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SINGULAR P E R T U R B A T I O N S IN O P T I M A L C O N T R O L P R O B L E M 

W I T H A P P L I C A T I O N T O NONLINEAR S T R U C T U R A L ANALYSIS 

JAN LOVISEK, Bratislava 

(Received December 18, 1991, revised September 14, 1995) 

Summary. This paper concerns an optimal control problem of elliptic singular perturba­
tions in variational inequalities (with controls appearing in coefficients, right hand sides and 
convex sets of states as well). The existence of an optimal control is verified. Applications 
to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle 
are presented. For elasto-plastic plates with a moving part of the boundary a primal finite 
element model is applied and a convergence result is obtained. 

Keywords: Optimal control problem, singular perturbations in variational inequalities, 
convex set, elasto-plastic plate, small rigidity, obstacle. 

AMS classification: 49A29, 49A27, 49B34 

INTRODUCTION 

Singular perturbations play a special role as an adequate mathematical tool for de­

scribing several important physical phenomena such as propagation of waves in media 

in the presence of small energy dissipation or dispersions, appearance of boundary 

or interior layers in fluid and gas dynamics as well as in the elasto-plasticity the­

ory, semiclassical assymptotic approximations in quantum mechanics, phenomena 

in the semiconductor-device theory etc. We shall deal with singular perturbations 

appearing in coefficients, right hand sides and in the form of convex sets of states 

for optimal control problems governed by elliptic variational inequalities. We inves­

tigate some properties of the solutions. The existence theorem (for the singularly 

perturbed optimal control) will be applied to the perturbed optimal control of elasto-

plastic plates with small thickness and to membranes (the membrane approximation 

to the plate obstacle problem as a special example of singular perturbations for el­

liptic variational inequalities—Sec. 1). In Sec. 2 we shall deal with discretization of 

the abstract problem. In Sec. 3 a particular realization of the general scheme to the 
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initially-stressed elasto-plastic plate problem is performed. In Sec 4 a finite element 
approximation to the optimization problem is done. 

Singular perturbations in variational inequalities were considered by Huet [6], Li­
ons [10], [11], Greenlee [4] and Eckhaus, Moet [3], while the optimal control problems 
were considered by Lions [10]. The main concern was there the existence of solutions 
with some weak convergence theorems. 

Before touching the main topic we introduce the notation. Let H(Tt) be a normed 
linear space. Following Mosco ([13]), we introduce the convergence of a sequence of 
subsets: 

Definition 1. A sequence of subsets {Cn(fl)}n of a normed space H(Q,) con­
verges to a set C(il) C H(fl) if C(fi) contains all weak limits of sequences {vnk } k , 
vnk G Cnk(Q), where {Cnic(il)}k are arbitrary subsequences of {Cn(Q)}n, and if 
every element v G C(Q) is the (strong) limit of a sequence {vn}n, vn G Cn(ft). 

We shall write C(ft) = Lim Cn(ft). 
n — • + 0 0 

We employ the following notation: by "->" and "—-" the strong and weak conver­
gence in the appropriate spaces will be denoted. As usual, N denotes the set of all 
natural numbers and R the real axis. For two Banach spaces X, Y, C(X, Y) denotes 
the space of all linear operators from XtoY. 

1 . EXISTENCE THEOREMS 

Let the control space U(Q) be a reflexive Banach space with a norm || • \\u(Q)-
Let Uad(^) C U(ft) be the set of admissible controls in U(ft). Let S£(£l) be a real 
Hilbert space with the inner product (•,•)#-(*})• Furthermore, let V(Vt) and W(Q) 
be two reflexive Banach spaces with norms || • \\v(n), II * IIW(fi)> being compactly 
imbedded into <5T(fi) by imbeddings *?v(Si)-> ^w(n), respectively, such that the ranges 
SH{H) are dense in ^T(fi) for H = V(O), W(Q). Let us denote by V*(Q) and 
W*(Q) the dual spaces of V(Q) and W(Q) and by || • ||v*(n)> II * IIW*(fi) t n e i r norms 
with respect to given duality pairings (-r)v(n), (mr)w(n)> where, by convention, 
(x,y)H = (SH~XX^HV)W) for H = V{<1), W(tt), y G H and x G ^{X{0)) 
which is dense in H* and will be identified with X(Q). For a Banach space Jf and 
two nonnegative constants A, A we denote by &je(\, A) the set of all operators D 
from Jtf into Jf* for which the inequalities 

(1.1) A||v - w\\# ^ (Dv - Dw, v - w)jr and 

||.Dv - Dw\\jr* ^ A||v - w\\jr for a l h e J f 
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hold. We assume that 

(NO) V(il) <-+ JV(ft), V(Q) is dense in W(tt) and 

C^ad(fi) C U(fi) is compact in U(ft). 

We introduce the systems {X(e,Q)}eeUsid^Q), {X(e,^t)}eeuHd(Q) of nonempty con­
vex closed sets JT(e,Q) C V(Q), X(e,9) C W(Q), e G Uad(fi), and the sys­
tems of operators {^/(e)\ e G Uad(^)} acting from V(Vt) into V*(Q)) and {88(e)\ 
e G Uad(O)} acting from W(fl) into W*(ft) satisfying the following assumptions: 
(Hs*) 

1° e„ -+ e0 in U(Q) ==> JT(e0 , fi) = Lim X(en, ft), 
n—f+oo 

2° {^(e); e G Uad(fl)} C ^v(O) (<>,<*), 

3° en - • e0 in U(H) =-> tf(en)v -> ^ ( e 0 ) v in V*(ft) for all v G V*(ft)), 

4° there is a^ > 0 such that for all e G Uad(-^) and all v,w G V(ft) 

the inequality 
v ' " V ( n ) ^ a - ^ I P ~ ^ l l K ( n ) (s/(e)v - ^ (e)w, t ; - w)v(n) + ||v - Hlw(n) ^ OL^\\V - tu| |^ (n ) holds, 

and 
(HSS) 

' 1° cl X(e,Sl) = JT(e,Q),e G Uad(ft) (closure in VV(H)), 

2° en -> e0 in U(Q) ==-> JT(e0,fi) = Lim X(en,Sl), 
n—)>-foo 

3° {@(e)\ e G Uad(fl)} C ^ W ( n ) ( ^ , c ^ ) with a # > 0, 

k 4 ° e n 4 e0 in U(ft) ==-> ^ (e n ) i ; -> ^ (e 0 )v in IV* (ft) for all v G W(fl)). 

