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Summary. A new postprocessing technique suitable for nonuniform tr iangu lations is 
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INTRODUCTION 

This article intends to contribute to the sensitivity analysis in optimal shape de­
sign. A model problem of a single elliptic equation in IR2 with Dirichlet or mixed 
boundary conditions is considered. 

It is well-known (see [9—§2.4]) that the simplest formulae for the gradient of 
standard cost functionals with respect to the design variables involve integrals of the 
boundary flux. Thus one needs an efficient numerical method for computing both 
the solution and the boundary flux. The direct differentiation of the finite element 
solution, however, does not yield satisfactory results, as it suffers from a significant 
loss of accuracy. Consequently, a postprocessing has been proposed by many authors 
(see [16] or [22] for a recent survey of such methods), which recovers the gradient of 
the simplest finite element approximations. 

In the present paper we employ a new technique suitable in case of quasiuniform 
triangulations [12, 13]. Note that a related method of Lazarov at al. [17, 18] would 
lead essentially to the second type of sensitivity formulae, called "method of domains" 
[9—§2.4], where the gradient of the cost functional is represented by an integral over 
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the whole domain. Let us mention two other methods, which can be used in the first 

type of the sensitivity formulae, as they claim to be more accurate in the boundary 

flux calculation. The primal hybrid method, based on the theory of Raviart and 

Thomas [20], has been used by Chleboun and Makinen [5,6]. The penalty method 

with extrapolation of King and Serbin [15] has been employed in [14] by Hlavacek. 

The paper is organized as follows. In Section 1 we introduce a class of admissible 

domains, several elliptic state problems and cost functionals. Sensitivity formulae 

are derived in Section 2 for three standard cost functionals. Section 3 is devoted 

to the discretization by linear finite elements and to the definition of approximate 

optimization problems. In the final section we recall the technique of recovered 

gradients on quasiuniform triangulations and propose its application in the sensitivity 

formulae. 

1. OPTIMAL SHAPE PROBLEMS 

An admissible domain (Fig. 1) 

n(0) = {(xux2) e (R2; 0 < x2 < 0(xi), 0 < xi < 1} 

is controlled by the design function 9 which belongs to a set Uad of admissible design 

functions (see (1.2)). 

г2(0) 

o r3 i 
Fig. 1: An admissible domain £1(9). 
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Let n > 1 be a fixed integer. Like in the paper [6], we define the following set of 

admissible design variables 

(1.1) Q = { a G (Rn+1; Ci ^ a{ ^ C2,i = 0 , . . . ,n, 
n 

\ai+i -a,-| ̂  C3/n, i = 0, . . . , n - 1, ^Pa* = C4(n + l ) j , 
i=0 

where Ci, C2, C3 and C4 are given positive parameters. Then the design functions 

will be defined as Bezier curves [1] 

(1.2) 0(s) = F(a)(s) = £ > / ? ? ( * ) , ft{s) = M a * (1 " s)n~\ 
z=0 W 

The design variables are the x2-coordinates of the control points 

{Bt}?=0, B f - ( > ) e R 2 . 

We set 
Uad = F(Q) 

where the mapping F: IRn+1 -» C([0,1]) is determined by means of the formula (1.2). 
It is easy to verify, that for any integer N ^ n and any 9 £ Uad a unique a$ € Q 

exists such that 
F(a9)(j/N) = 6(j/N), j = 0,l,...,N. 

Moreover, we can prove that 

(1.3) Uad C Uad = (ee C^'HtO,!]); Ci <C 6(Xl) ^ C2, 

i%)i<c3) y ^i)dxi=C4|, 

where C^0)'1 ([0,1]) denotes the space of Lipschitz-continuous functions and the prime 
denotes (d /dxi ) . 

