Applications of Mathematics

Milan Pokorny
Cauchy problem for the non-newtonian viscous incompressible fluid
Applications of Mathematics, Vol. 41 (1996), No. 3, 169-201

Persistent URL: http://dml.cz/dmlcz/134320

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/134320
http://dml.cz

41 (1996) APPLICATIONS OF MATHEMATICS No. 3, 169-201

CAUCHY PROBLEM FOR THE NON-NEWTONIAN
VISCOUS INCOMPRESSIBLE FLUID

MILAN POKORNY, Olomouc

(Received October 25, 1994)

Summary. We study the Cauchy problem for the non-Newtonian incompressible fluid
with the viscous part of the stress tensor rv(e) = 7(e) — 2u;Ae, where the nonlinear
function 7(e) satisfies 7;;(e)e;; > cle|? or Tij(e)es; > ¢(le|® + [e[?). First, the model for
the bipolar fluid is studied and existence, uniqueness and regularity of the weak solution is
proved for p > 1 for both models. Then, under vanishing higher viscosity u1, the Cauchy
problem for the monopolar fluid is considered. For the first model the existence of the weak
solution is proved for p > 71%7 its uniqueness and regularity for p > 1 + 13—_,'_‘2- In the case
of the second model the existence of the weak solution is proved for p > 1.

Keywords: non-Newtonian incompressible fluids, Navier-Stokes equations, Cauchy prob-
lem

AMS classification: 35Q30, 76 A05

1. INTRODUCTION

a. Equations and constitutive laws.
Let n = 2 or 3. The motion of incompressible viscous fluid in R™ is described by
the system of equations

(1.1) divu= — =0,

6:1)1'

Ou; Ju; Oy

1.2 : =Y
( ) e 8t + Q’U,] 61']' 8.’12]'

+ofi, 1=1,2,...,n.

Here the equations (1.1)—(1.2) express the balance of mass and the balance of mo-
mentum, respectively. In the equations u = (uj,us,...,u,) represents the velocity
field, o = const > 0 the density, f = (f1, f2,..., fr) the specific body force and 7;;
are the components of the stress tensor. All quantities are evaluated at (x,t), where
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x = (z1,%2,...,%,) is the actual position and t the present time. When no misun-
derstanding can occur, we will write only u instead of the correct u(x,t). Hereafter,
for simplicity in writing, we put ¢ = 1 and use summation”convention.

In order to make the system of equations complete it is necessary to prescribe the
constitutive relation for the stress tensor. Due to physical considerations, the stress
tensor is decomposed as

(13) Tij = —'71'(5,] V

Tij»

where 7 is the pressure, §;; is the Kronecker delta and 7V is the viscous part of the
stress, which must be defined by a set of constitutive relations.
In the present work we will assume the stress tensor 7V of the form

(1.4) ™V =71(e)

with 7 a symmetric tensor, where the components of the deformation velocity tensor
e are given by

_ 1 3ui 6uj
(1.5) €ij = eij(u) = 5 (aw] + 3.271) .

In our considerations the polynomial growth

(1.6) |ii(e)] < cr(lel + |e|”_1), ca>0,p>2
Irij(e) < cilefP™, 1<p<2

as well as the strong coercivity condition

(1.7) Tij(e)ei; 2> caleff, 1<p<oo, c2>0

will play an important role. Here |e| means the Euclidean norm of the tensor e, i.e.
(1.8) lel = (eijeis)?.

We will assume the existence of the scalar potential ¥ for the stress tensor

dd(e)

(1.9) rii(e) = e
with 9(-) twice continuously differentiable in R™, 9 >0, 9(0) = 0 such that we have
for all £ € Rsym‘

%9 ~
(110 dei; (e) 5175”“ cs(1+lefP%)&iki5, p>2,

ij0
8%y e) _
Be”é()e Eij€ik > calelP %685, P <2
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It is possible to show that (1.7) is a direct consequence of (1.9), (1.10) and the
fact that 9(o) = 0.

There are several phenomena which appear studying non-Newtonian fluids: shear
thinning and shear thickenning, ability of a creep, ability to relax stresses, presence
of normal stress differences in simple shear flow, presence of yield stress. For more
detailed description see [17]. Our model includes shear thinning (p < 2) and shear
thickenning (p > 2).