Note that VV*(f2) «-> V*(ft) continuously, and one has the transposition formula 

(F,v)V(Q) = (F,v)W(Q) for any v G VC.0) and for any F G W*(fl). 

We assume, moreover, that 

(£0) / G W*(n) and B: U(il) -> VV*(fl) is a continuous operator. 

For every e > 0 and for every e G Uad(ft) there exists a unique state function 
ue(e) G X(e,Vt) such that 

(1.2) (etf(e)ue(e) + #(e)u e(e),t ; - u£(e))v{Q) ^ (f + Be,v - u£(e))w{Q) 

for all ve X(e,Sl). 

301 



Indeed, thanks to the general theory of variational inequalities ([1], [12], [14]), it is 
enough to prove that there is c£ > 0 such that 

(1.3) (e(tf(e)v - s/(e)w),v - w)v{Q) + (@(e)v - 08(e)w,v - w)w{Q) 

^c£\\v-w\\2
v{n), v,w G V(ti) 

and this immediately follows from ((Hs/)y 2°,4°), ((H@),3°) (e.g. by contradiction). 
Thanks to ( ( # # ) , 3°), for any e G Uad(Q) 

(1.4) 3! u(e) G X(e, ft) such that W G JT(e, ft) 

(&(e)u(e),v - u(e))w{Q) ^ (/ + Be,v - u(e))w{Q). 

Let us consider a functional Jf: U(ft) x VV(ft) -o R+ = {a G R; a ^ 0} for which 
the following condition holds: 

1° K } n C VV(ft), v G IV(ft), vn -> v in JV(ft) =-> 

jjf(c-v) = lim &(e,vn), 
n—>-foo 

(£0) { 2° K } n C IV(ft), v G TV(ft), {e n } n C Uad(ft), e G Uad(-1), 

en —r e in U(ft),itn —- v (weakly) in IV(ft) -===> 

-Sf(e,v) ^ liminf j£f(en,vn). 
n—>+ oo 

We introduce the functional J£ by 

(1.5) J e(e)=J?(e,u f f(e)) , e G Uad(ft), 

where ite(e) is the uniquely determined solution of (1.3), e G Uad(ft)« We shall solve 
the following optimization problem (2?£): 

Find a control e£ G Uacj(ft) such that 

(&e) Je(e£)= inf J£(e). 
eGOac l ( i - ) 

We say that e£ is an optimal control of the problem (£?£). 

Theorem 1. Let the assumptions (NO), (Hsrf), (HSB), (BO) and (E0) be satis-
Red. Then there exists at least one solution to (S?£) for any e > 0. 

P r o o f . Due to the compactness of Uad(ft) in U(ft), there exists a sequence 

{eu}n C Uad(fi) such that 

(1.6) lim e" = e° in U(ft), e° G Uad(ft) and lim J£(e
u) = inf Je(e). 

n—>-|-oo n—>--f-oo eGfj*ad(f-) 
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Denoting u£(e
n) := un e X(en,Q) we obtain the inequality 

(1.7) (es^(en)un + <%(en)un,v - un)v{Q) > (f + Ben, v - un)w{Q) 

for all v e X(en,n). We take an arbitrary v0 e X(e°e,Q) and (by (Htf?),l°) a 

sequence {vn}n e ]\ X(en,9) such that vn —> v0. Putting v = vn in (1.7), 
neN 

adding e(srf(en)vn,u
n - vn)v{^) + (&(en)vn,u

n - i!n)vy(Q) to its both sides and 
multiplying the resulting inequality by —1, we obtain 

(1.8) (є(s>/(en)un -s/(en)vn),un - vn)v{U) + (Җen)un - Җen)vn,u
n - vn)ЩU) 

^ (єJЃ(en)vn,vn - un)v{u) + (Җen)vn,vn - un)w{u) 

+ (f + Ben,un-vn) W{Q) nЄN. 

From (1.3), (1.8), ((H^),2°,3°), ((H^),4°) and (BO) it follows that 

(1.9) ll<-CIIV(ft) < c(£), neN for fixed e > 0. 

This yields the existence of a subsequence {unk}k and of an element u°e e V(fi) such 
that 

(1.10) uПk -- u° in V(П). 

As un e Jtr(en,tt), the assumption ((Haf), 1°) yields 

(1.11) u°eeJtr(e°e,Sl). 

By ((Hsrf),l°) there exists a sequence {Ok}k, ®k € X(enk,9), such that <dk -+ u° 
in V(ft). Inserting v := 0fc in (1.7), adding (erf(enk)Qk + @(enk)<dk,u

nk - Qk) to 
its both sides and multiplying the resulting inequality by —1, we obtain 

(1.12) limsup ((є^(eПk) + ҖeПk)) (uПk - k),uПk - k ) v { u ) 
fc-f + OO V ' 

-̂  limsup 
k—>>+oo 

+ lim sup 
k—»+oo 

(єя/(eПk) k, k-uПk)v{u) 

(ҖeПk) k, k-uПk)щu) 

W(fl) + lim sup (/ + BeПk, uПk - k) 
k—}» + oc ' 

= 0. 
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The last equality follows from (SO) and from the facts 

(1.13) (en
 U-^ e and vn ^ v for n -> +00) =.> 

\W(en)v
n-stf(e)v\\v.{n) 

^ c*/\\vn - v\\v{Q) + \\srf(en)v - s2/(e)v\\v*{Q) -> 0 for n - • +oo, 

(1.14) f e n
 U-^ e and wn ^ w for n -> +oo] -=> 

H ^ e n ^ - ^ e ^ H ^ ^ ) 

^ c<a||wn - w||vy(fi) + \\@(en)w - ^(e)tD||iy*(Q) - • 0 for n -+ +oo 

which are consequences of ((Hst/),2°,3°), ((H88), 3°, 4°), respectively. Due to 
the uniform monotonicity of [esrf(enk) -f- 3B(enk)] (cf. (1.3)) we obtain the strong 
convergence 

(1.15) unk V-^ u°£ for k -> +oo. 

Moreover, (1.15) together with (1.13) and (1.14) yields 

(1.16) S2/(enk)unk V^? s2/(e°£)u°£, <%(enk)unk W-^] <%(e°£)u°£ for k -> +oo. 