Indeed, since any Bezier curve is contained in the convex hull of its control points 
it follows that 

Ci ^ min {a{} ^ F(a)(s) ^ max {a*} ^ C2, Vs G [0,1]. 
0^.i^.n O^i'^n 

Differentiating F(a) with respect to s, we find that 

n - l 

F(a)'(s) = £ 7i/?r* 00, 1i = «(«*+! " <-<)• 
t=0 
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Thus F(a)' is also a Bezier curve with control points (i/(n - 1), 7*), i = 0,..., n - 1 
and 

l*W(*)l < n m « j + i + i ~ Oil} ^ C3. 
0-^tt^n—1 

Integrating the basis functions, we obtain for all i = 0,..., n 

[ #(«)<!* = l/(n + l) 
Jo 

and finally 

/ F(a)(s)ds = Tai f 0?{a)da = (n+ l ) " 1 f a ; = <54. <!o , = n ./o ^ ś=0 " u i=0 

R e m a r k 1.1. Instead of Bezier curves we could use H-splines as well. For 
details see [1] and [3]. • 

We shall consider a few state problems based on elliptic boundary value problems 
with a symmetric matrix A = (dij)2j=1) aij G W2(il&) and the right-hand side 
/ G L2 (£)<$). Henceforth we denote W£ (SI) the standard Sobolev space of functions 
the derivatives of which in the sense of distributions up to the order k belong to the 
space Lp(fi); ils = (0,1) x (0, S) with 6 > C2. 

We suppose that a constant ao > 0 exists such that 

(1.4) A(x)t • t ^ a0\\t\\2 Vr G il6, V* G IR2. 

We subdivide the boundary dQ(0) into four parts corresponding to the four sides 
of the "generalized rectangle" dfi(0), i.e., d(l(0) = Ti(0) U T2(0) UT 3 U T4(0) (see 
Fig. 1). 

Let us introduce the bilinear form 

a(0; y, w) = [ AVy • Vw dx, y,w e W\ (ft(0)), 
JQ{0) 

and the subspace 

H^(n(6)) = {weW2

1(n(9));w = 0ondQ(e)}. 

The first state problem: Find a function y(0) G H0 (f-(0)) such that 

(1.5i) a(0;y(9)1w)= [ fwdx WweH^(Q(0)). 
JQ(0) 
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Let us introduce both another bilinear form 

b(0; y, w) = a(0; y,w) + / ayw dy 
Jr2(0)ur4(9) r2(e)ur4(o) 

where a G L°°(f2 U f4) is a given function, f2 = {(x\,x2); x\ = 0,x2 G (0,(5)}, 
f4 = {(x\,x2); x\ = \,x2 G (0, J)}, a ^ 0, and the following subspace 

V(9) = {we W\ (n(0)) ;w = OonT1(0)U T3}. 

Then we may define the second state problem: Find y(0) G V(0) such that 

(1.52) a(9;y(6),w)= [ fwdx+[ gwd^ VweV(0), 
Jn(e) Jr2(o)ur4(o) 

where g G L2(T2 U T4) is a given function, and the third state problem: Find y(0) G 
V(0) such that 

(1.53) b(0;y(0),w)= [ fwdx+[ gwd-y VweV(0). 
JQ(0) Jr2(o)ur4(o) 

R e m a r k 1.2. The problems (1.5;), i = 1,2,3, express a weak formulation of 
the equation — div (AVy(0)) = f with homogeneous Dirichlet boundary conditions, 
mixed Dirichlet (on T\(0) UT3) and Neumann (on r2(0) UT4(0)) or mixed Dirichlet 
(on Ti(0) UT3) and Newton (on T2(0) UT4(0)) boundary conditions, respectively. 

Since the bilinear forms a and b are V(0)-elliptic, the above mentioned problems 
are uniquely solvable. • 

We choose the following cost functionals 

(1.6) Jx(0)= [ (y(0)-yp)
2dx, 

JQ(0) 

(1.7) M0)= [ fy(0)dx, 
JQ(0) 

(1.8) M0)= [ \Vy(0)\2dx, 
JQ(9) 

where y(0) is the solution of some of the problems (1.5;) and yp G L2(Q,s) is a given 
function. 

