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INTRODUCTION

This article intends to contribute to the sensitivity analysis in optimal shape de-
sign. A model problem of a single elliptic equation in R? with Dirichlet or mixed
boundary conditions is considered.

It is well-known (see [9—§2.4]) that the simplest formulae for the gradient of
standard cost functionals with respect to the design variables involve integrals of the
boundary flux. Thus one needs an efficient numerical method for computing both
the solution and the boundary flux. The direct differentiation of the finite element
solution, however, does not yield satisfactory results, as it suffers from a significant
loss of accuracy. Consequently, a postprocessing has been proposed by many authors
(see [16) or [22] for a recent survey of such methods), which recovers the gradient of
the simplest finite element approximations.

In the present paper we employ a new technique suitable in case of quasiuniform
triangulations [12, 13]. Note that a related method of Lazarov at al. [17, 18] would
lead essentially to the second type of sensitivity formulae, called “method of domains”
[9—§2.4], where the gradient of the cost functional is represented by an integral over
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the whole domain. Let us mention two other methods, which can be used in the first
type of the sensitivity formulae, as they claim to be more accurate in the boundary
flux calculation. The primal hybrid method, based on the theory of Raviart and
Thomas [20], has been used by Chleboun and Mékinen [5,6]. The penalty method
with extrapolation of King and Serbin [15] has been employed in [14] by Hlavacek.

The paper is organized as follows. In Section 1 we introduce a class of admissible
domains, several elliptic state problems and cost functionals. Sensitivity formulae
are derived in Section 2 for three standard cost functionals. Section 3 is devoted
to the discretization by linear finite elements and to the definition of approximate
optimization problems. In the final section we recall the technique of recovered
gradients on quasiuniform triangulations and propose its application in the sensitivity
formulae.

1. OPTIMAL SHAPE PROBLEMS
An admissible domain (Fig. 1)
Q0) = {(z1,22) € R* 0 < z3 <O(z1), 0< 71 <1}

is controlled by the design function @ which belongs to a set U,q of admissible design
functions (see (1.2)).

A T2
L e =
N |
SoFkF———--—-—-—-— —1|
r1(8) I
o
T2(6) Q(6) ['4(0)
I
0 Ts 1

Fig. 1: An admissible domain Q(6).
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Let n > 1 be a fixed integer. Like in the paper [6], we define the following set of
admissible design variables

(1.1) Qz{aER""'l;C’lsaiséz,i=0,...,n,
n

|aizs — i) < C3/n, i =0,.. ,n—l,Zai=C'4(n+1)},
1=0

where C’l, C'z, Cs and C, are given positive parameters. Then the design functions
will be defined as Bézier curves [1]

12)  6(s) = Fla)(s) = S asbP(s), Bi(s) = (5)sta o

i=0

The design variables are the z;-coordinates of the control points
{B:}l, Bi= (%’ai) € R%

We set

Uaa = F(Q)

where the mapping F': R**! — C([0, 1]) is determined by means of the formula (1.2).
It is easy to verify, that for any integer N > n and any 6 € U,4 a unique ag € Q
exists such that
F(ag)(j/N) =0(j/N), j=0,1,...,N.

Moreover, we can prove that
(1.3) Upg C Ugq = {o e c®1([0,1]); €1 < 8(z1) < G,

1
16'(@1)| < Cs, / G(xl)dx1=6‘4},
0

where C(©):1([0, 1]) denotes the space of Lipschitz-continuous functions and the prime
denotes (d/ dz).

Indeed, since any Bézier curve is contained in the convex hull of its control points
it follows that

¢ < 01(1112 {a:} < F(a)(s) < Jnax {a }< G,y Vse[0,1].

Differentiating F'(a) with respect to s, we find that
n—1
F(a) S) Z'Y’Lﬁn 1 5)1 Yi = n(a1+1 - a1)
=0
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Thus F(a)' is also a Bézier curve with control points (i/(n — 1),7%),i=0,...,n -1
and
[F(@)'(s)l < | max {naisr — aul} < Cs.