Given a, v e X(e°£,Sl), by the assumption ((Hsrf),\°) there exists a sequence 
{vk}k,v

k € X(enk,n), vk -> v in V(il). Limiting (1.7) with v = vk, we have 

(1.17) < * i * ( e ^ i / - u ; ) m 

and, as v G «^(e^, ft) is chosen arbitrarily, we get 

(1.18) u° = ue(e°). 

Then ((EO), 2°) and (1.10) yield 

(1.19) ^ ( e ° , u £ ( e ? ) ) ^ l i m i n f i f ( e ^ u £ ( e e
n ) ) = inf J?(e,u£(e)). 

n-f+oo e€Oad(-^) 

Hence JSf(e°,ue(e°)) = inf{.if(e,u5(e)); e G Uad(ft)}, which completes the proof. 

• 

Limit s t a t e function and limit cost function. We define the limit state func­
tion for any e G Uad(ft) by the variational inequality 

Find u0(e) G X(e,Q) such that 
(1.20) V ' V 

(#(e)u0(e),v-u0(e))wr(n) ^ (/ + Be,v - u0(e))w{Q) Vi; G JtT(e,U) 
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and the limit cost function 

(1.21) Jb(e) = JSf(e,uo(e)). 

In this case one has the limit control problem (&o) defined as follows: 

(&o) Find e0 G Arginf{J0(e); e G Uad(-~-)}. 

Theorem 2. Let the assumptions (NO), (H3B), (BO) and (EO) be satisfied. Then 
there exists at least one solution to (2?o)-

The p r o o f is analogous to that of Theorem 1. • 

There arises a natural question concerning the type of relation between solutions 
to (&o) and (<^-) if £ —> 0+. We prove the following theorem: 

Theorem 3. Let the assumptions (NO), (H&/), (HSS), (BO) and (EO) be satis­
fied. Let e£n, eo be solutions of the problem (&*£n), (&o), respectively. Then there 
exists a sequence {sn}n, en -» 0 for n —• +oo. such that 

e£n -> e0 in t/(íí), u£n(e£n) -> u0(eo) in W(íl), 

inf J£n (e) -> Jo(eo) = inf 
ceC/ad(íí) " eGLIad(f2) 

( L 2 2 ) ^ Jen (ee„) = inf % J£n(e) -> J0(e0) = inf J0(e). 

P r o o f . Due to the compactness of Uad(H) there exists a sequence {e £ n } n C 
Uad(n) such that e£n —> eo in U(Sl). The "state function" u£n(e£n) G Jtr(e£n,Q,) is 
a solution of the state variational inequality 

(1.23) (en#/(e£n )u£n (e£n) + @(e£n) u£n (e£n ),v-u£n (e£n ))v{n) 

^ (/ + Be£n,v-u£n(e£n))W{Q) for any v G X(e£n,SI) 

for given e£n G Uad(-~0, en> 0, n eN. 

We take an arbitrary vo G J^(e°,ft) and a sequence {vn}n G n <^(een,-~-0 such 
n€N 

that vn —>• vo- In the inequality (1.23) we take the fixed v = vn, add en(£/(e£n)vn, 
uen(e£n) -vn)V(Q) + (@(e£n)vn, u£n(e£n) -vn)w{Q) to both sides of (1.23), multiply 
the resulting inequality by - 1 and use ((H#/),2°) and ((H@),3°). It follows that 

en((*/(een)uen(e£n) - j!/(e£n)vn,u£n(e£n) -vn)v{Q) + \\u£n(e£n) -vn\\2
w{Q^ 

+ (CL» ~ Sn)\\u£n(e£n) - Vn||^(C2) 

^ (/ + Be£n,u£n(e£n) -vn)w{Q) + ((en*/(e£n) + 3B(e£n)) vn, vn - u£n(e£n))v{Q). 
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Setting en ^ a&/2 and applying ((Hsrf), (HSS)) we get 

(enaJ2/)\\u£n(e£n) - vn\\
2
v{Q) + ^a^\\u£n(e£n) - vn\\

2
w{n) 

^ cillZ + ^Be^llvy^ci) I K n ( e e J -v n | |w(n) 

+ c 2 e n |K n (e £ n ) -vn\\v{n) ||tIn|k(n) + ^\\u£ii(e£n) - vn||w(n) IKHvv(n), 

where c\, c2, C3 are constants which do not depend on n. Hence we conclude that 

(--•24) IKn(OHw(n) < C> V^IKn(OIIV(n) ^ C 

= > \ /^ | |^(e5 n )^ n (es n ) | | \ /*(n) ^ c 

for some c, c independent of n. We can therefore extract a subsequence I u£nk (e£nk) > 

such that 

(1.25) u£nk (e£nk) - - w in VV(fi) for k -+ +00 and w e j£(e0,Q,), 

y/e~^u£n (e£n ) —- v in V(ft) for k -> +00 

exploiting the assumption ((H&), 2°), too. Moreover, there is a sequence {^AJA: such 
W(Q) 

that IDA: € ^ ( e e n , ft) and iD/e —> w. We put v = Wk into (1.23) formulated for the 
index nk, add (£nfc-^(efrn)^fc + ^(e£nk)wk,u£nk(e£nk) - wk)v(n) t o i t s both sides, 
multiply the resulting inequality by - 1 and employ ((Hrf),2°), ((IL^),3°), (BO), 
(1.13) and (1.14) again. As the right hand side of the resulting inequality tends to 0 
(cf. (1.12)), we obtain 

wrn) 
(1.26) limsupa&\\wk-u£rik(e£nk)\\w(Q)=0 => u£nk(e£nk) —> w, 

k—>-f-oo 

limsup(enk^(e£n )(u£n (e£n ) -wk) ,u£r (e£n ) - wk) 

= l[
k

m + i p (En^{e^)Ue^ (Cff-J' Uff-fc
 ( e ^ ) ) v(n)

 = °-

We take w G J^(e0,Q) arbitrary. We can find {wk}k C V(fJ) such that Wk G 
W(Q) 

JXf(e£n , Q) and Wk —> w. To prove 

(1.27) w = uo(e0) 

we return to (1.23) for the index nk and put v = Wk there. Due to (BO), (1.25) and 
(1.26) it is easy to see that for k —> +00 we obtain 

(1.28) (&(eo)uo(e0),w - u0(e0)) w(0) ^ (f + Be0,v - uo(eo))w{Q) 
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and (1.27) is valid. Moreover, the method of the proof shows that the convergence 

(1.29) ue(e) ^ u0(e) Ve G Uad(H) 

holds. Indeed, if it were not true, there would be a sequence Sk —> 0 and a constant 
£ > 0 independent of k such that 

(1.30) \\uek(e)-u0(e)\\w{n) >£VkeN. 