Finally, we define the optimization problems Pij, i,j G {1,2,3}: Find a%Jpt G Q 
such that 

(1.9) a ^ - ^ a r g m i n J . ^ a ) ) , 
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where y(F(a)) solves the state problem (1.5;) for 6 = F(a). 

In what follows, we use extensions of functions y G V(0) by zero in ft(5) — Q(0), 
so that the extensions belong to V(S). For brevity, we shall not denote the extended 
functions by new symbols. 

Proposition 1.3. The optimization problem P{j, i,j G {1,2,3}, has at least one 
solution. 

P r o o f . It is readily seen that the set Q is compact in Rn + 1 . If a^ —> a as 
k -> oo, then Ok = F(ak) -> F(a) = 9 in C([0,1]). Following step by step the ideas 
of e.g. the proof of Lemma 2.1 in [10], we can show that the corresponding solutions 
of (1.5;) (extensions) 

(1.10) y(ok)-+y(e) inWj(n«). 

Any of the cost functionals Jj, j G {1,2,3}, is continuous as a mapping from W\ (Qs) 
into R, so that 

Jj(F(ak)) -> Jj(F(a)), as k -> oo, 

follows from (1.10). We conclude that Jj(F(-)) attains its minimum on Q, being 
continuous on a compact subset of Rn+1 . D 

2 . SENSITIVITY ANALYSIS 

To give the reader an idea of sensitivity formulae we compute the Gateaux differ­

ential of cost functionals. For simplicity, let us assume that the coefficients a;j are 

constants. We use the method of material derivative [9], [21] and suppose v G R2 is 

a material velocity field, v = ( 0 , ^ ) , v2 = 0 on T3 and 

V2(xi,x2) = x2—^-, (xi,x2) G fi(0), 

where 0 G C ^ ' ^ O , 1]). For brevity, 0 is mostly omitted, e.g. y = y(0), ft = fi(0), 

V = V(0). 

Let us consider the first state problem (1.5i). 

The adjoint equation to (1.6) is (see [9—(3.3.13)]) 

/ AVz-Vwdx= / 2(y-yp)wdx Vw G Hr](ft), 
JQ JQ 
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where z G H^(ft). According to [9-(3.3.17)], 

{2.i)DMe,e) = ^ J ^ + t § ) - J ^ 

= / [AVy • V(Vz • u) - fVz • ^ + AV(Vu • v) • V* - 2(y - yp)V?/ • v] dx 
JQ 

+ / i(y-yP)2 + fz-A^y• Vz]v• 1/d7, 
Jan 

where .v denotes the unit outward normal to the boundary. Some more regularity 
for the functions y, z, f and yp is required to justify the formula (2.1) and next 
calculations. 

We know that 

(2.2) / —^-Vz-vdj= I AVy V(Vz-v)dx- [ fVz-vdx, 
Jan °VA JQ JQ 

(2.3) / - ^ V u • v d 7 = / AVz • V(Vu -v)dx- / 2(y - yp)(Vj/ • v) dx, 
JdQ ^ A dQ JQ 

where 8/OVA = Yli j=i a>ijVid/dxj. Substituting (2.2) and (2.3) into (2.1), we obtain 

DJi(0,0) = j [ ^ V ^ • v + -^-Vy -v+(fz- AVy -Vz + (y- ypf)v • v\ d7 . 

The vanishing of y and z on dtt implies a direct simplification of .DJi and 

(2.4) Vy \dQ= l^i / , Vz \dQ= l^i / . 

Then, since A is symmetric, we arrive at 

,,5, w.(..*>-/M[i^+4-*'-jf(i^^)^. 
The adjoint equation to (1.7) is 

/ AVz • Vwdx = fwdx Vw G Ho(^)> 
JQ JQ 

where z G Hd(^). Obviously, z = y. According to [9—(3.3.17)], 

DJ2(0,0)= I [2AVy • V(Vy • v) - 2/VH • v] dx + f [2fy - AWy • Vy]v • z/d7. 
JQ JaQ 
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Using the formula (2.2) for z = y, the boundary condition and (2.4), we arrive at 

(2.6) DJ2(9,6) = J (Av-v)(Q)\-vdi = J(Av-v)(j£)20dx1. 