1.11. Remark. Generally it is possible to assume that 7" is a function of Du.
However the principle of material frame indifference (see [9]) implies that 7V can
depend only on the symmetric part of the velocity gradient.

We have in mind two examples: first, for p > 2
(1.12) Tij(€) = (o + pmlelP~?)es;
with po, p1 positive constants and second, for p € (1,2)
(1.13) 7i5(e) = |e[P2es;.

It is an easy matter to check that the potentials

1 e;,eu y—
J(e) = 5/0 (ko + ms"T ) ds

for p > 2 and

1 €ij€ij p=2
J(e) = = s2 ds
2 Jo

for p < 2 satisfy the assumptions (1.9)—(1.10).

We will also study separately the model (1.12) for p < 2 for which we will be able
to prove the existence of a weak solution for all p > 1. Of course, we have to modify
the conditions (1.6), (1.7) and (1.10). The condition (1.6) will be the same for both
p < 2 and p > 2, instead of (1.7) we have to use 7;;(e)e;; > c(|e|” + |e|?). The
condition (1.10) must be replaced by —6—2%(%&]-&;9 > c3(1 + |e|P~2)&;&:;5. We will
call this model the perturbated linear model.

b. Problem formulation and survey of results.

1.14. Definition. Let ug: R™ — R”, f: Q7 — R™ be given functions. The
problem (CMN) denotes the following: to find u(x,t), m(x,t) solving (1.1), (1.2),
(1.3)-(1.7), where u(x, 0) = ug(x). The letters (CMN) abreviate the Cauchy problem
for the Monopolar Non-Newtonian incompressible fluid.
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In Chapter 3 we will assume the viscous part of the stress tensor in the form
(1.15) v =1(e) — 2umAe, p; >0,

where 7 is supposed to satisfy all the assumptions (1.6)—(1.10). Such fluids are
called bipolar viscous fluids. The theory of bipolar fluids is compatible with the
basic principles of thermodynamics, including the Clausius-Duhem inequality and
the material frame indifference. The thermodynamical principles also imply that the
other higher (third order) stress tensor 7;;, must be considered. See [15], [3] for a
detailed description of multipolar fluids. Here we suppose

Be,-j

ailik ’

1.17. Definition. Let ug: R®™ —» R™, f: Q7 — R™ be given functions. The
problem (CBN) denotes the following: to find u(x,t), 7(x,t) solving (1.1), (1.2),
(1.3), (1.5)-(1.7), (1.15), where u(x,0) = ug(x). The letters (CBN) abreviate
Cauchy problem for the Bipolar Non-Newtonian incompressible fluid.

(1.16) Tijk = 2411

In Chapter 3 we will prove the existence, uniqueness and regularity of a weak
solution of the problem (CBN). In Chapter 4 we will study the limiting process
u1 — 07 in order to prove the existence of a weak solution of the problem (CMN). We
will get the existence for p > = and its regularity and uniqueness for p > 1+ =% +2

The mathematical theory of the problem for the monopolar fluid was introduced
for the first time by O.A.Ladyzhenskaya (for bounded domains). She proved the
existence of a weak solution for p > & (n = 3) and its uniqueness for p > $(n = 3).
For details see [8]. The same results were been proved in [10] for the p-laplacian,
i.e. the existence for p > 1 + +2 and uniqueness for p > —+—— n < 4. The limiting
passage from the bipolar fluids to the monopolar ones was done for the first time in
[14] and [11].

This paper follows up with the papers [2] and [12]. The former uses a similar
method as the present work, i.e. the authors first solved the problem for the bipolar
fluid and letting p; — 0% they obtained a solution for the monopolar case (both
Young measure-valued and weak). In the latter the results were obtained directly
using the Galerkin method. In both papers the following results were proved: the
existence of a Young measure-valued solution for the Dirichlet problem for p > = +2,
the existence of a weak solution for the space periodic problem for p > ::2, its
regularity and uniqueness for p > 1 + n2_"_12 The aim of this paper is to show that
the same holds also for the Cauchy problem, i.e. 2 = R™ is unbounded.

As far as it is known to the authors, there are up to now no results in the case of
a general unbounded domain.
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2. FUNCTION SPACES, INEQUALITIES

Let n = 2 or 3. Denote I = (0,T) with T > 0, Q7 = R™ x I. The standard
notation is used for both scalar (u: R™ — R or Q1 — R) and vector-valued functions
(u: R™ » R™ or Q7 — R™).