Putting an arbitrary fixed v G J^(e, Q) into the appropriate variational inequalities, 
we arrive at 

(1-31) Kfc(e)||iy(C2) ^ C, ^IK f c(e) | |V (C2) ^ c 

= > Vefc||-^(e)tiCfc(e)||v(n) ^ c, 

where c, c do not depend on k. The existing VV(!(7)-weak limit of a suitable subse­
quence {uekn(e)}n C {^A.(e)}fc must be ixo(e) due to ((H«^),l°) and due to quite 
analogous arguments to those used in deriving (1.27) through (1.26) and (1.28). This 
is a contradiction to (1.30). 

Now, from (1.29), from the fact that J£nk (e£n ) -̂  J£n (e) for all e G Uad(-~-0 and 
all fc, and from ((£70), 1°), we get 

(1-32) limsup Je (e£nk) ^ J0(e) Ve G Uad(H) 
fc->+oo 

=t> limsup Je (e£n ) ^ inf J0(e) < J0(e0). 
fc-y+oo e€Llad(fi) 

Furthermore, we observe that ((£0), 2°) (1.26) and (1.27) imply liminf Je (e£ . ) ^ 
fc-»+oo nA: n* 

-£?(eo,^o(eo)) = ^o(eo). Comparing this result with (1.32) we see that necessarily 

(1.33) inf J0(e) = Jo(eo). 
eeUAd(Q) 

Theorem 3 is proved. D 
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2. SCHEME OF ШSCRETIZATION 

{V*)t. 

Let us assume that Uad(^) C U(ft) is compact. We describe the discretization 
of problem (g?) and prove the convergence of the sequence of finite-dimensional 
solutions as h, the discretization parameter, tends to zero. With any h G (0,1) we 
associate: 

' 1° finite-dimensional subspaces Vh{ft) C V(Sl), Uh(ft) C t/(fi), 

2° closed convex subsets Jth(eh,ft) C Vh(ft) (certain approximations 

of X(e,Sl)), 

3° closed convex subsets Uh

d(tt) C Uh(Q) (certain approximations 

ofUad(H)), 

4° operators £/h(eh): Vh(£l) —> Vh(ft), eh G Uh
d(ft) (approximations 

of the operators in (Hs>/)), 

5° Jfh' Uh(il) x Vh(Q) -> R convex lower semicontinuous proper 

functionals (approximations of the cost functional .5?). 

Moreover, with any h G (0,1) we associate: 

( 1° finite-dimensional subspaces Wh(Q) C W{il) (Vh(Q) C Wh{Sl)), 

2° closed convex subsets Jfh(eh,fl) C VV(Q) (approximations 

of £(e,Sl)), 

3° operators Sh{eh): Wh(Q) -> VV^ft), eh G Uh
d(Cl) 

(approximations of the operators in (ESS)), 

4° fh G W£(Q), Bh G £(Uh(tl), W£(Q)) (approximations 

of/ and B). 

The approximations of the state equations (1.4) and (1.2) are now defined by 
means of the Ritz-Galerkin procedure: 

f u£h(eh) G Xh(eh,Sl) 

(e£/h(eh)u£h(eh) + &h(eh)u£h(eh),vh - u£h(eh))v(U) 

^ (fh + Bheh,vh -ueh{eh))v{fl), 

^ for any vh G Jfh(eh,il) and eh G Uh
d(Q) 

{WЯ)Һ 

(2.1) 

and 

(2.2) 

' uoh(eh) G Jťh{eh9íl)9 

(@h(eh)uoh(eh),vh -u0h(eh))w(Q) 

^ (fh + Bheh,vh - u0h(eh))w(Q) 

K for any vh G Xh{eh, íl) and eh G Uad(0). 
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The families {Jfh(eh, tl)}h and \xh(eh, SI) J are supposed to satisfy the following 

two conditions: 

1° hn -> 0, ehn
 U-^ e such that ehn G U^(il) Vn e N =^> for any 

bounded sequence {vhn } n in V(fi) such that vhn G Xhn (ehn, Q), all 

its weak cluster points belong to X(e, Q,), 

2° there are Ajr(e,n) C V(Q), clAj^(e)c2) = X(e,Sl) such that for any 

hn -> 0 and any ehn —•> e there is &ehn€: Ajr(e.n) -+ ^ ( c h n , f i ) 

such that for all v G Aj^(e m we have lim «^e. ev = v strongly in 
v ' ' n—>-foo n 

V(Q) 

(Ltf)i 

and 

(Щ* 

1° /i„ -> 0, eh„ -W e such that e / l„ € U^1 (O) Vn G for any 

bounded sequence {tI/in}n in VV(!T2) such that vhn G Jfhn(ehn,Q,), 

all its weak cluster points belong to X(e,Sl), 

2° there are A ^ , c ^ C W(fi), cl A ^ , nx = X(e, Q) such that for any 

U(Q) 
hn —> 0 and any e/^ 

such that for all w G A 

in W(Q). 

e there is T, ehne'> ^ j T ( e , í í ) «*#Я(e/in,íì) 

j»f(e fi) w e n a v e n m ~^ehneW = w strongly 

Let us note that we do not necessarily have jXfh(eh,Vt) C Jf(e,Q,), (Xh(eh,Q) C 
Jf(e,Q)) and Uad(fi) C Uad(-~-0- If, however, this is true for any h G (0,1), we say 
that we have an internal approximation of X(e,Q), X(e,Q), Uad(fi), respectively. 

For the existence theorem to the problems (2.1) and (2.2) and for the analysis of 
the relation between (1.4), (2.1) and the relation between (1.2), (2.2) we shall need 
the following hypotheses: 

' 1° there is ev such that srfh(eh) G &vh(n)(Q,c*f) for any h G (0,1) and 

a n y e ^ G U ^ f t ) , 
2° ^hn(ehn)vhn -> st(e)v in V*(il) for n -> +oo, if hn -> 0, e^n -> e 

(Hsrf)h < in Uad(n) and vhn —- v in V(ffc) for n —> H-oo, 

3° there is a^ > 0 such that for all h G (0,1), eh G Uad(ft) and 

vh,wh G Vn(n), (^(e^Jvh - rfh(eh)wh,vh - wh)V(Q) + H^ -

w*\\w(U) ^ <*-*IK - ^llv(n)-
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Furthermore, we suppose that the following hypotheses concerning £8h(eh) hold: 

(HЯ)Һ { 

1° there are a® and c# such that @h(eh) G &Wh(n)(a&,c<%) for any 

h G (0,1) and any eh G U^d(Q), 

2° &hn(ehn)vhn -> 36{e)v in W*(Q) for n -> +oo, if /in -> 0, e*n -> e 

in Uad(fi) and v/ln --» v in W(fi) for n -> +oo, 

3° there is c > 0 such that ||//i||w*(Q) ^ c for any h G (0,1) and 

any fh G W£(ft) and (hn -> 0 & {u n} n G fl Vfc»(fi) such that 
n£N 

V(p) <In "^' V) =J> ( / n ^ n ) v , l n ( Q ) "> ( / , v ) v ( n ) . 

