 

I 2 

(72) \ah(u,w) - Lh(w)\ ^ \LT(W) - Lr
h(w)\ + \JJ £ A ( h ^ \ wdx^x 

+ / wdx\dx<i 

P r o o f . Using the definitions of ah(u, iv), Lh(w) and Green's theorem we obtain 

2 ~ 

ah(u,w) -Lh(w) = J J ^ k i — —dx1dx2-L%(w)-Ll(w) 

= J2h Y,h-£ni(Slh)wds - IJ^ ( £ — (%i£-J + / J wdXldx2 - Ll(w). 

To the right-hand side let us add zero in the form 

~ V^ ki-^m(n)wds + Fr(l7J) = 0. 
J^~[ dxi 

If we denote A = Tld — T and use Lemma 2 then we can write 

r .Q 

ah(u,w) -Lh(w) = - V ] / V"A;i^—n.(/\)u;ds 
A^H

 JdA <=i d X i 

- / £ ( t I : (^£) + /) - ***** + *r<"0 - ££(«)• 
Transforming the first term on the right-hand side by means of Green's theorem we 

obtain (72). • 

25. Lemma. Let (2) hold. We have 

(73) 

(74) 

IMIo,^. < CMIMIo,r2 + % | i , u , J Vw G H^íl), 
Ifjfl 

|w|i,wt < C h y - H i , f t f c » 

(75) ||ӣ7||0iЫh ^ СA(|Mlo,гak + ҺЩÍJUh) < С7, ( - 1 + /г2 J ^ ) |M|i,í .k , 

(76) IM|o>T/. < СA(|Mlo,г l k + ЛMi.r k ) = oli2Mi>Th 
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where w G Vh and w is defined in Notation 23. 

P r o o f . A) Relation (73) follows from the proof of [7, Lemma 28.3]. 

B) Since A = Tid - T we have 

N U = £ mes2Z\|(Vш|т)|2^C ]Г lгr|(VW|T)|2 

ЛCVҺ ЛCvi,. 

= С ; E ^KH T ) ľЧC^ 2 £ \<тźC^Һ2\w\lӣh 
.--Cot/, .-Cw,t 

because 

- ^ ( V г ^ ) ! 2 < C\w\2

ҺT. 

Hence relation (74) follows. 

C) The first inequality in (75) follows from the proof of [7, Lemma 28.3] and the 

second from (62) and (74). 

D) The inequality in (76) follows from the proof of [7, Lemma 28.3], the equality 

from the assumption w G Vh- • 

26. Lemma. Let u G H2{tt) and f G W^°°{n). Then 

(77) /l£^r^rd* lda;2 
<CҺ2l^- + h2 I- чi f 

SГQ 
ЛІ0,oo,í.||W||l,П,. 

P r o o f . Lemma 2 and the inclusion Uh C ft yield 

/! £ í (fcië)wdxidX2 = 1/1wfàxidx 
«S l l / l lo,wJMIo,w , . 

Using the assumption / G VV1,00(n), the fact that mes2cj/l ^ Ch2 and estimate (75) 

we obtain (77). • 

27. Lemma. Let u G H2(ft) and k{ G W^°°{n) (i = 1,2). Then 

(78) /lgfciëSída:id^ ,2УM . 
^ C ^ max ||k;||o,oo,dMl2,filMli,f-/. 

O i = l , 2 

If in addition 

(79) 
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then 

(80) 
J J LO "'- i=l 

дu дw 
1
 ӘXІ дxi 

У^ ki -— ^Г áxi dx2 

I rn 
^ Ch2

x — max||fci||0,oo,nNi,oo,nlkl|i,n,4-
y Q i-=i,2 

P r o o f . We have 

2 

IIЉkiдUXi 
' W > ' i=l 

By (73) and (61), 

дw 

ӘXІ 
dxido:2 ^ Cmaxllk i l lo^^kli^j^l i ,^. 

h 
\u\llШҺ ^ C — | | î / | | 2 > П . 

\ j£ 

This result and (74) imply (78). 
Assumption (79) gives 

Ni,^h ^ Ch\u\i,oo,n. 

From here and (74) we obtain (80). 