We denote by C(R™) and C*(R™) (k € N or k = 00) the space of real continuous
functions on R™ and the space of k-times continuously differentiable functions on
R™, respectively. The space of real C* functions on R™ with a compact support in
R™ is denoted by 2(R™) and its dual by 2'(R"). Under D(*)u we understand the
vector which consists of all possible derivatives of the k-th order with respect to the
space variables, Du = D(1u,

The Lebesgue spaces of scalar and vector-valued functions are denoted by L7(R™)
and LI(R™)", respectively (¢ € [1,00]). The spaces are equipped with the standard
norm denoted by || - ||;. The Sobolev spaces W™P(R™) and W™P(R™)™ are the
sets of all measurable functions, for which the functions and all their generalized
derivatives up to the order m belong to LP(R™) and LP(R™)", respectively. The
spaces are equipped with the standard norms and seminorms denoted by || - ||, and
| - |m,q- For more detailed descriptions see e.g. [1].

Let s be a noninteger positive number, s = [s] + {s}, where [s] is the integer and
{s} the fractional part of s. Let 1 < p < co. Then the Slobodeckij spaces W*P(R™)
(W*P(R™)") are subsets of the Sobolev spaces W(sl7(R™) (W(sh»(R™)"), where

1

|D*u(x) — D*u(y)|? v
2.1 op = slo + E )
21)  lulls,p = llullis),p (/R"xR" I Bz0n dxdy| <o

le]=[s]

We will use the following imbeddings and interpolations which hold between Slo-
bodeckij and Sobolev spaces:

2.2. Lemma (imbeddings). Let1 < p < g < co. Let 0 < 32 < s1 < o0 be
integer or non-integer. Then W*1P(R™) — Ws2:9(R™) if

1 81 —359

(2.3)

1_
qa p n
Proof. See[19, p. 129]. 0

2.4. Lemma (interpolation in s). Let u € W*P(R")*, 0 < 52 < s < 81 < 00, §
non-integer. Then there exists a constant ¢ > 0 such that
(2.5) llalls,» < cllullg; Hllulls; >

81,p 82,p)

where
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(2.6) s=as; + (1 - a) s, a € (0,1).

Proof. See [20, pp. 181-186]. O

Korn inequality will be used for estimates of the nonlinear term:

2.7. Lemma (generalized Korn inequality). Let ¢ € W1 4(R™)» n W1H2(R™)",
q > 1. Then

1

29) ([ letlax)" > Kol

dpi Op;
where Kq > 0, 2e;(p) = 555 + 352

Proof. See [16, pp. 47-48]. O

The following classical lemma will be used for the limiting passages in the nonlinear
term:

2.9. Lemma. Let Q7 C R*+! be bounded. Let fy: @t — R be integrable for
every N and let

(1) Nlim fn(y) exist and be finite for a.e. y € Qr
—00
(ii) Ve > 0 36 > 0 such that

sup/ |fn(y)|dy <e  VH CQr; |[H| <.
N JH

Then
(2.10) im /QT fn(y)dy = /QT Jim fi(y)dy.
Proof. See|[5]. O
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3. WEAK SOLUTION FOR THE BIPOLAR FLUID

In this part we will deal with the problem (CBN). Our goal is to prove existence,
uniqueness and regularity of the system

Oui

(3.1) 3z 0,

du; du; _ Om Oy O Aeo st
(32) W + uJa_.’Ej - axi + BI] 2"1‘1 ax] Ae7v] + f‘l)
(3.3) ui(x,0) = upi(x),

where the nonlinear tensor function 7(-) fulfils the conditions (1.6)—(1.10).
We denote

(3.4) H = {p € L*(R™)"; divy = 0},
(3.5) V, = {<p € 2'(R™™; Dy € LP(RM™ ; divy = o} :

The latter is equipped with the usual seminorm of the Sobolev space W1P(R™)™,
ie |-|v, = |-|1p Hereafter, u€ L?(I;V,) means that Du € L?(I; L?(R*)*") and
,ulLY'(I;V,,) = ”Du”Ln([;LP(Rn)nZ). We denote

(3.6) U=W2»2R™)"NV,.
We will assume the following about the data of our problem:

(3.7) u € WH2(R™)" N H,
f € L3(I; L>(R™)").

