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FINITE ELEMENT VARIATIONAL CRIMES IN THE CASE
OF SEMIREGULAR ELEMENTS
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Summary. The finite element method for a strongly elliptic mixed boundary value prob-
lem is analyzed in the domain 2 whose boundary 992 is formed by two circles I'1, I's with the
same center Sp and radii R;, Ry = R; + o, where p < Rj. On one circle the homogeneous
Dirichlet boundary condition and on the other one the nonhomogeneous Neumann bound-
ary condition are prescribed. Both possibilities for u = 0 are considered. The standard
finite elements satisfying the minimum angle condition are in this case inconvenient; thus
triangles obeying only the maximum angle condition and narrow quadrilaterals are used.
The restrictions of test functions on triangles are linear functions while on quadrilaterals
they are four-node isoparametric functions. Both the effect of numerical integration and
that of approximation of the boundary are analyzed. The rate of convergence O(h) in the
norm of the Sobolev space H! is proved under the following conditions: 1. the data are
sufficiently smooth; 2. the lengths bps and h )y of the smallest and largest sides, respectively,
of every element M (M = T, K) satisfy the relations C; h%,, <by <09 h?w where T stands
for a triangle and K for a quadrilateral.

Keywords: finite element method, elliptic problems, semiregular elements, maximum
angle condition, variational crimes

AMS classification: 65N30
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1. FORMULATION OF THE PROBLEM

We shall consider the boundary value problem

2 9 ou
) -3 5 (kg ) = 1@, wen,
i=1 ' '
(2) u=0 onl},
2 ou
(3) Z kigx'jni(ﬂ) =gq on Iy,

where 2 is a two-dimensional bounded domain with the boundary 9Q =T, U3, I'y
and I'; being the circles with radii R; and Ry = R; + g, respectively. We assume
that the circles I'1, I'; have the same center Sy and that

(4) R > p.

The symbols n;(G) (i = 1,2) denote the components of the unit outward normal to
8G.

A weak solution of problem (1)—(3) is a solution of the following variational prob-
lem (which can be obtained from (1)—(3) by means of Green’s theorem in a standard
way).

1. Problem. Let 2 be a bounded domain with a Lipschitz continuous boundary
0N =T UT,. Let

(5) V={ve H(Q):v=0 onT,},

(6) a(w,v) Z/ aw a dzs,

(7) L) = L®(v) + L' (v) = //n vf dz;dz, +/Fz vgds,
where

(8) ki€ Whe(Q), feWhe(Q), ¢=@Q|,, QeC* ),
(9) ki(z) 2 po > 0,

U being a neighbourhood of T's (i.e., a domain containing I';). Find u € V such that
(10) a(u,v) = L(v) YveV.
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Assumptions (8)-(9) guarantee that the symmetric bilinear form (6) is bounded
and strongly coercive and that the linear form (7) is continuous. (Of course, this
also holds when f € Ly(Q) and q € Ly(I';). We assume (8) because of numerical
integration.)

2. Lemma. Let a solutionu € V of Problem 1 satisfy u € H?(Q). Then relation
(1) holds almost everywhere in Q and relation (3) holds almost everywhere on I';.

The proof is omitted. Also the following lemma is well-known:

3. Lemma. If(9) holds then Problem 1 has a unique solution.

We shall solve Problem 1 approximately by the finite element method. To this end
let us approximate I'; by a regular polygon Iy, with vertices Q1,...,Q@» such that
every segment @Q;Q;+1 has no common point with I';. Let the vertices P;,..., P,
of the polygon I'1, approximating I'; be obtained in the following way: P; is the
intersection of the segment SpQ; with I';. The symbol Q) will denote the polygonal
domain with the boundary 992.

We divide each segment P;Q; by the points A%, A,..., Al _; into m parts of the
same length in such a way that we have formally A} = P;, A{, = Q;. The points
Aj. are the vertices of quadrilaterals into which the domain Q is divided. In order
to simplify our considerations we divide every quadrilateral A%, _, Af,ﬂlQ,'Q,-H into
two triangles. This simplification will be removed in Theorem 31.

We admit to use narrow quadrilaterals and narrow triangles. This means that we
shall have

0
11 — h
(11) =<

in our considerations, where h is the length of the greatest segment in the division
of Q. The corresponding division consisting of closed quadrilaterals K and closed
triangles T will be denoted by 9.

We shall assume that k; € W12(Q), f € W1°(f), where I is such that 2, C £
for sufficiently small h. When we consider the functions k; and f in Q we shall use
symbols 75,- and f In the opposite case the original symbols k; and f will be used.

The discrete problem is now formulated in an almost standard way. (The expres-
sion “almost” concerns the approximation of the term LT (v) which will need some
space.) We define spaces

(12) Xn={veCH): v| x = a four-node isoparametric function VK € 9,

v|T = a linear polynomial VT € 2}
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and

(13) Vh:{UEXh:'U:OOIl Flh}.
We set
5 ov dw
(14) n(v,w) Z/Q,. Bz: s dridzy Yo,w € HY(Q4)
and
(15) LY(v) = / / vfdridzy Vv € X
Qp

To define Ijl,: (v) is more complicated. We start with a suitable expression of LT (7),
where T is the natural extension of v € Vj (in more detail see Notation 23). In
connection with these considerations we shall use the symbols z,y instead of z1, z5.
According to the definition and properties of the line integral we can write

4
L' (@) :/ quds = / quds
( T2 ,;1 r

where ng) is a quarter of the circle I'; with the endpoints By, By41, where B; =
[-V2R;/2,V2R,/2], B, = [V2R2/2,V2Ry/2), Bs = [V2Ry/2,—V2Ry/2), By =
[-V2R2/2,-V2R,/2] and Bs = B,. Let the points Q,...,Q, be chosen in such a
way that n = 4N and B; = Q;, B2 = Qn+1, Bs = Qan+1, Ba = Q3n+1. Let us
denote

= —V2R;3/2, an+1:= V2R3/2, y1 := —V2R2/2, yn+1 := V2Ry/2,
zr=x1+ (= 1)(@ny1 —21)/N, yr =1+ (r = )(yn+1 —v1)/N (r=1,...,N + 1),

g(t) :=4/R% — 2.