28. Lemma. Let u G H2(ft) and / € W^°°(n). Then 

D 

(81) 

where 

Г Г í .Q / .Q^" 
+ f ] wåx\åx2 ^Ch\\\Áu\\0Ú + \\J\\0^)\\wh^ 

*-~* dxi \ % dxi 
i=l 

P r o o f . Owing to the assumption w E T4, estimate (81) follows from (76). D 

29. Lemma. We have 

(82) 
Ш , 

\Ll (w) - Lh(w)\ < C/ .3d- | |9 | |o , r a | | t« | | i , í .h . 

P r o o f . We shall modify the proof of [2, Lemma 3.3.13]. We can write 

\L^(w)-ll^(w)\^J2\Ir\ 
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where, according to (20) and (21), 

rir 

/o 

By (19) we have 

Ir| ^ / tøn,r(£r, </>r(£r))| • kn,r(ír,0) -WnЛţr^ЛţrïïV1 + (<ŕr(£r))2|dfr. 
Jo 

. „ / A ч l 4 Я | COS2 ^ + / 2 2 

m a x | ^ r ) | = ^ J ' < - - - • 

As (Dr(0) = <Dr(/r) = 0 the theorem on the error of the Lagrange interpolation gives 
on [0,/r] 

According to the Rolle theorem, there exists a point £* G (0, Zr) such that <pr(£*) = 0-
Thus on [0, lr] we have 

IVr&OI d< 
2 2 

^ ~Г / r S* ~ГЛт'-
-Гt2 Lt2 

Using the last two estimates we easily derive the relations 

As 

o ^ \Л + Шr)}2 - 1 < WЛír)?l2 < C/4,., 

K,r(Сr,0) -~JП)r(Ҫr,Vr(€r))| < IVr^r)! • |(Vwn,r|Ti )| < CЛтJ(Vгün,r|T])|. 

K,r(£r,0) --J„,r(Čr,¥>r(ír))\Л + (Vr(ír))2| 
< K,r«r,0)--7n,r(fr, Mtr))\y/l + (<rV(£r))2 + K.rtfr, 0)1(^1 + (Vr(£r))2 - 1) 

we obtain 

\Ir\ < C/l^ / |9n fr(fr,^r(-;r))|{K ir(€r,0)| + |(VuJn, r |T )|}d£ r 
JO 

xi^Kv^^l^ji-h ry^,.(^>o)d^^) j . 

Since 

/'«n,r(er,V>r(ír))d€r< / ' <7n,r(£r, Vr(£r))\/l + (<rV(£r))2 d£r = / q2 ds, 
JO JO «/A,. 
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/ ' " < r ( £ r , 0 ) d £ r = / w2ds, / г ^ 2 Æ | ( V W r i , r | т ) | < C N i , т r , 
Jo Jx.h V m 

where Ar/l C T2h, Ar C T 2, we find out that 

f ; | L | < Cft2 £ lkllo,A,. (ikllcA,,. + l / f Ml.Tv) • 
r = l r = l ^ M Q / 

This result together with (62) gives (82). • 

Estimate (82) cannot be improved. Thus, if we want to obtain the rate of conver­

gence 0(h) we must assume that 

(83) Ci/i2 ^ - (Ci > 0). 
m 

6. T H E FIRST MAIN RESULT 

All preceding results yield the following theorem: 

30. Theorem. Let u € H2(n), f e W^°°(Ct), k{ € W^°°(Q) (i = 1,2). Let 

assumptions (8)3,4, (9), (83) and assumptions concerning the degrees of precision of 

the quadrature formulas (see Theorems 13, 17 and Tl) be satisfied. Then 

Q 
(84) \\u-uh\\hQh ^ —h 

y/Q 

where the constant C does not depend on u, g, m, h and the division ft. 

If in addition condition (79) is satisfied then 

(85) | |5-ii f c | | i fnh ^Ch 

where again the constant C does not depend on u, g, m, h and the division ft. 

The definition of the division ft is rather artificial. We usually prefer to use either 
a division .S f̂, which consists only of triangles, or a division &£, which consists only 
of quadrilaterals. When using 9>£ (or 0)^) the definition of the space Xh (see (12)) 
changes in a natural way. The formulation of Problem 4 remains formally without 
changes. 