3.8. Definition. The function u € LP(I;V,)NC(I; H)NL?(I; W2%(R™)") with
%—‘t‘ € L2(I; L?(R™)™) is called a weak solution of the problem (CBN) if

6ui au,;
(3.9) [ Gecax+ [ wigpedx+ / rigle(w))ess () dx
de;j(u )ae,]
+2m . O axk / fipdx

is satisfied a.e. in I for every p € U.

In order to be able to use the Galerkin method, we need to find a countable dense
subset of the space U with special properties. In fact, we need the functions of this
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subset to be smooth, have compact support and zero divergence in R™. The existence
of such a subset is ensured by the following lemma.
We denote

Do(R™M)" ={p € 2(R™)™; divy = 0}.

3.10. Lemma. There exists a countable subset of the space Zo(R™)™ which is
dense in U.

Proof. As 2(R™)" is dense in W22(R")™ and V,, we have that 2(R™)" is
dense in U. The separability of 2(R™)" yields the existence of a countable subset
of 2(R™)™ which is dense in U. We denote its elements {¢,},.,. These functions
have generally a non-zero divergence.

We denote g, = div ¢, where evidently g, € 2(R™). Let us solve the problem

In [4] it is shown that there exists a solution ¥, € 2(R™) such that

(3.12) [¥nll2,2 < erllgnlli,2,
(3.13) ¥nll1p < c2llgnllp-
We denote

(3.14) W= n — Yn.

Now, let v be an arbitrary element of U and e a positive number. Then there
exists pn € 2(R™)™ such that

3.15 ko = Vil = llon = V22 + o = Vip < ——
. n - = n—V n - X T, . >
( ) 2 Vilu @ 2,2 T |p 1,p T +6
see (3.12), (3.13). Then (divv = 0)
lwWn = vllu = llon = v = ¥ullu
< lon = vilu + ¥nllu
€
<—+ div(pn, — v + el div(epn, — v <e
——— +alldivien — Vb2 + ol divien =Vl
and the set {w,}$2, is dense in U. a
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The next two simple lemmas will be used for the apriori estimates. Their proofs
are direct consequences of the fact that [p. |@(€)|?|€** d¢ is an equivalent seminorm
on W*?2(R"), which can be found e.g. in [16]. Here u(¢) is the Fourier transform
of u.

3.16. Lemma. Let u € L2(R"), D®@u € L2(R*)"*. Then Du € L%(R™)" and

(3.17) 1Dl < esllull2 /D ulls.

3.18. Lemma. Letu € W2%(R"), n < 3. Then u € L™(R"™), i.e. there exists
cs > 0 such that

(3.19) ess sup lu(x)| < callull2,2-
x€R

Now let {w™}.., be our countable dense subset from Lemma 3.10 (after elimi-
nating zero and linearly depending functions).

3.20. Definition. We say that u™(x,t) Z cN (t)wi(x) is the Galerkin ap-
proximation of the solution of the problem (CBN) 1f

X ach (1) o
(3.21) /( ok ,(x)> £09d

=1

+ / i (e(u® (x, ) ess (W (x)) dx
Beij(uN (x,1)) Oei;(w*(x)) d

R® a.’l:k 8xk

k(x
/ (Zc, t)w‘(x) (Zc ()—%) wi(x) dx

+2m

X

—/ fi(x,)wg(x) =0 Yw® a=1,2,...,N.
Rﬂ

Using the Carathéodory theorem (see [7]) we get the existence of the Galerkin
approximation locally in time. From the apriori estimates in L>°(I; H) we have the
existence on each time interval (0,7), T' < co.

3.22. Remark. For the Carathéodory theorem we need that the matrix with
the elements a'* = [;, wiwg dx be regular. It is the so-called Gram matrix, and it is
known that the Gram matrix is regular provided {w®}~_, are linearly independent.
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3.23. Lemma. Letug € H, f € L?(I; L?(R™)™). Then the sequence of Galerkin
approximations satisfies the following uniform estimates:

(3.24) M|l geo(r;22(Rm)m) < cs5,
(3.25) “DuN“Lv(I;Lp(Rn)u?) < Ce,
(3.26) a2 rw2.2@eym) < o7

Proof. Multiplying (3.21) by c¥(¢) and summing up the equations we get
N
(using the fact that [p, ul %yz‘—jufv dx = 0 for divergence free functions)

-d—l/ [u¥|? dx +/ 7ij(e(u™))es; (uV) dx
dt 2 " R"
8e,-j (uN) 8eij(uN) _ N
+ 2N1 /u a:lik sz dx = R™ fzui dx.