<ign—

Integrating the basis functions, we obtain for alli =0,...,n

/l Br(s)ds=1/(n+1)
0

and finally
1 n 1 n .
[ F@@ds=Y o [ srds =+ Y a=6r
° i=0 Y0 i=0

Remark 1.1. Ins;ead of Bézier curves we could use B-splines as well. For
details see [1] and [3]. O

We shall consider a few state problems based on elliptic boundary value problems
with a symmetric matrix A = (ai;)?,_;, ai;j € WZ(Q2%) and the right-hand side
f € L?(s). Henceforth we denote W:(Q) the standard Sobolev space of functions
the derivatives of which in the sense of distributions up to the order k belong to the
space L?(2); Q5 = (0,1) x (0,6) with § > Cs.

We suppose that a constant ag > 0 exists such that

(1.4) A@)t-t > aollt||> Vz € Qs, Vt € R
We subdivide the boundary 99(6) into four parts corresponding to the four sides
of the “generalized rectangle” 0Q(0), i.e., 9(0) = T'1 () UT2(8) UT3 UT4(0) (see

Fig. 1).
Let us introduce the bilinear form

a(f;y,w) = L(e) AVy-Vwdz, y,w e W;(9(9)),
and the subspace
Hj (92(6)) = {w € W3 (2(8));w = 0 on 8Q(6) }.
The first state problem: Find a function y(6) € H} (Q2()) such that
(1.51) a(6;y(8),w) = /Q(B) fwdz Yw € H(2(0)).
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Let us introduce both another bilinear form

b(6;y,w) = a(6;y,w) + / oyw dy
T'2(0)Ur'4(9)

where 0 € L>(I'; UT,) is a given function, [y = {(z1,%2); 1 = 0,2, € (0,4)},
I's = {(z1,22); 21 = 1,25 € (0,8)}, 0 > 0, and the following subspace
V(8) = {w e Wy (22(6)); w=0o0nT;(0) UTs}.

Then we may define the second state problem: Find y(6) € V() such that
(1.52) a(6;y(0),w) =/ fwdz +/ gwdy Yw € V(9),
9(9) FQ(G)UF4(0)

where g € L2(I’; UTY) is a given function, and the third state problem: Find y() €
V(6) such that

(1.53) b(8;y(8),w) = / fwdzx +/ gwdy Yw e V(9).
Q(0) T'2(8)Ul'4(6)

Remark 1.2. The problems (1.5;), i = 1,2,3, express a weak formulation of
the equation — div (AVy(6)) = f with homogeneous Dirichlet boundary conditions,
mixed Dirichlet (on I'; () UT's) and Neumann (on I';(6) UT'4(0)) or mixed Dirichlet
(on T';(#) UT'3) and Newton (on I'2(0) UT'4(f)) boundary conditions, respectively.

Since the bilinear forms a and b are V(f)-elliptic, the above mentioned problems
are uniquely solvable. O

We choose the following cost functionals

(1.6) J1(6) = (y(0) — yp)* dz,
Q(6)

(17) T2(8) = /n o 1O

(1.8) J3(6) = /n A

where y(6) is the solution of some of the problems (1.5;) and y, € L%(€s) is a given
function.

Finally, we define the optimization problems P;;, i,j € {1,2,3}: Find af,’;,t €qQ
such that

(1.9) aJ, = argmin J; (F(a)),
«€Q
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where y(F(a)) solves the state problem (1.5;) for § = F(a).

In what follows, we use extensions of functions y € V() by zero in Q(6) — Q(6),
so that the extensions belong to V'(§). For brevity, we shall not denote the extended
functions by new symbols.

Proposition 1.3. The optimization problem P;;, i,j € {1,2,3}, has at least one
solution.

Proof. It is readily seen that the set Q is compact in R*t!. If ay — a as
k — oo, then 6 = F(ax) - F(a) =6 in C([0,1]). Following step by step the ideas
of e.g. the proof of Lemma 2.1 in [10], we can show that the corresponding solutions
of (1.5;) (extensions)

(1.10) y(6x) = y(8) in Wy (Qy).

Any of the cost functionals J;, j € {1,2,3}, is continuous as a mapping from W (Qs)
into R, so that
Ji(F(ax)) = J;(F(@)), ask — oo,

follows from (1.10). We conclude that J;(F(-)) attains its minimum on Q, being
continuous on a compact subset of R™+1, O

2. SENSITIVITY ANALYSIS

To give the reader an idea of sensitivity formulae we compute the Gateaux differ-
ential of cost functionals. For simplicity, let us assume that the coefficients a;; are
constants. We use the method of material derivative [9], [21] and suppose v € R? is
a material velocity field, v = (0,v2), v = 0 on I'3 and

’U2(Cl:1,$2) = 1‘22;22—1;, (Il)l,Iz) € Q(g),

where 6 € C(©:1([0,1]). For brevity, 8 is mostly omitted, e.g. y = y(8), 2 = Q(6),
V =V ().