Then we can write

L@ = [, amds = }Nj /. " g, o) o) VIF @I da,
L'® (@) := /( quds = Z/ 2(9(v),v)(9(v),v))V1 + [¢' W) dy,
LrO () = /m qvds = Z/Ml a(z, —g(z))o(z, —g(z))/1 + [¢' ()] dz,
L' @) := /rg" quds = ;/yﬂ a(=9(¥),9)3(~9(), »)V1 + g W) dy.
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Let &, 1, be the local coordinate system oriented in the same way as the system z,
y, with the origin at the point @, and with such an axis £, that its nonnegative part
contains the segment Q,Q,4+;. Let a, be the angle made by the axis &, with the axis
z. Then in the case of I‘gl)

(16) z = z(&, 1) = Tr + & cOsa, — 7y sin .,
y =y(&,nr) = g(zr) + & sina, + 0y cosar
is the orthogonal transformation between the systems z,y and &, ..
Let us denote

(17) Gn,r(&mr) = q(2(&r,17), y(&ry 7)),
(18) Vn,r (&, 1r) := v(2(&ry10r), Y (6 s m0r))
and let

Nr = ‘Pr(gr)’ & € [O’IT]

be the analytic expression of the arc

y=9(z), z€[zTr]

in the system &,,7,. Then, according to the theorem on invariance of the line integral
with respect to an orthogonal transformation,

/%rl q(z, 9(z))v(z, 9(z)) V1 + [¢' (2)]* dz
i,
= /0 Qn,r(gra ‘pr(gr))ﬁn,r(fr, - (&) vV1+ [‘plr(‘gr)]2 dé,

where [, = dist(Qr, Qr+1) and U, , is the natural extension of the function v, ,. Let
us note that in the case of the circle I'ys we have

(19) ¢r(&r) = —Rs cos % + \/(Rz cos %)2 +1,& — &2

where o, is the angle made by the segments SoQ, and SoQ,+1, So being the center
of the circle I's.
The preceding relations give

(20) LTW(g) = /F o quds
N 1,
-y /O Qe (€rs 02 (66T (€ 02 (6:) VT [R1 GV dér
r=1
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and we can define an approximation L, " (v) of L'®)(7) b

~ N L
(21) Li(l)(v) = Z/{; @n,r(&ry r(€r))0n,r (&, 0) dEr.
r=1

The expressions of LT® (v), L'®)(3), LT (%) and their approximations LF(Z)( )

I

I‘(3)( ), L F(4 (v) are similar to (20) and (21), respectively. As
4
(22) Lfm) =) L'W()
k=1
we have
3 N =1k
(23) INOED I AC)
k=1

The symbols ap (v, w), L} (v) and Lf (v), where v,w € X4, will denote the approxi-
mations of @ (v, w), LY (v) and Lt 1 (v), respectively, when using numerical integration.
For all v,w € X}, we have

2
(24) an(v,w) = Y ZZszo,Jk(zT,J 311
Teg), =1 j=1
2 Nk Sw
+ > Zzwm.]k(xm) (EK,J) xi(wx,j)lJK(ﬁu,fsz

KE@I =1 j=1

ow

3 mesg T'
T 9%i|p

where zr; and zk, ; are the integration points on a triangle T and quadrilateral
K, respectively, and wr, ; and wg, ; are the corresponding coefficients of the given
integration formulas (prescribed on the reference triangle Ty and reference square
Ky, respectively). The symbol Jx (£1,€2) denotes the Jacobian of transformation
(33) which maps the reference square K one-to-one onto K. The points [€;;, &2;]
are integration points prescribed on Ko and

Tx,; = [ (&1, 6;), 25 (&1, &5))-

As to zr,; (and wr,,;) we mention the simplest possibilities: Nr = 1, 2wr, ; = 1,
zr,; = PJ (the center of gravity of T); Ny = 3, 2wp,; = 3, zr,; = P (the
vertices of T') — both formulas are of the first degree of precision (d =1). If Ny = 3,
2wr,,; = § and z7,; = Q] (the midpoints of the sides) then d = 2.
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Similarly, for all v,w € X} we have

Nt
LY(v) = Z 22WT0,]'U($T,J‘) (z7,;) mesy T

TE@}. j=l
(25) N i
+ DD wkoi¥(@K,;) @K, Tk (Eay €25l
769/. j:l
Finally,
(26) Ly ZZ}MMNW%@M%$WW
r=1 j=1

where s, ; are integration points on the segment [0,[,] and S, ; the corresponding
coefficients of the given integration formula. (For d = 1 we have either N, = 1,
Bra =1, 81 = 1./2, orN —2 Brj = 2,571—-0 Sr2 = lp; for d = 2 we have
N.=3,81=B3=4Br2=5%51=0,82=10/2s,3=1)

Now we can define the approximate problem:

4. Problem. Find u, € V}, such that

(27) ap(un,v) = Lp(v) Vv € Vh.

2. AN ABSTRACT ERROR ESTIMATE

5. Definition. Let u € H?(Q). We define Qu € X} by

Qhulfe 2, = @ xu = the four-node isoparametric interpolant of u,

Q"”ITe g, = ITu = the linear interpolant of u.

6. Lemma. Let Iy be the circle with a center Sy and radius Ry = R; — p. Let
Q be a bounded domain such that 8 = I'oUT'y. There exists a linear and bounded
extension operator E: H2(Q2) — H2(Q) such that the constant C appearing in the
inequality
IE@)l,5 < Clibllaa Wo € H(®)

does not depend on R; /.