Integrating over (0, t) and using the coercivity condition (1.7) and the Korn inequality
(2.7) we obtain

1 t _ t
G2 Gl @Bd+e [ 1Dulpdi+am [ D@ [Bar
0 0
t 1
<| [ [ ol axa] + Gl
0o Jre 2

Taking the first term on the left hand side we get

t
(3.28) ™ (®)113 S/O lI€l2(1 + [lu™]13) dt + fluoll3,

which after employing the Gronwall inequality (see e.g. [7]), proves (3.24). The other
two estimates we get from (3.27) and Lemma 3.16. O

3.29. Remark. By means of (1.6) and (1,7) it is possible to show that there
exist constants cg and cg such that Yu € WH2(R™)" n W1.P(R™)",

cslle()lI? < [[9(e(w))ll < collle(w)ll3 + lle(u)]l3).

3.30. Lemma. Letn <3, f € L*(I;L*(R™)"), ug € W22(R")"NV,, p > 1.
Then

(331) ”uN”Loo(I;WZ.Z(Rn)n) < C10,
ou?
- < )
(3.32) ” ot llrLz2(r;L2(Rm)™) ‘i

178



Proof. Multiplying (3.21) by —%+* ac (t) , summing up from 1 to N and integrating
over (0,t), t € (0,T] we have

(3.33) / \ ldxdt+ / d(e(u™ (1)) dx — / d(e(uV (0))) dx

. / " laeuax’: (t))l dx — / u|aeuax’:(0))‘ dxe

N
+/u§"au aulddt /f, L gxat.
Q: awj

The assumptions on ug, f and the scalar potential 9 (non-negativity), the Korn
inequality and in the case of the last two terms in (3.32) also the Hélder and Young
inequalities yield

o 315

+ m& [ DPu" ()1 < c(uo,f)+/ [u¥ 2| Du”|? dx dt.
L3(Q.) o

The convective term on the right hand side of (3.34) can be estimated by means of
Lemmas 3.17 and 3.23:

t t
/ / u P Du P dxdt < 4 / [V 12,5 DM |2 dt
0 n 0
t
< cace / [V 12, (el D@ uP |2 + Ae)[[u |12) dt
0

In the first term we take in || D(®u”||, the supremum over (0,¢) and transfer it with
a small coefficient € to the left hand side of (3.34). The other term is finite thanks to
the apriori estimates in L>°(I; H) and L?(I; W22(R™)"). The estimates (3.31) and
(3.32) follow from (3.34) and Lemma 3.16. O

3.35. Remark. Multiplying (3.9) by {2(13)ac (t), where £(t) = 0 on [0, 8],
&(t) = 1 on [6,T] and &(t) € C=([0,T]) we can get the same estimates as (3.31)—
(3.32) with ug € H only, but on [§,T] with § > 0 arbitrary.

3.36. Theorem. Letn < 3 and let all the assumptions of Lemmas 3.23 and
3.29 be satisfied. Then there exists a unique weak solution of the problem (CBN) in
the sense of Definition 3.8. Moreover, u € C%(I; H).

Proof. Ezistence. Denote by u”/Bgr the restriction of the Galerkin ap-
proximation to the ball in R™ with diameter R. First, we take B; and denote
A = {a € N; suppw® C B}, where {w'}$, is our dense countable subset in U.
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As u" /B is bounded in both L*(I;W22(By)") and LP(I; W?(B;)") and 28~ /Bl
in L*(I; L?(B1)™) we can derive by means of Lions-Aubin Lemma (see e.g. [10, The-
orem 5.1]) that there exists a subsequence u}’ such that

ul’ /B, — u, strongly in L*(I; W ?(B)")

with p € (1,00) for n =2 and p € (1,6) for n = 3. Now we are able to carry out the
limiting passage in (3.21) for fixed w*® with a € A;. (In the nonlinear term thanks
to the above mentioned strong convergence in L*(I; W'?(B;)™), i.e. Du¥' — Du
a.e. in By x I, and thanks to Lemma 2.9.)