The adjoint equation to (1.8) is 

/ AVz • Vwdx = 2 J Vy • Vwdx Viv G Hd(n)> 
Jn Jn 

where z G HQ(Q). Obviously, 

(2.7) Vz = 2A~lVy. 

According to [9—(3.3.17)], 

DJ3(0,0) = [ [AVy • V(V* • v) - fVz • v + AV(Vy -v)-Vz 
Jn 

-2VyV(Vy-v)]dx+ / [\Vy\2 + fz - AVy • Vz]v • vd"). 
Jan 

From (2.2), (2.7), symmetry of A and (2.4) we obtain 

(2.8) DJ3(6j) = J (|j;)2*dxi-

The link with control variables is given by the formulae 

(2.9) ^-{F(a)) = DJj{F(a)1F
,(a,ek)), k = 0 ,1 , . . . ,n, j = 1,2,3, 

where F'(a,Sk) is the derivative of the mapping F at the point a in the direction of 
the unit Rn+1—coordinate vector e*, i.e. 

F'(a,ek) = M. 

Next let us consider the second state problem (1.52). 
The adjoint equation to (1.6) is 

(2.10) / AVz- Vwdx = / 2(y-yp)wdx Vw G V, 
Jn Jn 

where z G V. Following the derivation of (3.3.17) in [9], we arrive at 

DJ1(0J) = (2.1)+ B(0,y,z), 
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where (2.1) denotes the right-hand side of the equation (2.1) and 

f»(0) 
(2.11) B{š,y,Z) = eMl ( ^ x 2 + 3 ) z k = 0 d x 2 

(9(1) / f l (1 ) /dg \ , +Mi (4x2+ff>k=idX2-
Since (2.2) and (2.3) hold, inserting the homogeneous boundary conditions on TiUTa, 

we obtain 

DM9,0) = J' ^^;+yiydx1+C0,y,z), 

where 

<-> <*•*•> - n r t(» - ̂ ) + - ^ ( ' - &).*"-- *> 
0(D /•e(i) 

Assuming a sufficient regularity of the solution y, z and of the data, we conclude 

that C{9,y,z) = 0, since 

dv dz _ 
•^-=9 and ^— = 0 o n r 2 u r 4 . 
ovA dvA 

Consequently, we have again 

(2.i3) D M o , i ) = j^^+yiydXi, 

like in (2.5) for the first state problem. 

The adjoint equation to (1.7) is 

(2.14) / AVz Vwdx= I fwdx Vw 6 V, 
JQ JQ 

where z eV. Arguing as before, we arrive at 

1 дy дz 
0dx1. 

(2-i5) DJ*°A=L*,*,A 

The adjoint equation to (1.8) is 

(2.16) / AVz • Vw dx = 2 / Vy • Vw dx Vtv G V, 
Jo Jn 
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where z G V. Obviously, (2.7) holds again. Following the previous argument, we 
arrive at the formula (2.8). 

Finally, let us consider the third state problem (1.53). 

The adjoint equation to (1.6) is 

/ AVz • Vuj dx + / azw d'y = 2 (y - yp)w dx Viv £ V, 
Jn Jr2ur4 Jn 

where z G V. 

In the same way, as before, we derive 

rl (dy dz DJ^v=i (i^+rf)*d*-+^.«'.*>. 
where 

—in дy дz дz дy 
-X2 + Õ — ñ — ^ 2 dvA dx2 dvA dx2 

- yz-—(x2a) + z-—(x2g)\ dx2 

dx2 dx2 Jxi=o 

4 . š { i ) r\ i H. +W)L i-i-=idxa-
Assuming a sufficient regularity of y, z, <r and y, we conclude that E(0, y, z) vanishes, 
by virtue of the conditions 

dy dz „ ^ 
a^- + ^y = ,̂ - — + « = o on r 2 ur 4 . 
ovA ovA 

Consequently, we arrive at (2.13) again. 