Lemma 6 follows from the considerations introduced in [6, pp. 20-22].
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7. Theorem. Letu € H?(Q), u:= E(u) and let the condition
(28) vl . < Can(v,v) Vv € Vi, Vh < ho

be satisfied, where hg is sufficiently small. Then Problem 4 has a unique solution
up, € Vi, and we have

'a‘h (Qhuv ’LU) - ah(Qhuy 'U))I

(20)  [[3— unllugn < c(nczhu ~@lq, + sup

wel, lwll,q.
w#0
L9(w) - g EF(w) - LT (@ w) —
R L (TR (T AT S AT
weV,, llwll1,9. weV |l weV, llwll1,0.
w#0 w#0 w#0

Proof. Inequality (28) and the Lax-Milgram lemma guarantee that Problem 4
has a unique solution u, € V.
Now we prove estimate (29). Let us denote

(30) U= QruU — Up.
Then by (28) and (27) we have

1Qnu — unll} g, < Can(Qnu — un,v) = C{an(Qnu,v) — Ln(v)}
= C{an(Qnu,v) — G(Qnu,v) — Ln(v) + Li(v) — La(v)
+’dh(ﬁ, ’U) + ‘dh(Qhu -, 'U)}

This estimate, the triangular inequality, the boundedness of a,(Qru — u,v) and (30)
imply (29). a

Our first aim is to prove that condition (28) is satisfied. This will be done in
Section 4 where we also estimate the second, third and fourth terms appearing on
the right-hand side of (29). These terms express the error of numerical integration.

The estimate of the first term, which expresses the interpolation error, is intro-
duced in Section 3. This estimate follows from the known interpolation theorems.
The fifth term, which expresses the error due to the approximation of the boundary,
will be estimated in the Section 5.
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3. THE INTERPOLATION ERROR
Now we shall estimate the first term appearing on the right-hand side of (29).
8. Theorem. We have
lQru — dll1,0, < Chllullio

where the constant C is independent of h, u and the division 9.
The proof follows from the definition of Qru, Lemma 6 and the following two

lemmas.

9. Lemma. Let K be a narrow quadrilateral with parallel long sides. Let
u € H%(K). Then we have

Craek
u— u < Cs+ —2— ) hi|u
lu — Qx ||0,K\( 5+ fosin B Klul2, K
Cie hk
IU—QKUII,I\’ < (Cu + — ! ) - Iu|2,K
sinag /) sin Bk

where Q ku is the four-node isoparametric interpolant of u on I, hy is the length of
the greatest side of K, ay and Bk (ax < Bk) are the angles made by the greatest
side with the two short sides and e is the length of the short side at ak. In the
case e < hk /12 the constants Cs, C11, C12, Ci6 satisfy

Cs = 55.019093, C;; = 12.801823, C12 = 21.658241, Ci6 = C12C)5 = 19.47235264.

For the proof see [8].

10. Lemma. Let u € H?(T) and let ITu be the linear polynomial satisfying
(Itu)(PF) = w(PT) (i = 1,2,3) where PT, P], PI" are the vertices of T. Then

c
lu = Irulli,r € =— hrllullz,r
sin yr

where yr is the maximum angle of T and the constant C does not depend on T
and u.

Lemma 10 is a special case of the interpolation theorem for linear interpolations
introduced in [4]. (In [4] the spaces W2P(T) (p > 1) are considered instead of the
spaces H2(T). The result of [4] generalizes in the case of linear interpolations the
results introduced in both [1] and [3].)
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4. THE EFFECT OF NUMERICAL INTEGRATION

First we shall analyze the numerical integration on quadrilaterals. Let K be a
quadrilateral whose greatest side lies on the axis z; and let it have the vertices

Py (h,0), P2(0,0), Ps(dcosf,ésinpB), Py(h —ecosa,esina)

where € = dist(P;, Py), § = dist(P2, P3) and a and 3 are the angles at P, and P,
respectively. As each quadrilateral belonging to 2, has parallel long sides we have

(31) b::—gzssinazésinﬂ.
m

Let Ko be the reference square lying in the coordinate system ¢;,&; and having the
vertices Py (1,0), P;(0,0), P;(0,1), Pf(1,1). If we denote

e3=0cosf3, e4=¢€ccosa, c"  =¢e3+¢e4
then the one-to-one mapping of Ko onto K has the form
(32) r1 = hé +e3& —761&, T2 = bs.

If the side P; P, makes an angle ¢ with the axis z; and the vertex P, has coordi-
nates Z19, 20 then (32) is substituted by the mapping

x = X (€1, &) = 210 + (hé1 + €362 — €°€163) cos p — bEa sin g,

(33) K . .
To = Ty (€1,€2) = Too + (hé1 +e3é2 — €*&162) sinp + b2 cos .

Both transformations (32) and (33) have the same Jacobian
(34) Jk = (h—e*&)b.

It should be noted that for n > 1 we have

1 0 o .

N — =) - =— (i=3,4,0<A<o(1-1 .
e s (On(Ry+ A+ 2) —2n(Ry + A)) = =2 (i =3, o1 - 1/m))
Further onR,

h = .
n

The last two relations imply in this case
(35) E,‘i:Uib, O’iSCh (i=3,4).
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Let us denote
1):=2, (2):=1, ki=(-1)".

Then we can write (omitting the subscript K at J)

6& _ 1 a.’l,‘(j)

i .0 A ¢ i e )
7z, “”Jag(i) (1,5 =1,2)

and the theorem on transformation of an integral yields

2.~ 9v dw * 0
(36) (Zk axl) EK0< Z %} Xirs aZ, a‘é’s)

‘lTS_‘

where

(37)  Ek(F):= // F(z1,22) dz1das - ZWKUJF(-TK,J)IJK(&Jvﬁzg)L

i=1
F*(&1,&) := F(z1(&1, &), 22(&1, &2)),
Nk
(38) Bro(F) = [[ F(61.6)di dea - oo 65,6

10z 3%)

39 irs = KirKis—
%9 * J 9y 06(o)

11. Lemma. We have

ok ~ ok* ~
(40) 8{1 < Chlkil1,00,k, 8{1 < Cblkil1,00,K»
1 0,00,K() 2 0,00,KQ

ov* ov*
(41) —_— < ' —_— (z =1,2),

aé.i 0 oo Ko 661' O,Ko

ov* b

42 v , —_— < C'\/j v .
(42) 361 . KO \/ | 1,k 9% o 1, hl 1,k

The proof of (40) and (42) follows immediately from transformation (33) and
relations (34), (35). As to estimate (41), it is well-known (see, e.g., the proof of |7,
Lemma 11.5]).