4° e& G Uad(n) and He/Jl^p.) ^ c0 =-> there is c G R+ such that 

ll-B^e^H^n) ^ c for any h G (0,1), 

5° hn -> 0, ufcn G ^ ( f i ) , ^ n -> t; in VV(ft), efcn -> e in U(ft) for 

n -> +oo ==> (^ne/ ln,i;/ ln)w(Q) -> (JBe,ij)ly(c2) for n -> +oo. 

Morever, we assume that 

1° t£ G W)i(fi)anditf -> vh in W(fi) = » - S ^ e * , ^ ) = lim -%(e/i,i;J), 
n—^+oo 

(£0), 2° e£ є Ua

я

d(П), e£ -> efc in U(П), ttf Є Vfc(íî), ttf -> t;fc in V(П) 

áfh(eh,vh) ^ìimmîáfh(e^). 
n—>+oo 

For every e > 0, h > 0 and for every e^ G Uad(^) there exists a unique 
u£h(ch) G Jfh(eh,Ct) of the variational inequality (2.1). Indeed, due to ((H&/)h,\°) 
and ((H3&)h, 1°) there exists a constant c^gg > 0 such that for any e > 0 

(e(-c4(efc)i;fc - ^h(eh)wh),vh - wh)V(n) + (^h(eh)vh - ^h(eh)wh,vh - wh)w{Q) 

ž c^<%\\vh -wh\ v(ӣy 

For a set M and a function £: M -> K we denote by Arg min £ the set of minimizers 
M 

of £ on M. The discrete version oi(2?e) then reads as follows: 
(&eh) 

Find ee& G Arg min 3?h(eh,u£h(eh)) = Arg min J£h(eh) with u£h(eh) as above 
c/-€t/Id(n) ehGt/i,(n) 

and the discrete version of the limit control problem (£?o) reads: 

(&0h) 

Find eoh G Arg min ££h(eh,uoh(e>h)) = Arg min Joh(ch) with u0h(ch) as above. 
e/.ec/£i(n) ^et/ i^n) 
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By [e£h,u£h(eeh)\, [eoh, uoh(eoh)\ we denote an optimal pair for (&eh), (&oh), respec­
tively. The following lemmas hold: 

Lemma 1. For every h > 0 and for every e > 0 there exists at least one optimal 

pair [e£h,u£h(eeh)] for the problem (&eh). 

The p r o o f is quite analogous to that of Theorem 1. 

Lemma 2. Under the above introduced hypotheses (Hsrf)h and (Lsrf)h, let 

{ehn } n £ I ! ^ad (P) be sucn tnat ^n -^ 0 and ehn -> e in £/(ft) for n -> +oo. Then 
n£N 

uehn (ehn) -> u£(e£) in V(il) for any fixed e > 0. 

P r o o f . We take v E A^(Cjn) and put &ehn€v into (2.1) for the corresponding 
hn—cf. 2° of (Lsrf)h. Then, employing the standard procedure repeated several 
times in Sec 1, where the respective assumptions of (Hsrf) and (H88) are replaced 
by (Hsrf)h and (H£8)h, we arrive at the estimate 

Wuehn(ehn)\\v(Q) < Ctf&(e), neN, 

valid for e > 0 with a positive constant Cs/& independent of n G N. Thus there 
exists a subsequence {u£hnk (ehjlk)}k of {u£hn(ehn)}n and an element u£(e) G V(il) 
such that 

uehnk (ehnk) -* u£ for k -» +oo for any fixed e > 0. 

Moreover, we have u£ G Jif(e, ft) (due to ((Lsrf)h, 1°)). Using condition ((Lsrf)h, 2°) 

again for some z € Aj^(e>Q), we obtain the existence of a sequence {&ehn.ez}j G 

11 ^hn.(ehn.,Q) such that lim ffieh ez — z strongly in V(Q.) as ehn -> e in 
jeN J J i-^+oo nj J 

U(ft). Then we proceed like in the proof of Theorem 1 (from (1.11) to (1.16), here 
the sequence {&ehnez} plays the role of {0 / J ) . In this way we get 

(2.3) 

U>єhn(Єhn) —+ Щ(e), 

^hn(ehn)uєhn(ehn) —•> SJ/(Є)UЄ(Є), 

ЯhЛehn)uekn(ehn) - V .*(e)uď(e). 

а 
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In order to study the relation of optimal pairs to (2?eh) and (<Pe) we need the 
following additional assumption: 

1° The family {U£d(tl)', h G (0,1)} is compact in the following sense: 

for any set M := {eft; eh G UJ^(Sl), h G N C (0,1),0 G clN} there 

is a sequence hn -> 0 and an element e G Uad(fi) such that ehn -> e 

in U(ft). 

(HU)h ^ 2° For any e G Uad(-~-) there exists a sequence {/in}n C R such that 

/in -> 0 and { e f t J n G fl t /
adn(^) s u c h t h a t ehn -+ e in U(Q). 

n€N 

3° hn -+ 0+, eftn G 17^(0), n G N, eftn ^ V e, <;ftn ^ t; for n -> 

+oo ==r>jSfftn(eftn,vftn)->^f(e,t;). 

Then we have 

Theorem 4. Let e > 0 be fixed and let ((Hsrf)h, (H38)h) and ((Lx/)h, (HU)h) 
be satisfied. Let [e£h,u£h(e£h)] be an optimal pair of (0*£h), eeh G U£d(tt), hG (0,1), 
e > 0. Then there exists a sequence {hn}n, hn -> 0 for n —> -Foo and a pair of 
elements [e£,u£(ee)] G Uad(ft) x J^(ee ,ft) such that [eehn, u£hn (e£hn)] -> [e£,u£(e£)] 
in U(fl) x V(ft) for n -> +oo. 