The adjoint equation to (1.7) is 

/ AVz • Vw dx + / azw d'y = I fw dx Ww G V, 
JQ Jr2ur4 Jn 

where z G V. The same calculations as in the previous case lead to the formula 

(2.15). 

The adjoint equation to (1.8) is 

/ ASJz • Vuj dx + azw d'y = 2 I Vy • Vw dx Vuj G V, 
JQ Jr2ur4 J si 
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where z € V. Then 

- div(AVz) = -2Ay in ӣ, 
дz дv -_ --, 

— + az = 2^- o n Г 2 U Г 4 , 
OVA OV 

follows, provided the solutions z and y are sufficiently regular. Using this and the 

previous approach, we arrive at the formula 

<,,7, »««.*-jn&i-(§$)>-'• 

3. DISCRETIZATION 

Passing to numerical analysis of the optimal design problems, we introduce trian-
gulations of admissible domains. Let N be a positive integer and h = 1/N. Denoting 
by ej the subintervals [(j — l)h,jh], j = 1,..., N, we consider the set 

uh = {eh E c^l([o,i\); eh\ej e P^), J = I,...,N}, 

where P\(ej) is the set of linear functions on ej. Let us define the following mapping 

Fh: Q -» Uh by means of the relations 

Fh(a)(jh) = F(a)(jh), j = 0,l,...,N. 

We approximate the set Uad of admissible design functions by the set 

Uad = {Oh eUh,3aeQ, Fh(a) = 0h}. 

For any given 6h G Uh
d, there exists a unique control variable a, such that Fh(a) = 

6h, if h is sufficiently small (h ^ 1/n). 

Having the discretization of a control function, we subdivide the domain 0,(6h) 

making two demands on a triangulation. 

(3.1) Any domain ft(Oh), 6h G Uh
d, is unambiguously related 

to a triangulation Th(9h) belonging to a family 

T={Th(eh)',eheuh
d, /i-+o+}. 

(3.2) The family T of triangulations is strongly regular, 

i.e., there exist constants C\ > 0, C2 > 0 independent of 

h and 6h, such that for any triangle K ETh(6h) 

Cxh
2 ^ meas(K), diam(.K') ^ C2h. 
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A triangular mesh satisfying (3.1), (3.2) can be constructed as follows (see Fig. 2). 
The Xi -coordinates of nodes are uniquely determined by the end points of the seg­
ments ej. Let M > 1 be the number of nodes in the X?,-direction. If we denote 
by x2(s) the ^-coordinate of the i-th mesh node which has s for x\-coordinate, we 
define 

(3.3) 4(s) = ^jFh(a)(s), i = l,...,M-

So the position of each node depends on Fh(a)(s), s G [0,1]. For more details we refer 
to [10], [11], where strongly regular "uniform slope" triangulations are constructed. 

However, a uniform slope mesh can contain "badly shaped" triangles, i.e., triangles 
with obtuse inner angle. To avoid this source of numerical inaccuracy, we shall use 
"chevron meshes" like on Fig. 2, see [19]. 

Fig. 2: A chevron mesh. 

These meshes can be created by means of the following simple algorithm: 

a) for fixed h and 8h positions of mesh nodes are computed (see (3.3)) and the 
corresponding quadrilateral mesh is constructed; 

b) let a strip of quadrangles be denoted by Ij, 

Ij = {(xux2) e U2; (j-l)h^xx t^jh, 0 ^ x2 ^6h(xi)}, j = 1 , . . . ,N. 