12. Lemma. For all bilinear polynomials v*, w* and ¥ € W4*°(K,) we have

ov* ow*
“3) IE"" (’”55 3%; ) <C

ov*
0¢;

ow*
35 J

lel oo Ko
0,Ko

0,Ko
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provided
(44) Ex,(p) =0 Vpe P,
where &, denotes the set of polynomials of degree not greater than k.

The proof is an immediate consequence of the Bramble-Hilbert lemma and relation
(41).

13. Theorem. Let (44) hold. Then we have
Ov Ow
Ek (Zk 5.3 )
Proof. We start with the special case (32). According to (34), (35), (39) and

(40),

- 6332)

ki—

( 0&2

b 1% 1%
< Cﬁlklh,w,f(o + ﬁ”kl ll0,00, 0

(45)

< Ch?—l?)é kil 00,5 V|1, K |Wh & YV, w € Xp.

b2

=
oKy bh(1 —e*€2/h) |} oo ko

se (==em)

< Cbl[F1l1,00,
(47) X112 = X121 = X122 =0,

-, 1 (0x1)? _ (&) |za(es/er = &)?
& 7<352) loo,Ko— *

bh |2 1—e*&/h
< Cbh|lka 1,00,
fr 19T 0m
2 J 8&y 0€, 1,00,Kq

- (h—e¢* —¢ k
k*( €*&2)(e3 &) < Chllk2||1,00, K

(46) |]E;X111|1,00,K0 =

0,00,Ko

(48) II.C;X211 |1,<>o,1<0 =

1,00,Ko

(49) %3 X212]1,00, K0 =

2 (h—e*&2)b 1,00,Ko
~ 1 61‘1 8z1 =
50 ks 0 Ko = < Ch|lk2||1,00,K s
(50) [Esxaath ok = [ 5 5 56 - el oo,
- - ox
(51) |k5 x2221,00, K0 = k;— —
J \ 8¢
1,00,K0
h |- e* h
=—lksl1-— < C—|lka]l1,00,
i (1-5e)| <Ol

Combining (46)—(51) with (36) and (43) we obtain (45) by means of (42).
As the Jacobian J of both transformations (32) and (33) is the same the proof in
the general case (33) is very similar; thus we omit it. O

378




14. Remark. In the cases when relation (35) is not satisfied (however, the long
sides are parallel) the assertion of Theorem 13 can be proved provided

Ek,(p) =0 Vpe P4.

15. Remark. The case of a quadrilateral K with parallel long sides is a special
case of quadrilaterals K satisfying the condition

(52) le sina — dsin | < Cbh.

It can be proved that the results of Theorem 13 and Remark 14 can be extended to
the case (52).

The effect of numerical integration in the case of narrow triangles must be analyzed
more carefully than in the case of regular triangles. Let T be an arbitrary triangle
lying in the plane z;, z2 and let T be the triangle with vertices (0,0), (1,0), (0,1)
lying in the plane &, &;. Let

(53) r1 = 21(61,&2), T2 = 22(61,62)

be the linear transformation which maps T one-to-one onto 7' (for its form see, for
example, [7, Theorem 9.1]) and let & = & (z1,%2), &2 = €2(x1,x2) be its inverse.

16. Lemma. Let v € C(T) and let

v*(&1,82) = v(x1(&1,&2), 22(&1, &2)).

Then we have

2 gu* o0&,
6§T 8zi

(54) <CUITV2polyr

0,To

r=1
where J is the Jacobian of (53).

Proof. The symbol d;; will denote the Kronecker delta. We have (9¢,./9z; are

constants)
2 ov* o, ’ 1 2 ov 01 Ov Oz &, ?
256 awi |~V //T <§ (a_zl 3¢, ' 0z, a&) au-) drudes
=|J|?! //T (—88%511' + %521') 2dﬂ?ldl‘z < Cl|I7lf s
which gives (54). O
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The error functionals E7 and Eg, on a triangle T and the reference triangle To,
respectively, are defined in a similar way as Ex and Eg, (see (37) and (38)).

17. Theorem. Let
(55) Er, (p)=0 Vpe Z.

Then we have

(56) < Chmax [kil1,00, IVl Tlwli T Yo, w € Xp.

Proof. We have

(57) Ea~(kifﬁifﬁﬂ)’:=|Jl

- (O [ow\"
0zx; 0x; Er, (ki (6:5,—) (3$i> )
« ov* 3{, ow* ags
Ez, (k ( 7€, 81;1) ( ))

where the notation F is used for fixed v*, w* and fixed T (i.e., fixed linear functions
& (z1,22)). Using the assumption ki€ W1°°(Q) and (7, Lemma 11.5] we obtain

=|J|- = |J|F (k)

- ov* 9¢; ow* 9
WWIWM%Z%% Z%%
4 i Ooo'FU s ! 0,00,To
* a’U 6{, ow* 6£s
T i o,T, i 0,To

Since v,w € X} we have v*|T0,w*|TO € £, and assumption (55) yields
F(k}) =0 Vk!e P.

Hence the Bramble-Hilbert lemma together with Lemma 16 and relation
k¥ 11,0010 < Chlkil1,00,T

imply
|F(k})| < C|J|™ hlki|1,00,70]1, T W1, T-

This result and (57) give (56). O
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Till now the analysis of the effect of numerical integration has been done only for
triangles satisfying the minimum angle condition. Theorem 17 holds for arbitrary
triangles with straight sides (not only for triangles satisfying the maximum angle
condition).

For v, w € V}, we have

an(v,w) = an (v, w) — {an(v,w) = an(v, w)},

2
o -ato= 3 e (SRE2) S b (SRS 2)

Keo, 3

Using these relations we obtain from Theorems 13 and 17 (details are similar as
in the proof of [7, Theorem 11.8]; we use also an inequality of the type [7, (29.1)]
which together with (9) implies |[v]|2 o, < Can(v,v)):

18. Corollary. Condition (28) is satisfied.
19. Theorem. Let
Ek,(p)=0 Vpe P,  Er,(p)=0 Vpe .

Then we have for u € H?(Q)

lan (Qru, w) — Gn(Qru, w)| -
58 sup < Chmax ||Fll, _ =|lu
0 we;év,, lwll1,q, = i=1,2 I ‘"1,00,9" llz.2
w#0

where the constant C' does not depend on u, Ei, and h.