P r o o f . The assumption ((HU)h, 1°) yields the existence of a sequence {e£hn } n 

and e£ G Uad(-~-0 such that eehn -> ê  in U(ft). By virtue of Lemma 2 we have 
u£hn(eehn) -> U£r(ee) in V(S1). Then due to ((L^) f t ,2°) one has we(e5) G J(f(e£,Q), 

i.e. ee G Uad(-~0- The definition of ( ^ J gives 

(2.4) ^hnЫn,uєhn(eєhn)) ^ Җn(ehn,uєhn(ehn)) Vehn Є U^(ӣ). 

Let e G Uad(-~0 be given. Due to ((HU)h,2°) one can find sequences {hn}n, hn -> 0+ 

and { e f t J n 6 EI ^ a c T(^) s u c h t h a t g*» -^ e in U(ft). Thus u£hn(ehn) -> ue(e) in 
nGN 

V(fl) and with the use of (2.4) and ((HU)ft,3°) we obtain 

%(e£,u£(e£)) ^ %(e,u£(e)) Ve G Uad(fi) 

and the proof is complete. • 

The problem (&o) can be treated quite analogously and an appropriate variant 
of Theorem 4 for this case is the following 

Theorem 5. Let (H88)h and (HU)h for e = 0 be satisfied. Let [e0ft,u0ft(e0ft)] 
be an optimal pair of (0»oh), eoh G U^(il)} h G (0,1). Then there exists a se­
quence hn -> 0+ and a sequence of pairs {[eohn,uohn(eohn)]}n and a pair of ele­
ments [e0,u(e0)] G Uad(fi) x X(e0,Sl) such that [e0ftn, u0ftn (e0ft J ] -> [e0,u(e0)] in 
U(9) x W(il) f o r / i n ->0+ . 
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3. INITIALLY STRESSED ELASTO-PLASTIC PLATES 

In many practical applications, plates are in a state of initial membrane stress. 
When subsequently subjected to transverse pressure loads, their structural behaviour 
and response can be entirely different from plates which are free from such internal 
stresses. 

Let us consider an elasto-plastic plate having small flexural rigidity and being 
referred to a fixed orthogonal Cartesian coordinate system. The middle surface of 
the plate is indentified in its undeformed state with an open bounded domain ft 
in R2. The plate has a small thickness 2hp (may be geometrically characterized 
as "thin" domain in IR3) and its middle plain coincides with the 0XlX2-plain of the 
coordinate system 0XlX2X3. Let the boundary of ft (denoted by <9ft) be Lipschitz. We 
will consider the physical situation in which the transverse displacement of an elasto-
plastic plate is constrained by the presence of a variable obstacle (rigid frictionless 
surface located at a distance 5? = S^(x1,X2) under the middle plain of the plate). 
Thus the function v = v(x\,X2) describing the admissible transverse displacement 
must satisfy the relation v ^ 5? + hp which is assumed to be non-positive. The 
transverse reactive force \x = fi(v) and the displacement v are supposed to satisfy 
the usual contact condition of the Signorini type 

v-(y + hp)^0, \x > 0, 

(v~(y + hp))fi = 0 in ft. 

The distribution of a transversal load q = q(x1, #2) and a rigid frictionless obstacle 
(stiff punch) y may be viewed as design variables. To simplify notation, they 
are denoted as a design vector e = \q,Sf\ € C(ft) x H2(ft) = U(ft). We define 
Uad(ft) = U*d(ft) x U£(ft), where 

' ULW := [q e KV (̂ft); 0 ̂  q^ clq,\dq/dxi\ ^ d, 

i = 1,2 on ft, / gdft = C2g k 

n 

U&(Sl) := {y e H2+r>(ft); - ciy ^ ^ ^ 0, 

imi/L-+,(rt) ^ C2? on ft, J^(dft) = 0}, 

(3-1) 

where 77, Qj, i = 1,2, j = g, ^ , and c*, i = 1,2, are given positive constants such 
that the respective U^ft) 1S nonempty. Let the plate be simply supported at dft. 
Therefore we assume V(ft) = H2(ft) n H^ft) and VV(ft) = H1^). The set of 
kinematically admissible virtual displacements is defined by 

(3.2) X(e, ft) := {v € V(ft); v ^ 5? + hp on ft} , where 5? e Ua^(ft). 
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Define the virtual work of external loads by 

(3.3) (L(e),v)v(Q) = ((f + Be,v)vm) = (q,v)v(Q), v G V(Sl). 

(Thus W*(fl) can be called the space of loads.) The operator srf corresponds here 
to the bending (when no initial membrane pre-stress occurs) of the elasto-plastic 
plate (see [9], Chapter 4). First we recall some basic relations from the deformation 
theory of elasto-plastic plates. Let g G Ci([0,+oo]) be a material function fulfiling 
the conditions 

(3.4) 0 < ipo ^ g(0 ^ cD0, 0 < </>o < d[t6(t
2)]/d£ O o V ^ 0, 

where (.Do, ̂ o» ^o, <̂ o are certain constants. We define functions 

hv 

&: t\—> / g(z2t)z2dz, t ^ 0, 

— hp 

. , d2v d2w a (d2v d2w d2v d2w\ 
H^: [v,w\ •—> ^ QŽ2 + g l^aíf a í | + dxj d*l ) 

d2v d2w 2 d2y d2w 

dx\ dx\ dx\dx2 dx\dx2 ' 

where a and /3 are some real constants such that H& is positive definite in the second 
derivatives of functions on ft. We set 

(3.5) a(v, w)=2 f &(H*(v, v))H^(v, w) dft 

Q 

and the operator J ^ is now defined by the relation 

(3.6) (&fv,w)V(Q) = a(v,w), v,w G V(Sl). 

Clearly, \(srfv,w)v{Q)\ ^ const I H i ^ n j H I i a n ) . v,w € V(Q). 
A membrane is a thin plate offering no resistence to bending and acting only in a 

tension. For investigation of the equilibrium position of an elasto-plastic membrane 
occupying the domain Q attached to rigid support 5? and submitted to the action 
of forces q we introduce the material function g G C1([0,+oo]). We assume that g 
satisfies (3.4). Moreover, we introduce functions 

jY: 11-> 2g(t)hm, t ^ 0 (where /im is the thickness of the membrane), 
dv dw dv dw 
dx\ dx\ dx2 dx2 
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and a function b on W(Q) x W(Q) by 

(3.7) b(v,w)=2 f^(H&(v,v))H^(v,w)dft. 

ft 

Then the operator 38: W(tt) ->• VV*(fi) is defined by 

(3.8) (38v,w)w{Q) = b(v,w), v,w G VV(ft). 