31. Theorem. If we use divisions ^ (or divisions Q)^) for the definition of 
the spaces Xh then the assertions of Theorem 30 remain without changes. 
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P r o o f . In the case of Qf^ Theorem 31 is evident. In the case of @ff let us 
consider the associated division 2h as an auxiliary division. Let Vh and V£ be the 
spaces defined on 2tf£ and 2h by means of (13), respectively. Every function w € Vh 
uniquely determines a function WA £ V£. Both functions WA € V£ and w G Vh 
have the same values at the nodal points of 2ff (or, which is the same, at the nodal 
points of 2h). 

Using this notation we redefine the natural extension w of w by the relation 

w = w onSl/u w = WA on CJ^. 

Estimate (74) is replaced by 

fjTl 
Ni,wfc < ChJ — \wA\\,nh 

V Q 

and estimate (75) by 

IMIo,u/,. ^ Ch ( — + h2J— J \\wA\\i,nir 

Hence, w is replaced by WA on the right-hand sides in Lemmas 26, 27, 29 and can 
be replaced by WA on the right-hand side in Lemma 28. Thus, to prove Theorem 31 
means to prove that 

(86) IKIIi.fi,, <C|Hli,nk-

Let Kr (r = 1 , . . . , n) be the quadrilaterals lying along Y2h and let Tri (i = 1,2) 
be the triangles forming Kr. Let pri: R2 —•> R1 be the linear polynomial satisfying 

Pri | T r . =WA\TI.. 

Let 

Xi =#lr(£l,£2), X2 = X 2 r ( 6 , 6 ) 

be the transformation of type (33) which maps KQ one-to-one onto Kr and let 

(87) Xi = Zlri(fl,&), #2 = -C2ri(6,6) 

be a linear transformation which maps T0 one-to-one onto TT{. Then 

Pri(€l>&) = Pri(xlri(£l,&),Z2ri(Cl,&)) 
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is a linear polynomial in £1, £2. 

(88) Pw(f i ,6) = ^ i ( l " 6 ~ 6 ) + ^ 2 6 + -43&, 

and 

W*(£l,6-) = w(zlr(&.&),Z2r (&,&)) 

is a bilinear polynomial in £1, £2, 

(89) u;*(fi,&) = .Bi6(l - £2) + B2{1 - 6 ) (1 - £2) + £ 3 (1 " £1)6 + -9-A&, 

where Hi = w(P{), Pi,..., PA being the vertices of Kr. 

Using notation (31) we obtain by means of (87) (which is of the form [7, (9.1)] 

with x2 = 0(h) , y2 = O(h), aJ3 = 0(b), y3 = 0(b)) 

(90) мbv. * Š Г Яpri 
% 

+ ћ2 

According to (88) and (89), we have 

l|2 
ðPri 

Ә6 0,Гo 
= Í ( ^ 2 - ^ l ) 2 , 

0,To 

ðPr 

^Pri 
ÔÍ2 0,T0 , 

дb O.To 

- " - ( A з - Л x ) 2 , 

<Эu>* 

0,Ko 

= {(Д. - 5 i ) 2 + (.83 - 5 4 ) 2 }/3 - (B2 - Bг)(B3 - ß 4 ) / 3 
ðí i 

= {(B2 - ß i ) 2 + (ß 3 - B4)
2}/6+[(B2 - Б І ) - ( ß 3 - ß4)]2 /6 , 

дw* 
дb 0,Ko 

= {(B3 - B2f + (Bг - B4)
2}/6+[(B3 - B2) - (£?! - B4)f/6. 

Let P1F3 be the common side of Tr\ and Tr2. Then 

Ai = B2, A2 = Bi, A3 = £3 in the case of Tr\, 

M = B4, A2 = B3, A3 -= £1 in the case of Tr2. 

Hence 

o,к0 

ðPri 
Әí-i 

2 

^з 
0,To 

Әгv* 
2 

0,ЛГ0 

ӘPU 
2 

^ з 
0,Т 0 

дw* 

Combining these estimates with (90) and (42) we arrive at 

(91) IPH|I,T„ sSCHuc-
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Now we prove that 

(92) lb--.-llo.7V.- < C\\w\\otK, • 

We have 

(93) l|Pri||o.TH<C'>/Wi||p;i||o,7b. 