Proof. Relation (58) follows from Theorems 13, 17 and Lemmas 9, 10. Details
are the same as in the proof of {7, Theorem 11.12]. a

20. Theorem. Let

Ex,(p) =0 Vpe P, (or Vpe 2),
En,(p) =0 Vpe P

where 2, is the set of all bilinear polynomials. Then we have

e —_ LS _
(59) sup Ly (w) x (W)l < Ch||fll; oo gV mes2 Q,

wevi  llwllia,
w#0

381



where the constant C does not depend on f and h.

Proof. The following chain of inequalities is based on standard arguments and

the preceding results (for simplicity we write f instead of f):

|Ex(wf)| = |Ex, (f*w" Jk)| < C|f*w* Jko,00,K0
S CNF Ikl 00, 0 (W l0,00,k0 < ClF* Jic|1,00, k0 lw* llo, k6o
C(1f* 11,00, k0| JKc 0,00, k0 + | 10,00, K0 |5 1,00, K0 ) 1w [l0, Ko
C(hi|f|1,00,khicbi + | flo,co, kb3 hi) (brchic) ™ 2||wllo, 1
< Chicv/mesz K| f|1,00,x lwllo,x -

<
<

Similarly,
|Er(wf)| = |Jr| - |Ex, (f*w*)| < ClJr| - |f*w*|o,00,T0
< ClJr| - |lw* f*[l1,00,7 < C mes2 T|w* f*|1,00,10
< Cmesp T(|w*|1,00,70|f* |0,00,70 + [W*|0,00,70 | f*]1,00,70)
< Cmesy T(|w*|1,1| flo,co, T + [0* o, 7 hT| f11,00,T)

< Chry/mes; T|| fll1,c0,7llwll1,7-

Summing and using the Cauchy inequality we obtain (59) because

IL (w) — LR (w)] < Y |Exk(wf)l + D |Er(wf)].

O

In order to estimate the effect of numerical integration along I'; we introduce the
following error functionals:

" N,
Bo(F) = [ P&t = 1B F(sns),

j=1

1 N,
Eo(F™) ;=/0 F*(t)dt — > B, ;F*(t;)

j=1
where
F*(t):= F(l,t), telI=[0,1].
Hence
(60) E.(F) = l.Eo(F™).

When considering the line integrals we need also the trace inequalities which are
introduced in the following lemma.
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21. Lemma. We have

c
(61) l[vllo,00 < ﬁllvlll o YveHY(Q),
c
(62) l[vllo,60, < \7—Q-Il e, Vo€ HY ()

where the constant C does not depend on v, h and p.

The proofs of (61) and (62) are similar to [5, pp. 15-16]).

22. Theorem. Let
Eo(p) =0 Vp € 92.

Then we have

r (o]
(63) sup |L (w) = Ly, (w)| < —hiM;(q)\/mes; Ty
wE;é‘g. ”wlll,ﬂh \/E

where the constant C does not depend on q, ¢ and h and where

2 2 2
(64)  M;(q) = 5max (2,%) max ( a’Q| | 8%Q | |9%°Q

0z% |’ |0zdy |’ | Oy?
Proof. We denote

aQ
£

?

L,
lwnel2,, = / (o n (€0, O dér
w} (t) == wn,r(I-1,0), teI=[0,1].

Then we have
lws llo.r = 1712 ||lwa rllo,, -

Further, we set
(65) Gn,r(&r) = an,r (& 0(6r))s G r(t) := Gn,r (Irt).
Then, according to (60), we have
(66) E,(@n,rwn,r) = l-Eo(Gn »wr, )
The following chain of inequalities is again evident:

IEO(q:Lr n )I Cldur nrlOOOI C“an||2001|wn7‘|0001

Clqn 'r|2 oo Illwn r”o Ix Cl2|q‘n 7‘|2 00,1, 1/ ”wﬂ,‘l‘”O,lr'
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This result together with (66) implies

N

(67) Z IE (qn rWn r)l Ch2 rila.x IQn r|2 00,1, Z l7l~/2“wn,r“0,l,.-
r=1

The Cauchy inequality yields

(68) Z ll/zllwn rllot. \J Zl \J Z llwn, T”O L, mes; I 2h ”w”() rd-

Combining (67) and (68) together with the trace inequality (62) we obtain

(69) Z |E qn rWn r)l 7——h2 _r?a‘x 'Qn r|2 00,1, ”wnl Q-

As gn,(&-,7y) is defined by (17) and (16), relations (65); and (8)3 imply

Gn,r(&) = q(zr + & cos ar — or (&) sina,, g(z,) + & sin a, + (&) cos ;)

= Q(z’y)|(z,y)61‘§”(Q.-,Q,-+1)’

where I‘él)(QT,QTH) denotes the part of I‘gl) with the end-points Q,, @,+1. From
the rule of differentiation of a composite function and from (19) we obtain that

(70)  Jnax |Gn,r|2,00,, < M2(q)
where M, (q) is given by (64). Relations (69), (70) imply (63). O

5. THE ERROR OF THE APPROXIMATION OF THE BOUNDARY

The estimate of the last term in (29) will be divided into several lemmas.

23. Notation. We denote
(71) Th:Qh—ﬁ, wh=Q—ﬁh.

Further, let w € X},. The symbol W is called the natural extension of w and denotes
the function @w: 0, UQ — R! such that W = w on Q; and

H)-'Tm _T = Plpia_TF

where p € 2, satisfies p| = w|. (T'® C Q is the curved triangle which is approxi-
mated by T'.)
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24. Lemma. Let u € H?(Q2). Then we have for w € Vj,

(72) |an(@,w) — Ly(w)| < |LF (@) - L (w)| + // Zaz ( g;)wdxldxg

//w s 'éga_dzldmz (Z oz: (~ ) f)wdwldarz .

Proof. Using the definitions of @, (%@, w), Lx(w) and Green’s theorem we obtain

an(@w) - Luw) = [ Zka“ 2 dmides - I (w) - Ef(w)

D =1

/rz,. ) ni(Q) wds—//m (Z az,( §Z>+f)wdx1dx2—Lh( ).