Under the above assumptions, we have 

L e m m a 3. For every e G Uad(-^) the set JV(e,Si) is non-empty, closed and convex. 
The system {Jf(e,Q)} fulfils the condition ((H#/), 1°). 

P r o o f . The form of Jf(e,ft) follows directly from its definition. If vn G 
J(T(en,n), yn-+ y in H2(Q) and vn -± v in V(f2), then vn-* v and yn-* y m 
C°(Q) and the inequality for the limit remains valid. • 

Lemma 4. The operators sz/ and 38 fulfil the respective assumptions in (H#/) 
and (H38). 

P r o o f . Clearly, &(t) G (f<Mp, \^h\) and (d&/dt)(t) G (\^oh3
p, \voh3

p) and 
J HJ!/(v,v)dQ ^ cVIMIv'(ft) on V(fi). As [v,z] i-» JHJ2/(v,z)dft can be taken as a 
n ft 
scalar product on V(f2), we can apply Theorem 1.1 in Chapter III, Sec 1 of [9] to 
obtain 

(3.9) \\j2/v - ^||y*(C2) ^ M2^| |v - z\\v{n) and 

(s/v - s/z, v - z) V(C2) ^ Mls/\\v - z\\ 2
v{n) Vv,z eft 

with positive constants M\^,M2^ independent of v,z G V(f2). Using the same 
procedure for the operator 38 we obtain for it relations similar to (3.9) for the spaces 
W(Q), W*(il) and with constants M\& and M2&. Thus 

(3.10) * = s/(e) G «vifi)(Mx*,M<M) and 38 = 38(e) G £w(n)(M139,M2<%) 

(both being independent of e G Uad (-"*))• The rest of the proof is trivial. • 

Let us consider the cost function to the optimal control problem in the form 

(3.11) áf:[e,v}^ J[v-zd]
2 ]2d f t 

ft 

with a given Zd G L2(Q). It is obvious that all assumptions in (E0) are fulfilled. 
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R e m a r k 1. The desired surface of the punch (the shape of an obstacle) and 
the desired distribution of the external forces are given by the distribution Zd of the 
deflection and we consider a control parameter as a subject to constraints, i.e. e G 
Uad(-^) such that the system response ue(e) is a minimum deviation of za in the 
defined sense. 

From Lemmas 3 and 4 and the above mentioned arguments it follows that all 
assumptions of Theorem 3 are satisfied. Hence there exists at least one solution of 
the optimization problems (£?£), (<^b), respectively. Particularly, there is a sequence 
en —> 0 and the sequence {[^„.,<7n]}n of optimal solutions to ( ^ n ) , respectively, 
and there is an optimal solution [^o,^] to (£?o) such that 

(3.12) yEn -±>' y0, qen - V g 0 and uEn(een) - V tx0(e0). 

R e m a r k 2. Let JT(e,fi) = JT(ft), e G JfT(Q) and -±=\\L(e£n) - L(e0)| | i /-i (c2) 

happen to tend to 0 for en -> 0. Then one has 

rr2 / Q \ 

(3.13) IK n (e £ n ) -wo(eo)||Hi(n) = 0(y/e^), en -> 0, and u£n —•> w0(e0). 

Indeed, this follows easily by putting v = u0(e0) into the variational inequality 

( e n ^ u £ n ( e e n ) , v - i i e n ( e e n ) ) ^ S* 0 and 
v =z uCn(een) into the variational inequality (8&u0(e0) — L(e0),i; — wo(eo))^i(o) ^ 0. 
The relation u0(e0) G H2(9) is proved in [2]. Due to (3.10) we obtain for each n G M 

(3.14) Mi^ | |n £ n (e £ n ) -tx0(e0) | |^2 ( r 2 ) + —— \\u£n(e£n) - wo(e0)||^i (n) 

sn 

^ (^w0(e0),u0(e0) -uen(e£n))H2{Q) 

+ —||L(effn) -L (e 0 ) | | H - i ( Q ) | | n^ (e £ n ) - iA0(e0)||#i(n). 
£n 

The relations (3A0) and (3.14) immediately yield u£n (e£n) -> u0(e0) in H2(ft). Using 
(3.14) again, we get the assertion. 

R e m a r k 3. The choice V(Q) = H2(Q) is related to the so called clamped 
problem. If the remaining assumptions of this section are preserved, then the results 
remain valid for this case with the exception of those in Remark 2. 
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4 . APPROXIMATION BY FINITE ELEMENTS 

We shall propose an approximate procedure to the problem treated in the preced­
ing section. We confine ourselves to particular domains being paralellograms. Let 
the plate be supported at a part <9ftu of the boundary <9ft and unilaterally supported 
at the remaining part c?ftc, both with a positive measure. We introduce sets 

y(.fi) := {v e C°°(ft); v = 0 on dSlu], 

K(dn) := {v € r(ft) ; O 0 on <9ftc}. 

Let V(ft) be the closure of y(il) and J^(dft) the closure of K(dQ.) in the space 
H2(ft). It is easily seen that J^(<9ft), playing here the role of J^(ft) from Sec 1, is 
a convex set in H2(ft). It corresponds to the unilateral obstacle for the deflection. 
On the other hand, VV(ft) is assumed to be the closure of Y(Q) in the space if1 (ft) 
and the closure (in Hx(ft)) of J^(dft) is Jf(dQ) which plays here the role of JT(ft) 
used earlier. The distribution of the external transverse forces q = e will be sought 
here in the set Uad(ft) = U^d(tt) which is defined in (3.1). 