Using (88) and (89) we obtain 

Ibnllo.To = ^{A\ + A\ + A% + AXA2 + AXA3 + A2A3), 

(94) IKIIg.i.-o = fllPwll8.ro+ ^ f f ( ^ ) 

where A\ = B± in the case of Tr\ and A± = B2 in the case of Tr2 and 

g(t) = A\ + A\ + A\ + Ax A2 + A2A3 + (2AX + A2 + 2A3)t + 2t2 

in both cases. We have 

mmg(t) +6||p^||2>To > J A2 + ^A 2 + ^A2. 

This fact and (94) yield 

(95) lbHllu,To<3||^*||2,Ko. 

Finally, 

(96) K l k . K o ^ ^ = I H k i c f . . 

Estimate (92) now follows from (93), (95) and (96). 
We have 

n 
WA = w on Q,h - \^J Kr. 

r=\ 

Thus, using (91) and (92) we easily obtain (86). • 

392 



7. T H E CASE OF OPPOSITE BOUNDARY CONDITIONS 

At the end we shall analyze the boundary value problem of equation (1) with 

boundary conditions opposite to conditions (2) and (3): 

(97) u = 0 o n Г 2 , 
2 Q 

(98) ^2k~rы(U)=q on Г ь . - дxi 
г=l 

In this case we start again with divisions ^ . Problem 4 and all results up to relation 

(71) remain without changes, except for Lemma 2, where (3) is replaced by (98), and 

except for the definition of Sf^: we divide into two triangles each quadrilateral lying 

at T^i. 

The natural extension w: Qh U ft -> Rl of w is now defined by 

w = w on ffch, «; = 0 o n ujk> 

We shall use again assumption (83). However, in this case we must specify the 

meaning of the constant C\. 

32. Proposition. If we set C\ = 1 [m - 1 ] in the case R2 = 1 [m] then in the 

general case we have C\ = 1/R2. This means that (83) takes the form 

(99) -U 2 < i , 
R2 m 

P r o o f . Let us set 
Q 

eo=R-2 

Let m be arbitrary but fixed and let e ^ 0 be the smallest number satisfying 

( 1 0 0 ) / l - =

 m + , 
m + e 

where hm is the corresponding value of h in the case R2 = 1 [m]. Multiplying (100) 

by R2 we obtain 

±-h* = ±(R2hmf = -£-<£., 
R2 R2 m + e m 

which proves (99). D 
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The following lemma is important for our considerations. 

33. Lemma. The circle Vi lies in the polygonal layer Sh with vertices Pi, A\ 

(i = l , . . . , n ) . 

P r o o f . Let K C Sh be arbitrary and let PjPj+i C K. Let Pf be the mid-point 

of PjPj+\. Let us compute dist(Pj",ri). We have 

Ri 
fc*:=dist(Pi,Pi+i) = -^ft. 

H2 

Hence 

dMt(j>;,r,) = s, - JR\ - (v/2)* = R, -JR2,-\ (j£h)2 

4І?2 m + є J 8R2 m + є m' 

which was to be proved. 

Lemma 24 is substituted by the following lemma: 

34. Lemma. For w EVh we have 

П 

(101) 

+ 

\ah(u,w)-Lh(w)\ ^ \Lr(w) -Lr

h(w)\ 

^

.Q"" i-) /* /* 

^ ^ c ^ a . r " d a ; i d : r 2 + / / fwdxidx' 

P r o o f . Using the definitions of cih(u, w)) Lh(w) and Green's theorem we obtain 

2 ~ 

ah(u,w)-Lh(w) = // ^ki^^dxidx2-L%(w)-Lr

h(w) 

P 2 £i~ c r ( £$ / Pi~ \ \ 

= Jrv E*.^(nfc)«;d*- JJQi (£a-; (*^J + f) wdx^ ~l'W-

To the right-hand side let us add zero in the form 

(ft)wds + L r(u j) = 0 . 
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If we denote A = T - Tld and use Lemma 2, according to which equation (1) holds 

almost everywhere in fi, then we can write 

ah(u,w)-Lh(w) = V , / T^k —ni(A)wds 
A?T„ J™ t t dXi 

-SSh (£&{*£)+/)»«»--«-*-+^)-2£o-
Transforming the first term on the right-hand side by means of Green's theorem we 

obtain (101). D 

Now we estimate the terms appearing on the right-hand side of (101). 