=1

To the right-hand side let us add zero in the form

/ O (VTds + LY (@) = 0.
r Oz;

21-

If we denote A = T'4 — T and use Lemma 2 then we can write

@n(@,w) — Ly (w) = Z/ Zk a“n,(A

ACwy,

I, (Z o= (F a)”)”d“d“””(w) I w).

Transforming the first term on the right-hand side by means of Green’s theorem we
obtain (72). ]

25. Lemma. Let (2) hold. We have
(73) I[vllowi < Ch(llvllo,r, + hlvliw,) Yo € HY(Q),

_ m
(74) [@]1,0, < Ch\/;|w|1,nr.,

. . 1 m
(75)  [@low, < Ch(lwlors, + ki) < Ch (% + 12 ol an,
(76) lwlo,m < Chlwlor, + hlwlin) = CR2lwln
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where w € V,, and w is defined in Notation 23.

Proof. A) Relation (73) follows from the proof of [7, Lemma 28.3].
B) Since A = T'Y — T we have

@}, = Y mes; A[(Vw| )P <C D h}|(Vw|,)
ACw), ACwy,

Y
=cZ > h3-—] (Vw| ) < C= h2 > wlir< c h?w|? g,
Q ACw, ACU,,,

because
4
2 pr)(Vl)? < Cluf 7.

Hence relation (74) follows.

C) The first inequality in (75) follows from the proof of {7, Lemma 28.3] and the
second from (62) and (74).

D) The inequality in (76) follows from the proof of [7, Lemma 28.3], the equality
from the assumption w € V. O

26. Lemma. Letu € H?(2) and f € W1*°(Q). Then

ou m
_//w, ; a.’L‘l ( (9:1,‘ )wdxldxz Ch2 (—\/:-l-hz Q) ”J “0009”111”1 Q-

Proof. Lemma 2 and the inclusion wy C 2 yield

3
'// ;L)wdxldzz ‘// Wfdridzs| <
Wh =1

Using the assumption f € W1 (), the fact that mes, w, < Ch? and estimate (75)
we obtain (77). O

(77)

1 llo.wn @0

27. Lemma. Let u € H2(Q) and k; € Wh°(Q) (i = 1,2). Then

(78) ‘// Z Bu Bw cllld:vg
wh ;=1

If in addition

\/_
Ch?*>— max [|killo,co allullz @llwlls,au-

(79) uw e H3(Q)NnWwh>(Q)
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then

(80)

2
/ Zklagu—g—uidxldxg
Wh =1

Chz,/ 5 max ||k “0009'“'1 w,2llwllie,-

Proof. We have

// Zk Ou 8w dxldxz
wn j—1

By (73) and (61),

C max [|killo,oo,0lul 1w [@l1,0.-

h
[ul1,w, < C—=|lull2,0-

Ve
This result and (74) imply (78).
Assumption (79) gives
lull,wh < Ch'“"l»ooyﬂ'

From here and (74) we obtain (80). O

28. Lemma. Letu € H%(Q) and fe Wl’“(ﬁ). Then

(81) |// <§:6:¢1( a@) f)wdmldxz

where

< CR (| ATllo g + 1 £llo &) 1wl

Zax, ( 6x,>

Proof. Owing to the assumption w € V},, estimate (81) follows from (76). O

29. Lemma. We have

o~ m
(82) IL" (@) — L}, (w)] < Chz\/ let]llo,rzllwlh,n,.~

Proof. We shall modify the proof of [2, Lemma 3.3.13]. We can write

N

L' (@) — LV (w) < Y IL

r=1
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where, according to (20) and (21),

L,
|I1" < /0 |qn,r(§r7(pf(€7'))' ’ |w71,7'(§1‘a 0) - mn,r(ﬁrawr(fr)) V1+ (‘Plr(fr))2| dé-.

By (19) we have

4R}cos® &= +12 2
ax o (&) = — e < &=
[0! ] 4R; cos3 % R,

As ¢,(0) = ¢-(l.) = 0 the theorem on the error of the Lagrange interpolation gives
on [0,1,]
12 1 5
|‘pr(§r)| 2 I{Il?)}(lgo (Er)lfr( T ) S m S Hi;h’l‘,
According to the Rolle theorem, there exists a point £ € (0,[,) such that ¢..(£}) = 0.
Thus on [0,!,] we have

2 2
1 < hr,.
R, Ry, ©

10 ()] = I / "(t) dt

Using the last two estimates we easily derive the relations

0< VI+ [ (&) —1 < P& /2 < Ch,,,
lwn,r(€r7 O) - wn,r({‘rvwr(gr))l S |<p7'(£1‘)l : |(Vw'n,7‘lT',)| S Ch%",.l(vwn,TlTr)l'

As

[wn,r(&rs 0) = Wn,r(§ry pr(€-)) V1 + (07(6:))2
< Iwn,r(Er’0)_7-_U-n,r(€ra‘/’r(fr))| V1+ (‘P'r(gr))2 + |wn,r(§ra0)|( 1+ (¢(6))2-1)

we obtain

i,
lI I Ch'2 /0 an,r(é.r?¢T(£T))I{Iwnyr(€7" O)I + I(an,rlT,_)I} dgr
1/2

L,
< Ch?ﬂ(/ qg,r(ﬁr,%(&))d€r>
0

L, 1/2
x{h;{2|(an,r|,n_)| + (/0 w2 (&,0) d{r> }
Since

i, L,
/0 qi,r(&,wr(ﬁr))dérsfo qﬁ,r(&,%(&))\/l+(<P’r(£r))2d§r=A q° ds,
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i,
/ w2, (6,0) dé, = / wids, W[ L((Vwnr|)) < Clulyn,
0 ’ An m v

where A\, C I'an, A\r C 'z, we find out that

N N

m
S UL < CRS ligllon, <||w||o,,\,.h +/ ;|w|1,T..) -
r=1

r=1
This result together with (62) gives (82). a

Estimate (82) cannot be improved. Thus, if we want to obtain the rate of conver-
gence O(h) we must assume that

L
m

(83) Ci1h? < (Cy > 0).