For any quadrangle in Ij, there are two possible diagonals subdividing it into 
two triangles. The respective slopes of the two diagonals are always different, 
i.e., one (denoted by "+" in what follows) is greater than the other ("-")• To 
subdivide a quadrangle, the diagonal with 

ba) the "+" slope is chosen iff 6h((j - l)h) > 6h(jh), 

bb) the " - " slope is chosen iff 6h((j - l)h) < 0h(jh), 
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be) the slope sign taken over from the strip Ij-\ is chosen iff 0h((j — l)h) = 
0h(jh) iov j > 1; 

c) if 0h(O) = 6h(h), then diagonals with "+" slopes are used in Ii. 
To discretize the state problems (1.5j), i = 1,2,3, we apply the finite element 

method. To this end we introduce the spaces 

xh(n(eh)) = {wh G c(Wd); wh \Ke P^K) V*T G Th(oh)} c w}(n(oh)), 
Vh(n(6h)) = {wh G Xh(Q(0h)) ;wh=0on .T^) UT 3 }, 

H^h(n(6h)) = {wh G Xh(n(0h)) ;wh = 0on dQ(0h)}. 

The approximate state problems are derived directly from the equations (1.5{). We 
only substitute a finite dimensional subspace HQH or Vh for the space Ho (Q(0h)) or 
V(9h). 

The first approximate state problem: find yh(0h) G HQh(Q(0h)) such that 

(3.4x) a(0h;yh(0h),wh) = / fwhdx Vwh G H*h(n(0h)). 

The second approximate state problem: find yh(0h) G Vh(il(0h)) such that 

(3.42) a(0h;yh(0h),wh) = f fwhdx+ f gwhd^^wh G Vh(n(0h)). 
Jft(0/J ^ 2 ( ^ ) ^ 4 ( ^ , 0 

The third approximate state problem: find yh(0h) G Vh(Q(0h)) such that 

(3.43) b(0h;yh(0h),wh) = / fwhdx+ f gwhdyVwh G ^ ( ^ ( 0 * ) ) -
Jft(0,.) ^r2(^)ur4(^) 

The approximate domain optimization problem Vh for fixed h and i, j G {1,2,3}: 

find a*ptj/l G Q such that 

aopt,h = argminJ / l j(F) l(a)), 
oceQ 

where the solution of (3.4*) is used to compute Jhj(Fh(a)) (i.e., we substitute yh(9h) 
for y(0h) in (1.6)-(1.8), 0h = Fh(a)). 

The function yh(0h) can be identified with a vector which solves a linear algebraic 
system related to (3.4;). It can be shown that both the matrix of the system and 
yh(0h) depend continuously on design variables a. Thus the problem Vh can be 
converted to a problem of the minimization of a continuous function on a compact 
set. 
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Lemma 3.1. Let a sequence {Oh}, h -> 0+, Oh G U^d, converge in C([0,1]) to a 
function 0. Then 6 G Uad and 

lim | |yh(^) -y(e) | | i ,n , = 0 , 
n—>U.f 

where 2/^(0^) and H(0) soive (3.4^ and (1.5{), respectively. 

P r o o f is standard—see e.g. [2]. • 

As a consequence we deduce that under the assumptions of Lemma 3.1 

lim Jhj{6h) = Jj{0), i,j = 1,2,3. 
h—>Q+ 

Theorem 3.2. Let {OL£ th}, h -> 0+, be a sequence of solutions of the ap­
proximate domain optimization problems Vh , i,j G {1,2,3}. Then a subsequence 
{alJ

 t } exists such that 
( op t , / i J 

Ca s F*K^ -* *& s F ^ t ) in C([0,1]), 

yhKJ^y^oit) inwt{ns) 

hold ash-> 0+, where yh{6i3
 % h) solves (3.4,) on fi(^a), y(0o

J
Pt) s o 7 v e s t1-5*) o n 

fi(0Opt) and a0p t is a solution of the problem Vij (1.9). 

P r o o f . The theorem can be proved by a slight modification of the proof of 
[2—Theorem 7.1]. • 

4 . RECOVERED GRADIENT 

In this section we shall propose how a superconvergent postprocessing technique 
can be incorporated into a shape optimization process. Our approach is based on 
some results of Levine [19], Hlavacek, Kfizek and Pistora [12], [13]. 