Let 3?h denote a uniform partition of ft into a finite number of small (open) 
paralellograms ff{ by means of two systems of equidistant straight lines parallel to 

m(h) 
the sides of 0 . We assume ft = (J ff{, ffidffj = 0 for i ^ j and denote h = d i a m ^ . 

i = i 
Moreover, we assume that ^ is consistent with the partition of the boundary dft = 
dftuU<9ftc. We denote by Nh the set of nodes and set N*h = Nhr\dftc. We introduce 
the spaces Qk(ffi) of bilinear (k = 1) or bicubic (k = 3) polynomials defined on the 
paralellogram ffi, i = 1 , . . . ,m(h). If ff{ is not rectangular, then the spaces Qk(ffi) 
can be defined via the affine mapping 

(4.1) F: [2/1,2/2] •-» [2/1 +2/2 cos a, y2 sin a] 

(with a being the angle of the sides) and thus we can assume the rectangularity of 
ffi without any loss of generality. We denote 

t!ad(Я) 

fc(П) 

Wh(ӣ) 

Җ(дП) 

Л(дӣ) 

= {«eílad(n);g l t-, €Qi(0i), i = l,...,m(h)}, 

= {veV(n);v\ffi eQ3(t?i), i=l,...,m(h)}, 

= {v<E W((l); v\0i e Qi(ďi), i = 1,... ,m(h)}, 

= {vevh(n);v(s) ŽO, seNth}, 

= {veWh(Sl);v(s)žO, s&Nth}. 

We observe that J^(df t ) , J^(<9ft) are closed, convex and nonempty subsets of V/^ft), 
Wh(fy, respectively. Clearly, J^(3ft) £ JT(dft) and J^(dft) C JT(dft). We con-
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sider the following discrete variants of a from (3.5), b from (3.7) and L(e) from (3.3): 

a(vh,wh)
 :=2 &(H*/(vh,vfl))HJl/(vhiWh)dil, vh,wh G Vh(ft), 

b(vh,wh) : = 2 / &(H®(vh,vh))H®(vh,wh) dft, vh,wh G Wh(Q), 

(L(eh),vh)w(Si) '= / QhVhdQ, eh G U£d(Q) and vh G Vh(Q). 

We will not use numerical integration, hence 

(&fhvh,wh)V(Q) := (^vh,wh)V(Q),(@hvh,wh)w{n) := (@vh,wh)W(Q), 

(Lh(eh),vh)v{Q) := (L(eh),vh)V(Q),5?h(eh,vh) := 5?(eh,vh) 

for all arguments from the respective spaces. The form of (2?eh) and (£?oh) for our 
case is now defined. In what follows, we shall consider only families {2Thn ; n G N} 
of partitions for which the partition ^hn^ refines the partition SFhn, n G IU The 
family {S?h; h G M} for a set M C U+ will be called regular if 

(4.2) (3C > 0) (Vh G M) —— ^ C, where D:/ii-> min max d i a m ^ . 
D(h) ^ . 6 ^ *iC*i 
^ V ' ^ c i r c l e 

The introduced family {&kn ; n G N} is evidently regular. 

Lemma 5. Let a positive sequence hn satisfies hn -> 0 for n —> +oo, and let a 
sequence {e/ l n}n G n ^IacJ

l(-^) converges to a function e in U(fi.) for n —> +oo and 

some e > 0. Let u£hn (ehn) be the solution of the appropriate version of (2.1), n € N, 
and let u£(e) be the solution of the appropriate version of (1.2). Then 

(4.3) \\uehn(ehn) - u£(e)\\v(Q) -> 0 for n -> +oo and fixed e > 0 

holds for any regular family of partitions {<%„}• 

P r o o f . The existence of the solutions under investigation follows from (3.10). 
Due to (3.10) again and due to the particular form of Jthn(dn) which is a convex 
cone with the vertex at 0 there is some u*£ such that u£hn(ehn) —^ u*£ in V(Q). We 
shall show u*£ G J^(<9-1): Due to the imbedding H2(ft) <-> C°(n) the convergence 

(A A\ ( \ C°W 
(4.4) u£hn(ehn) —> u*£ 
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holds. Hence u*£ ^ 0 on dftc. Now, we prove u*£ = u£(e) (i.e. u*£ fulfils (1.2)). It 

is well-known that for any v G JT(dffc) there are un G if (<9fJ) such that un —> v 
for n -» +00. Let ^ n be the projector of K(<9H) onto Vhn(Q.) (for a given func­
tion it orders its V^-interpolants over the partition SFh). Then $hnvn € A n ( 9 f i ) , 
because the nodal parameters involve all values vn(s), s G N*h- Moreover, by [8] 
\\vn — &hnVhn \\v(Q) —> 0 holds for any regular family of partitions {«5JJ. Hence the 
condition ((Lg/)h) is fulfilled with a projector independent of ehn and e. Now, by 
the standard procedure used in Sees. 1 and 2 we get 

srfuEhn(ehn)
V-^ du*e, SSuehn(ehri.) -^ @u*£, 

which together with L(e£hn) —> L(e) yields (via an appropriate procedure of the 
preceding sections) that u*£ = u£(e) and the strong convergence (4.3) occurs. D 

Lemma 6. The problems (2?£h) and (0*oh) possess at least one solution, respec­
tively, for any h > 0 and e > 0. 

The p r o o f is analogous to those in Seal . D 

R e m a r k 4. A standard procedure from the finite element theory (cf. [7] or [8]) 

yields that [jU^(p) = Uad(-l). 
hn 

Theorem 6. For any fixed s ^ 0 there is a sequence {e£hn}n of solutions of the 
approximate problems (&£hn) such that 

(4.5) e£hn —•> e£ and u£hn(e£hn) —• u£(e£), 

where e G Uad(-~J) is a solution of the optimization problem (2?£). If the solution 
of(g?£) is unique, then the relation (4.5) with the indices h instead of hn holds for 
h^O. 

P r o o f . Consider a fixed e ^ 0 and a function n£ G Uad (-"&)• By virtue of 
Remark 4 there exists a sequence {r)£hn} C n ^ad W s u c n t n a t ^ m \\rj£h7l — 

nG_N n->+oo 

^IIC(rT) = 0- The compactness of Uad(-^) in Cn(ft) implies the existence of {e£hnk } C 
{e£hn} such that e£hnk -» e£ which belongs to Uad (-"&)• Prom the definition of the 
problem (&£hn) we conclude that J£(e£hn) ^ J£(r)£hn). Applying Lemma 5 and 
(E0), 1° we arrive at the relation J£(e£) -̂  J£(r]£). For any sequence {e£hn}nGN there 
is a convergent subsequence with the above described property. If the solution (@*e) 
is unique, we obtain (by an easy contradiction proof) that (4.5) holds for h —> 0. 
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5. CONCLUSION 

The above presented approach was applied to problems related to nonlinear models 

of elastoplastic plates. It can be employed e.g. in some kind of problems for elastic 

von Karman plates or for axisymmetric elastoplastic shells, too. There is also a lot of 

dynamic problems which can be treated in the framework of singular perturbations. 

However, they need a modified approach. 
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