6. THE FIRST MAIN RESULT
All preceding results yield the following theorem:

30. Theorem. Letu € H2(Q), f € Wb°(Q), k; € WL°(Q) (i = 1,2). Let
assumptions (8)3,4, (9), (83) and assumptions concerning the degrees of precision of
the quadrature formulas (see Theorems 13, 17 and 22) be satisfied. Then

~ C
(84) 12 = unll1,0, < —=h

Ve
where the constant C does not depend on u, o, m, h and the division 9},.
If in addition condition (79) is satisfied then

(85) |t — unll1,0, < Ch

where again the constant C does not depend on u, ¢, m, h and the division 2.

The definition of the division 2}, is rather artificial. We usually prefer to use either
a division 9,’{‘ , which consists only of triangles, or a division 9,{( , which consists only
of quadrilaterals. When using 2K (or 2) the definition of the space X}, (see (12))
changes in a natural way. The formulation of Problem 4 remains formally without
changes.

31. Theorem. If we use divisions 9F (or divisions 9}<) for the definition of
the spaces X} then the assertions of Theorem 30 remain without changes.
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Proof. In the case of 2] Theorem 31 is evident. In the case of 2K let us
consider the associated division 2, as an auxiliary division. Let V},, and VhA be the
spaces defined on 2/¢ and 2, by means of (13), respectively. Every function w € V},
uniquely determines a function ws € V;A. Both functions ws € V;A and w € V,
have the same values at the nodal points of 2/¢ (or, which is the same, at the nodal
points of 2,).

Using this notation we redefine the natural extension W of w by the relation

w=w on , W=W,4 On wp.

Estimate (74) is replaced by

_ fm
|w]1,wh <Ch 'leAll,Qh
_ 1 5 [m
[@llo,wn < Ch ﬁ +h 2 lwalli,e,-

Hence, w is replaced by w4 on the right-hand sides in Lemmas 26, 27, 29 and can
be replaced by w4 on the right-hand side in Lemma 28. Thus, to prove Theorem 31

and estimate (75) by

means to prove that
(86) “UJAHI,Q;. < C“w“l,ﬂ:.n

Let K, (r =1,...,n) be the quadrilaterals lying along I'y;, and let T;; (i = 1,2)
be the triangles forming K,. Let p,;: R? — R! be the linear polynomial satisfying

p”'IT,..- =wa |T,.,- .

Let
zy = 21,(61,6&2), T2 =12.(61,62)

be the transformation of type (33) which maps I<, one-to-one onto K, and let
(87) 71 = 21ri(&1, &), T2 = T2ri(€1,€2)
be a linear transformation which maps Ty one-to-one onto T,;. Then

pri (&1, &) = pri(ziri(&, &2), T2ri(€1, &2))
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is a linear polynomial in &, &3,

(88) pri(€1, &) = A1(1 = & — &2) + A6 + Aséa,

and

w* (&1, &2) = w(z1,(&1,82), T2 (&1, 62))

is a bilinear polynomial in &, &2,

(89)  w*(&,&) =Bi&i(1 - &)+ Ba(1 = &)(1 = &) + Bs3(1 — &1)& + Bs&a&o,

where B; = w(F;), Pi,..., Py being the vertices of K.

Using notation (31) we obtain by means of (87) (which is of the form [7, (9.1)]

with T = O(h), ¥, = O(h), Ts = O(b), Y3 = O(b))

C Ipt opZ; 2
90 Dri < b2 || ==t +h? || =t .
( ) l l Ty: hb ( 661 0Ty 862 Ty
According to (88) and (89), we have
op:. 2 1 ap;. 2 1
= =_(A; - A%, || =2 = —(A3 — A1),
361 o 5 (A2 — A1) 9 lom, 5(As — A1)
” —{(B2—Bl)z+(Bg—B4)2}/3—(Bz—Bl)(B3—B4)/3
aé.l 0,Ko

= {(32 — B1)% + (Bs — B4)?}/6 +[(B2 — By) — (B; — B4)]*/6,

= {(Bs — B2)? + (B1 — B4)?}/6 + [(Bs — B2) — (B1 — B4)]/6.
0,Ko

” 0,

Let P, P; be the common side of T; and T,,. Then

A1 = BQ, Ag = Bl, A3 = B3 in the case of Trly
Ay =By, Ay = B3, Az = B; in the case of T,s.

Hence
2

'% 2 ow* ’ap” H
96 9¢; 08, 0To &,

Combining these estimates with (90) and (42) we arrive at

2
OKo

)
O,To oyKQ

(91) |pril1,7: < Clw|i k...
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Now we prove that

(92) lIprillo, .. < Cllwllo,x. -
We have
(93) lprillo,1,. < CVOA|p;llo,T,-

Using (88) and (89) we obtain

, 1
Pkl = E(A? + A2+ A+ A1 Az + AL A3 + AxA3),
* 2 * 1
(94) w13, = g”l%:-“%,n, + _1§g(A4)

where A4 = By in the case of T,; and A4 = By in the case of T2 and
g(t) = A2 + A2 4+ A2 + Aj Ay + Az Az + (24, + Ag + 2A3)t + 212

in both cases. We have

1

743

. . 1., 3
min g(t) + 6|Ip};l13 1, > ZAf + §A§ +

This fact and (94) yield

(95) 12730137, < 3llw* I3 K-
Finally,

. C
(96) llw*{lo, k0 < \/—ﬁllwno,m-

Estimate (92) now follows from (93), (95) and (96).
We have

Wy =W oth——UKT.

r=1

Thus, using (91) and (92) we easily obtain (86).
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7. THE CASE OF OPPOSITE BOUNDARY CONDITIONS

At the end we shall analyze the boundary value problem of equation (1) with
boundary conditions opposite to conditions (2) and (3):

(97) u=0 onDy,
2 ou
(98) Z k,-a—zini(ﬂ) =q onl;.

i=1

In this case we start again with divisions 2. Problem 4 and all results up to relation
(71) remain without changes, except for Lemma 2, where (3) is replaced by (98), and
except for the definition of 25: we divide into two triangles each quadrilateral lying
at Tpi.

The natural extension w: Q, UQ — R! of w is now defined by

w=wony, wW=0onw,.

We shall use again assumption (83). However, in this case we must specify the
meaning of the constant C;.