Let us consider the first state problem (1.5;).

The adjoint equation to (1.6) is (see [9—(3.3.13)])

/AVz-de:cz/2(y—y,,)wda: Yw € H} (R),
Q Q
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where z € H}(2). According to [9-(3.3.17)],

J1(6 + t6) — J1(8)
t

= /[AVy~V(Vz-v)——sz-v+AV(Vy-v)-Vz—2(y—yp)Vy-v]d:c
Q

(2.1) DJi(6,0) = lim

+/ [(y_?/p)2 + fz— AVy - Vz]v-vdy,
1’9}

where v denotes the unit outward normal to the boundary. Some more regularity

for the functions y, z, f and y, is required to justify the formula (2.1) and next
calculations.
We know that

2.2) /BQ ;—Vz vdy = /AVy.V(Vz.v)dx-/fvz-vdx,
0z
(2.3) /an —a——Vy vdy = /AVz V(Vy - v)dac—/Q (y — yp)(Vy - v) dz,

where 8/0v, = 32

i j=1@ijvi0/0z;. Substituting (2.2) and (2.3) into (2.1), we obtain

- 8 9z
DJ1(0,0):f [ Y Ve v+ 2y v+(fz—Avy-Vz+(y—y,,)2)v-u] dn.
vy vy

The vanishing of y and z on 02 implies a direct simplification of DJ; and

0z
yl/, Vz |39= V.

0
(2.4) Vy IaQ— 51—/- al/

Then, since A is symmetric, we arrive at
(2.5) DJl((),é):/aQ [%ai:;+y§]v-ud'y=/o ( y 0z +yp)0dx1
The adjoint equation to (1.7) is
/QAVz -Vwdz = /wadx Yw € H} (R),
where z € H}(f2). Obviously, z = y. According to [9—(3.3.17)],
DJ»(6,6) /[2AVy V(Vy-v) —2fVy-v]dz + /Q[2fy — AVy - Vylv - vdy.
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Using the formula, (2.2) for z = y, the boundary condition and (2.4), we arrive at

(2.6) DJ,(8,6) = /E)Q(AV V) (gl-jy-)zv cvdy = /OI(AV . u)(%)zédxl.

The adjoint equation to (1.8) is
/ AVz-Vwdz = 2/ Vy-Vwdr Yw € H}(Q),
Q Q

where z € H} (). Obviously,
2.7) Vz=24"1Vy.
According to [9—(3.3.17)],
DJ5(8,6) = /Q[AVy V(Vz-v) = fVz-v+ AV(Vy-v) - Vz
- 2Vy-V(Vy-v)]dz + /39[|Vy|2 + fz— AVy - Vz]v-vdy.

From (2.2), (2.7), symmetry of A and (2.4) we obtain

(2.8) DJ3(8,0) = /01 (%)2édzl.

The link with control variables is given by the formulae

(2.9) g—c‘f’:(F(a)) =DJ;(F(a),F'(e,ex)), k=0,1,...,n, j=1,2,3,

where F'(a, ;) is the derivative of the mapping F at the point « in the direction of
the unit R**t!—coordinate vector &y, i.e.

F’(a,ek) = ﬂ:

Next let us consider the second state problem (1.52).
The adjoint equation to (1.6) is

(2.10) / AVz-Vwdz = / 2(y —yp)wdz Yw eV,
Q Q
where z € V. Following the derivation of (3.3.17) in [9], we arrive at

DJy(8,6) = (2.1) + B(6, v, 2),
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where (2.1) denotes the right-hand side of the equation (2.1) and

X 6(0) [°@ /d
(2.11) B(0,y,2) = 0_50—;/0 (—(—i;g—:l.‘z +g)Z |lz,=0 dz2
6(1) %W , dg
%1—; (dx 22+9)7 e dz

Since (2.2) and (2.3) hold, inserting the homogeneous boundary conditions on I'; UI's,
we obtain

A 0z Oy
DJ,(6,0) = /0 (mb— +12)0dzs +C(,,2),
where
R _4(0) /"“’) dy d dy
(2-12) C(O,y,z) = 9(0) A [(9 3 A) +zo— dz, (9" E)]Z lx1=0 dz,

9‘(1) 6(1)
+ Wﬁ/o [ ..]Z |¢1=1 dz,.