Above all, we should use triangulations which can be obtained from a uniform 
reference mesh via JV^-diffeomorphism. The reference mesh is either a chevron mesh 
or a uniform slope one on the unit square S = [0, l ] 2 , generated by triangulation of 
a uniform square grid. 

Meshes described in Section 3 comply with this requirement. Indeed, if we consider 
a Bezier curve 0 G Uad and if we put 

(4.1) $(X1,X2) = (X1,X26(Xl)), 
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then $(5) = tt(8) and the nodes of the mesh Th(9h) are the ^-images of the reference 

mesh-nodes on S. The mapping $ can be extended (e.g. via the formula (4.1)) to 

a mapping $ defined on a domain ft, 5 C ft. A proper extension 4 is a VV -̂

diffeomorphism, that is, $ is injective, $(ft) is an open set, $ and $ _ 1 belong to 

W^ on ft and $(ft), respectively. 

The recovered gradient method enables us to compute a better approximation of 

VH(^) than a direct differentiation of the finite element solution yh(0h) can give. 

Since only the derivatives dy/dv, dy/dvA, dz/dv and dz/dvA occur in the sensitivity 

formulae (2.5), (2.6), (2.8), (2.13), (2.15) and (2.17), we are mainly interested in 

approximations of the boundary flux by means of the recovered gradient method. 

We define the second component of the recovered gradient Ghyh(0h) at a grid 

point Z (mesh node) as follows [12], [13]: 

(4.2) [Ghyh]2 = ayh(A) - (a + f3)yh(Z) + (3yh(B) 

where A, B are the two nearest grid points in the x2-direction and 

— ft — 
a(b — a)' b(a — b)' 

a = x2(A) - x2(Z), b = x2(B) - x2(Z). 

Then [Ghyh]2 is extended to the whole domain ft = 0,(8h) by piecewise linear 

interpolation. 

Let us employ a local error estimate up to the boundary [13—Theorem 6.4]. The 

standard norm in the space VV*(ft) will be denoted by ||. \\k,q,n and if q = 2, by 

ll-lkn-
Assume that domains Q\ CC Q2 exist (which are not contained in ft) such that 

the solution of the first state problem (1.5i) 

y = y(0h)eW^(il1)nWi(il2), 

where ftj = Qj n ft, j = 1,2 and q > 2. Moreover, assume that a 7 G (0,1] exists 

such that y G VV2

1+7(ft) for any / G L2(ft) and 

(4.3) IІУІІ1+7.П ^ CЦ/IІ0.П-

Then 

дy 
дx2 

- [Ghyh]2 o ^C(Пo,-li)Л 2 7 ( | |ž/ | |зљ + lls.-.n, + H/IM 

holds for any sub domain 

Ho = £0 n ft, where </o CC Si 

and sufficiently small h. 
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R e m a r k 4.1. Recall that the standard finite element theory [7] yields only the 

estimate 

дy _ дţњ 
дx2 дx2 

n 0 š ІV - Уfc|i,n ^ C/i7|M|i+7,г* ^ С Л l / | | o f n , 

provided the solution of the state problem has the regularity considered in (4.3). 

• 

Using (4.2), we thus arrive at a piecewise linear approximation 

q2h = [GhyhheC(T1(6h)), 

which is close to dy(0h)/dx2 on T1(0h)-

To approximate the first component of Vy(0h) on T1(0h), we employ the homoge­

neous boundary condition. We have 

(4.4) ^ = ° > J = l . - . - V . 

where 

tj = (tji,tj2) = (h,0(jh) - 0((j - l)h)) 

is the tangent vector to the segment T1j(0h) of the optimized boundary T1(6h)- In 

accordance with (4.4), we prescribe 

(4.5) qlh = -q2htj2/tjl = -q2h[0{jh) - 0((j - l)h)]/h 

o n T i ^ / O , j = l,...,iV. 

The vector qh = (qih,q2h) can be used to approximate dy/dv, dy/dvA in the 

sensitivity formulae of Section 2. 

The same approach can be employed to obtain approximations of dz/dv and 

dz/dvA-
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