32. Proposition. If we set C; = 1[m™!] in the case R, = 1[m) then in the
general case we have Cy = 1/R,. This means that (83) takes the form

1 0
99 —h?g =,
(99) o8 -
Proof. Let us set
4
Qo = Ry

Let m be arbitrary but fixed and let € > 0 be the smallest number satisfying

100 2 _ @
(100) o m+e

where h,, is the corresponding value of h in the case R; = 1 [m]. Multiplying (100)
by R2 we obtain

1., 1 2 0 0
—h*= — m)’ = <=,
th Rz(R2h ) m+e m

which proves (99). O
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The following lemma is important for our considerations.

33. Lemma. The circle I'y lies in the polygonal layer S, with vertices P;, A}

(i=1,...,n).

Proof. Let K C Sy be arbitrary and let P;P;i; C K. Let P} be the mid-point

of PjPjt1. Let us compute dist(P;,T'1). We have

R
h* := dist(Pj, Pjy1) = R—;h.

Hence

1 2
(P10 = - 72 = - L ()

h? 1 0
B < ! 4R§> i (1 4Ry m +¢€

which was to be proved.

Lemma 24 is substituted by the following lemma:

34. Lemma. For w € V,, we have

|ah(17 w) = La(w)| < |LF @) - Li(w)]

// k Bu ow ’/ fwdzldx2
Th i=1 9z; 9

Using the definitions of @ (%, w), Lx(w) and Green’s theorem we obtain

(101)

Proof.

an(@,w) — Lp(w) = // Z~ g;‘ O 421das — L2 (w) — IE (w)
Q5= i 04

= /r” Zk nz(ﬂh)wds - // (Z o2, < ) +f> wdzidey — Lj ().

i=1

To the right-hand side let us add zero in the form

/ nI(Q)w ds + L' (w) = 0.
r

1 =1
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If we denote A =T — T'9 and use Lemma 2, according to which equation (1) holds
almost everywhere in {2, then we can write

2

ap(u,w) — Z/ 1au i(A)wds

ACT, =1

// (Z oz, ( ) +f> wdzydzs + LT (w) — LE (w).

Transforming the first term on the right-hand side by means of Green’s theorem we
obtain (101). 0O

Now we estimate the terms appearing on the right-hand side of (101).

35. Lemma. Let u€ H2(Q) and k; € Wh*°(Q) (i = 1,2). Then

(102 '// Z~ ou aw d:l:ld(II2

If in addition

C ~
< —=hmax kil ,, gllullz,llwll.-

\/E i=1

(103) e wWhe(Q)

then

(104)

2 ~
~ Ou Ow
i <
/,,h ; k az,- oz; dzs

Ch max ||killy oo, 18l o0 allwll1,0-
%

Proof. We have

/ / Z 913_“’ dzydzs | <

By the relation analogous to (73), by (61) and by Lemma 6 we obtain

c 52% ”ki”o,oo,ﬁlall,‘rh lel,'r,. .

~ h
[a)1,7, € C—=llull2,0-

Ve

This result implies (102).
Assumption (103) gives
|al1,n, < Chlal; o g

From here we obtain (104). O
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36. Lemma. Let f € W1>°(Q)). Then

| J[[ Fwdadz| < Ohlly e gllwlha
Th

Proof. The assertion follows from || f|lo.r, < Ch||f~[|0 o8- ‘ a

37. Lemma. Let assumption (83) be satisfied. Then

ILF (w) = ZE (w)| < Chllgllo,ryllwll -

Owing to Lemma 33 the proof is a slight modification of the proof of Lemma 29.
Thus we omit it.

8. THE SECOND MAIN RESULT
In the case of (97) all preceding results yield the following theorem:

38. Theorem. Let the assumptions of Theorem 30 be satisfied except for the
additional assumption (79) which is substituted by (103). Then estimates (84) and
(85) are again valid.

The definition of the division %}, is again rather artificial. We usually prefer to
use either a division @,? , which consists only of triangles, or a division 9,{‘ , which
consists only of quadrilaterals. When using 2K (or 2T) the definition of the space
Xn (see (12)) changes in a natural way. The formulation of Problem 4 remains
formally without changes.

39. Theorem. If we use divisions 9§ (or divisions 9[€) for the definition of
the spaces X}, then the assertions of Theorem 38 remain without changes.

Proof. The proof is a modification of the proof of Theorem 31. In the case of
2T Theorem 39 is evident. In the case of 2/ let us consider the associated division
Py, as an auxiliary division. Let V, and VA be the spaces defined on 2/ and 2,
respectively, by means of (13) where I'y, is substituted by I's,. Every function
w € Vi uniquely determines a function wa € VA, Both functions ws € V* and
w € Vj, have the same values at the nodal points of 2/€ (or, which is the same, at
the nodal points of 2;,).
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It is evident that except for |LT (w) — Z{ (w)]| all results remain true for the new
meaning of w. For the remaining term we have

Ly (w) = L} (wa).

Thus
LT (w) — L (w)] < |LF(w) — LY (wa)| + |L" (wa) — L} (wa)-

According to Lemma 37 and relation (86),
LT (wa) = LE(wa)l < Chllgllor, lwlls -
Further,
|L"(w) = LT (wa)| = |LF (w = wa)| < Cligllo,r, lw = wallo,r,-

As w — wa = 0 outside the layer S, (for its definition see Lemma 33) we obtain in
the same way as in the proof of [5, (1.1.10)] (where we set 3 = h?)

C
o —wallsr, < 75llw = walls7, + Ch*lw —wali ;.

As w —wy4 = 0 on I'1, we have, according to the proof of (7, Lemma 28.3],

C

ﬁnw - wAHg’,h < Ch2|w - wAli,,h.
Finally, by (86),
CR|w —wal} ., < CR(lwl} ., + llwall},,) < CR*|lw|} g,

This completes the proof of Theorem 39. O

Remark. According to [Kadur, personal communication], modifying the con-
siderations of [5, Chapter 4] we can prove the following regularity results: Let j > 1.
If k; € CI~L1(Q), f e WiT1(Q), g € CI~LY(T,) (r =1 or 2) then u € HI+1(N).

This means that the assumption guaranteeing (85) can be satisfied in both cases
(2) and (97).
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