Assuming a sufficient regularity of the solution y, z and of the data, we conclude
that C(6,y,2) =0, since

0z
6_1/;—9 and (T)V—A—O ODF2UF4.

Consequently, we have again

X 18y 0z
(2.13) DJ,(6,0) = /0 (5 S B +92)dday,

like in (2.5) for the first state problem.
The adjoint equation to (1.7) is

(2.14) / AVz-Vwdz = / fwdz Vw eV,
Q Q

where z € V. Arguing as before, we arrive at

A By 0z
2.15 D =
(215) B6.0)= [ hoid
The adjoint equation to (1.8) is
(2.16) / AVz-Vwdz = 2/ Vy-Vwdz YweV,
Q Q
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where z € V. Obviously, (2.7) holds again. Following the previous argument, we
arrive at the formula (2.8).

Finally, let us consider the third state problem (1.53).
The adjoint equation to (1.6) is

/AVz-de$+/ azwd'y=2/(y—yp)wdx Yw eV,
Q '2Uly Q

where z € V.
In the same way, as before, we derive

- 18y 0z A A
DJ,(6,0) = = 42
10.0)= [ (G +92)0dm + EGy.2),

where

R _600) Doy 8z dz Oy
E(B,y,z) = '0(—0)/0 [ma—xzrz %51‘—21)2

d d
- yzd—u(mo) + zag(xgg)] o dz,

o) [°w
+ m /0 [ . .]11:1 d.’l)z.

Assuming a sufficient regularity of y, z, o and g, we conclude that E (é, ¥, z) vanishes,
by virtue of the conditions

Ay 0z
—7 — _ =0 L uly.
E) +oy =g, Bva +oz on [ ULy

Consequently, we arrive at (2.13) again.
The adjoint equation to (1.7) is

/AVz-dex+/ azwd'yz/fwdx Yw €V,
Q [2UT4 Q

where z € V. The same calculations as in the previous case lead to the formula
(2.15).
The adjoint equation to (1.8) is

/AVz~dea:+/ Uzwd’y=2/Vy-dea: Yw e V,
Q Uy Q

290



where z € V. Then

—div(AVz) = —2Ay in Q,

9z +Uz—2a—y onl Ul

vy ~ Tov 2 b
follows, provided the solutions z and y are sufficiently regular. Using this and the
previous approach, we arrive at the formula

(2.17) DJ3(8,6) = /01 [:T’JA%% - (—)2]édx1.

3. DISCRETIZATION

Passing to numerical analysis of the optimal design problems, we introduce trian-
gulations of admissible domains. Let N be a positive integer and h = 1/N. Denoting
by e; the subintervals [(j — 1)k, jh], j =1,..., N, we consider the set

U™ = {0, € CO1([0,1]); Onle; € Piles), j=1,...,N},

where P (e;) is the set of linear functions on e;. Let us define the following mapping
Fy: Q = U™ by means of the relations

Fi(a)(jh) = F(2)(jh), j=0,1,...,N.
We approximate the set U,, of admissible design functions by the set
Uy ={6n € U"; 3a € Q, Fu(a) = 6r}.

For any given ), € U",, there exists a unique control variable a, such that F,(a) =
On, if h is sufficiently small (h < 1/n).

Having the discretization of a control function, we subdivide the domain 2(65)
making two demands on a triangulation.

(3.1) Any domain Q(6,), 8, € U",, is unambiguously related

to a triangulation 7, (6:) belonging to a family
T = {Tn(6n); On € Uy, h = 04}

(3.2) The family 7 of triangulations is strongly regular,
i.e., there exist constants C; > 0, C2 > 0 independent of
h and 64, such that for any triangle K € Ty (60%)
C1h? < meas(K), diam(K) < Cah.
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A triangular mesh satisfying (3.1), (3.2) can be constructed as follows (see Fig. 2).
The z;-coordinates of nodes are uniquely determined by the end points of the seg-
ments e;. Let M > 1 be the number of nodes in the z,-direction. If we denote
by z%(s) the z2-coordinate of the i-th mesh node which has s for z;-coordinate, we
define
(3.3) 2i(s) = ~— L Fu(a)(s), i=1,..., M.