35. Lemma. Let u G H2(fl) and % G Wl>°°(Si) (i = 1,2). Then 

2 

(102) SS^йш;**1** < ---ЛmaxpilloooñNknlklli.n,, 
y/Q г=1'2 

If in addition 

(103) 

then 

« Є rV1>co(íï) 

(104) SSj~kiitMdxidx> < Chmax ||Mo,oo,alfili,eo,ňlMli,Oi.. 

P r o o f . We have 

2 

//k£*Éжd* ld*я < Cmax ||Лi|lo,0o,ñl«li.т).l«'|i,тk. 

By the relation analogous to (73), by (61) and by Lemma 6 we obtain 

This result implies (102). 

Assumption (103) gives 

From here we obtain (104). 

MI,T„ < cA||«||3,n. 
s/Q 

|W|I,T,, íï o!*|«lii0o,ñ-

D 
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36. Lemma. Let f <E Wl>°°(il). Then 

1// 
\J J Th 

fw dx\dx2 <^ll/llo,oo,ňll«'lll.í.fc-

P r o o f . The assertion follows from ||/||O,T,. < C/i||/||0 OQ^. • 

37. Lemma. Let assumption (83) be satisfied. Then 

\Lr(w)-Lr
h(w)\^Ch\\q\\0,rl\H\i,nh. 

Owing to Lemma 33 the proof is a slight modification of the proof of Lemma 29. 
Thus we omit it. 

8. T H E SECOND MAIN RESULT 

In the case of (97) all preceding results yield the following theorem: 

38. Theorem. Let the assumptions of Theorem 30 be satisfied except for the 
additional assumption (79) which is substituted by (103). Then estimates (84) and 
(85) are again valid. 

The definition of the division @h is again rather artificial. We usually prefer to 
use either a division S>^', which consists only of triangles, or a division @f£, which 

consists only of quadrilaterals. When using Q)f£ (or @j[) the definition of the space 

Xh (see (12)) changes in a natural way. The formulation of Problem 4 remains 

formally without changes. 

39. Theorem. If we use divisions @£ (0r divisions 3>ff) for the definition of 

the spaces Xh then the assertions of Theorem 38 remain without changes. 

P r o o f . The proof is a modification of the proof of Theorem 31. In the case of 

$)T Theorem 39 is evident. In the case of 3>ff let us consider the associated division 

9>h as an auxiliary division. Let Vh and V^ be the spaces defined on @ff and ^ , 

respectively, by means of (13) where Y\h is substituted by r2h- Every function 

w € Vh uniquely determines a function WA £ V*. Both functions WA G V* and 

w G Vh have the same values at the nodal points of Qtff (or, which is the same, at 

the nodal points of ^ ) . 
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It is evident that except for \Lr(w) - L\(w)\ all results remain true for the new 

meaning of w. For the remaining term we have 

LT(w) = LT
h(wA). 

Thus 

\LT(w) - L\(w)\ ^ \LT(w) - LT(wA)\ + \LT(wA) - LT(wA)\. 

According to Lemma 37 and relation (86), 

\LT(wA) - LT(wA)\ < Clilklkr.lMkn,. 

Further, 

\Lr(w) - Lr(wA)\ = \Lr(w - wA)\ ^ C\\q\\o,ri\\w - WAIIOJV 

As w — wA = 0 outside the layer Sh (for its definition see Lemma 33) we obtain in 
the same way as in the proof of [5, (1.1.10)] (where we set /3 = h2) 

C_ 
/ l2 ' IIw - uM.lo.r-. < TšWw ~ ™AHo,T,. + Ch2\w - wA\\Th. 

As w — wA = 0 o n Tih we have, according to the proof of [7, Lemma 28.3], 

^\\w-wA\\lTh^Ch2\w-wA\lTh. 

Finally, by (86), 

Ch2\w - wA\2
>Th < Cli2(||Hlt,. + IKI|? ) TJ < Ch2\\w\\lQh. 

This completes the proof of Theorem 39. • 

R e m a r k . According to [Kacur, personal communication], modifying the con­
siderations of [5, Chapter 4] we can prove the following regularity results: Let j ^ 1. 
If ki e C ^ - 1 ' 1 ^ ) , / € Wi~\n), q e C^l^(Tr) (r = 1 or 2) then u G W+l(^). 

This means that the assumption guaranteeing (85) can be satisfied in both cases 
(2) and (97). 
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