M-1
So the position of each node depends on Fj, (a)(s), s € [0,1]. For more details we refer
to [10], [11], where strongly regular “uniform slope” triangulations are constructed.

However, a uniform slope mesh can contain “badly shaped” triangles, i.e., triangles
with obtuse inner angle. To avoid this source of numerical inaccuracy, we shall use
“chevron meshes” like on Fig. 2, see [19)].

Fig. 2: A chevron mesh.

These meshes can be created by means of the following simple algorithm:

a) for fixed h and ) positions of mesh nodes are computed (see (3.3)) and the
corresponding quadrilateral mesh is constructed,;

b) let a strip of quadrangles be denoted by I;,

I = {(z1,22) € R?; (j —h < 71 < jh, 0< 22 < Or(a1)}, j=1,...,N.

For any quadrangle in I, there are two possible diagonals subdividing it into
two triangles. The respective slopes of the two diagonals are always different,
i.e., one (denoted by “+” in what follows) is greater than the other (“-~"). To
subdivide a quadrangle, the diagonal with

ba) the “+” slope is chosen iff 8, ((j — 1)h) > 64 (jh),

bb) the “~" slope is chosen iff 6, ((j — 1)h) < 8n(jh),
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bc) the slope sign taken over from the strip I;_; is chosen iff 65 ((j — 1)h) =
6n(jh) for j > 1;
c) if 6,(0) = 6, (h), then diagonals with “+” slopes are used in I;.
To discretize the state problems (1.5;), ¢ = 1,2,3, we apply the finite element
method. To this end we introduce the spaces

X (Q(Gh)) = {wh € C(Q(gh)), Wh IKE P (K) VK € 7;,(9},,)} C We_,l (Q(oh)),
Vi (Q(oh)) = {wy € X;,(Q(Bh)); wp =0o0n I'1(6) UT3},
H(}h (Q(Oh)) = {wh € Xh(ﬂ(ah)); wp =0 on 69(0h)}

The approximate state problems are derived directly from the equations (1.5;). We
only substitute a finite dimensional subspace H{,, or V}, for the space Hj (2(6,)) or
V(0).

The first approzimate state problem: find yn(6r) € HY, (2(6r)) such that

(3.41) a(Bh; yn(6n), wr) = /Q(o )fw;. dz Vwy € H, (2(6h)).

The second approzimate state problem: find ya(0r) € Vi (€2(6r)) such that

(3.42) a(6h;yn(6n), wn) =/

fwp dz + / gwp dy Ywp, € V), (Q(oh))
Q(61)

I2(6,)Ul4(61)

The third approzimate state problem: find y,(0r) € Vj, (Q(Oh)) such that

(3.43) b(0n;yn(On), wn) =/

fwndz + / gwp dy Ywp, € Vj, (Q(Gh)).
Q(61)

l“g(e,,)ul“q(e,.)

The approximate domain optimization problem ’P,';j for fixed h and 7,5 € {1,2,3}:
find o), , € Q such that

al h= argmin Jj; (Fa(@)),
13

where the solution of (3.4;) is used to compute Ji;(Fx(a)) (i.e., we substitute yn(65)
for y(6r) in (1.6)—(1.8), O = Fi()).

The function yx () can be identified with a vector which solves a linear algebraic
system related to (3.4;). It can be shown that both the matrix of the system and
yn(6r) depend continuously on design variables a. Thus the problem ’P,';j can be

converted to a problem of the minimization of a continuous function on a compact
set.
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Lemma 3.1. Let a sequence {6,}, h — 0, 6, € U",, converge in C([0,1]) to a
function 6. Then 6 € U, and

Jm {lya (@) = y(6) 1.0, =0,

where yx(6r) and y(8) solve (3.4;) and (1.5;), respectively.
Proof isstandard—see e.g. [2]. 0

As a consequence we deduce that under the assumptions of Lemma 3.1

hl_l'%l*‘ Jhj () = J;(60), 4,5 =1,2,3.

Theorem 3.2. Let {ao «n}, b = 04, be a sequence of solutions of the ap-
proximate domain optimization problems P;’, i,j € {1,2,3}. Then a subsequence
{a;’p . ;] exists such that

ij ij . n+1
Olopt ™ Oopy  in R,
L/ -

opt,ft = Fi;( opt, h) - gszt = F( opt) in C([O7 1])7
Y (67 5) = (o) in W3 (Qs)

oth

hold as h — 0+, where y,—L(OZj h) solves (3.4;) on Q(G”t i) y(Oopt) solves (1.5;) on

Q(6 1Dt) and o), is a solution of the problem P;; (1.9).

opt

Proof. The theorem can be proved by a slight modification of the proof of
[2—Theorem 7.1]. O

4. RECOVERED GRADIENT

In this section we shall propose how a superconvergent postprocessing technique
can be incorporated into a shape optimization process. Our approach is based on
some results of Levine [19], Hlavacek, KiiZzek and Pistora [12], [13].

Above all, we should use triangulations which can be obtained from a uniform
reference mesh via W2 -diffeomorphism. The reference mesh is either a chevron mesh
or a uniform slope one on the unit square S = [0, 1]?, generated by triangulation of
a uniform square grid.

Meshes described in Section 3 comply with this requirement. Indeed, if we consider
a Bézier curve 0 € U,q and if we put

(4.1) (X1, X2) = (X1, X20(X1)),
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then ®(S) = Q(#) and the nodes of the mesh 75(0,) are the ®-images of the reference
mesh-nodes on S. The mapping ® can be extended (e.g. via the formula (4.1)) to
a mapping ® defined on a domain Q, S c Q. A proper extension $ is a w2-
diffeomorphism, that is, $ is injective, @(Q) is an open set, ® and -1 belong to
W2 on Q and (Q), respectively.

The recovered gradient method enables us to compute a better approximation of
Vy(6,) than a direct differentiation of the finite element solution y(6,) can give.
Since only the derivatives dy/0v, dy/dva, 0z/0v and 0z /v 4 occur in the sensitivity
formulae (2.5), (2.6), (2.8), (2.13), (2.15) and (2.17), we are mainly interested in
approximations of the boundary flux by means of the recovered gradient method.

We define the second component of the recovered gradient Gryn(6r) at a grid
point Z (mesh node) as follows [12], [13]:

(42) (Ghynl2 = ayn(A) — (a + B)yn(Z) + Byn(B)
where A, B are the two nearest grid points in the z,-direction and
b a
=0 P hacy

a=122(A) —z2(Z), b=1z2(B)—1x:(2).

Then [Ghryn]2 is extended to the whole domain 2 = Q(#,) by piecewise linear
interpolation.

Let us employ a local error estimate up to the boundary [13—Theorem 6.4]. The
standard norm in the space W(Q) will be denoted by ||.||x,q,2 and if ¢ = 2, by
I llea-

Assume that domains G; CC G, exist (which are not contained in ) such that
the solution of the first state problem (1.51)

y =y(6n) € W2 (h) N W3 (),

where 2; = G; NQ, j = 1,2 and ¢ > 2. Moreover, assume that a v € (0, 1] exists
such that y € W, 77(Q) for any f € L2(2) and

(4.3) 1Yll1++,2 < Cli fllo,0-
Then

9y
|5~ (Gale] . < C@0, 2R (Iyllag + Iyllscian + 11 fllo0)

holds for any subdomain

Qo =GN Q, where Go CC G

and sufficiently small hA.
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Remark 4.1. Recall that the standard finite element theory [7] yields only the
estimate

Oy Oy

<y - < ChY < ChY
el oo, <1~ shhia < CHMyliva < CHTISllon,

provided the solution of the state problem has the regularity considered in (4.3).
O

Using (4.2), we thus arrive at a piecewise linear approximation

@2n = [Ghryn]2 € C(T1(6r)),

which is close to dy(61)/0z2 on 'y (64).
To approximate the first component of Vy(6,) on I'1(6)), we employ the homoge-
neous boundary condition. We have

Oyn(6n) _

(4.4) o

where
tj = (tj1,t2) = (h,0(jh) — 6((j — 1)h))

is the tangent vector to the segment I'y;(6r) of the optimized boundary I'y(6:). In
accordance with (4.4), we prescribe

(4.5) qin = —Qantj2/tin = —qn[0(jh) — 0((5 — 1)h)]/h

on I‘lj(Hh), ] = 1,...,N.
The vector gn = (q1x,q2x) can be used to approximate dy/dv, dy/dv,4 in the
sensitivity formulae of Section 2.

The same approach can be employed to obtain approximations of dz/dv and
oz / al/A.
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