Now we take B, and denote again A; = {a € N; suppw® C B,}. Evidently
A; C A; and we can deduce the existence of a subsequence u)’ (chosen from ul¥)
such that

ulY /By — uy strongly in L2(I; WP (By)™).

Evidently uz/B; = u;. So we can construct a “diagonal” sequence {u} }%_, such
that
u¥/Br — u/Bp, strongly in L?(I; W'?(Bg)™)

for an arbitrary R > 0.

Now we use the fact that the system {w}>. | is dense in U. We can close the
test functions in U and thanks to the apriori estimates of the solution we get that
the equality (3.9) is satisfied for every ¢ € U a.e. in L

As u € L¥(I;W2%(R™)") N L*(I; H) and 2% € L?(I; H), it follows from Theorem
1.17, Chapter IV in [6] that u € C(I; H). Moreover, we can show that u € Ci(I;H).
Put .

u(t) = / a(s)ds + u(ty).
31
From the Holder inequality and the apriori estimate of the time derivative we con-
clude:

t
() = u(t)I2 < [t = t] / lia(s) |12 ds
t1

and therefore u € Cz(I; H).
Uniqueness. Let u, v be two weak solutions of the problem (CBN). Taking w =

u — v as a test function for both equations for u and v we get ’
1d 9
(3.37) sVl + [ (rij(e(w) —7ij(e(v))ei;(w)) dx
R"
Oeij(w) deij(w) (w) / Ou;
= — i d
+2m g 0Tk T oz, " Ja “w; dx.
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It follows from the condition (1.10) that the second term in (3.37) is non-negative:

(3.38) (1ij(e(u)) — 75 (e(v)))esi(u — v))
= ([ Srstetv +atu=v))da) esta=v)

= (/01 aeiZ:ekl (e(v+a(u-v))) da) ei;(u—v))ex(u—v))

> csle(v + &E(u— V)P 2eij(u— v)eij(u—v) > 0
with £ € [0,1]. We obtain from (3.37) by means of the Korn inequality that

1d

(3.39) S5

— w3 + alwl3 ; < lwliZluls2.

The interpolation inequality, Lemmas 3.18, 3.16 and the Young inequality yield

(3.40) Iwli < Iwll2llwlleo < Ellwll2liwllz,2

<
~ 1
< ellwllz(liwll3 + [wii 2 + w3 2)?
<elwl3, + A@E)IwliZ.

Integrating (3.39) over (0,¢) we get along with (3.40) and the apriori estimate of the
solution in L>=(I; W22(R™)™) (w(0) = 0)

SIw(o)l < zs / liw(r)I3 dr.
The Gronwall inequality implies

[lwllz=0 ae. inl

and therefore u = v a.e. in Q7. O

At the end of this part we prove regularity of the weak solution, i.e. that u €
L2(I; W3’2(|R")").
Let ex be a unit vector in the direction of x;. Then

u(x + heg,t) — u(x,t)

(3.41) Aru(t) = 3 ,
(3.42) A2y (r) = Y hent) - 2u§; 8) +u(x — hey, 1)

The proofs of the following two lemmas can be found for example in [13].
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3.43. Lemma. Let u € WHP(R™). Then ||Alul, < clgllgT"ka, where c12 > 0
does not depend on h.

3.44. Lemma. Let ||Afull, <c13 Yh >0, ;3 > 0. Then ||%‘:f]|p < ¢3.

3.45. Theorem. Let all assumptions of Theorem 3.36 be satisfied. Then the
weak solution of the problem (CBN) u € L2(I; W32(R™)™).

Proof. We take “(fjge’“ 2 —2‘,'5"”) and "(x—h';e‘”t) (h > 0 arbitrary but fixed)

as test functions and integrate over (0,7T):

T .
(3.46) / MAi’hui(t)
o Jan O

T

+// uj(xyt)a%(;{’—t)Ai’hui(t)dxdt
0 Jrn j
T

+ [ [ rtetatn e (3*uw) daxat

Beu(u x,t)) Beij 2.k
+2u1//" r B2 (Ak u(t)) dx d¢

/ / fi(x) A2 u(t) dx dt =

We use the substitution x — he, = X, sum up the equations for k =1...n and get

(347) 1 /R (Aluy(T)ALui(T)) dx
[ Tl o) = e, (e

h
+2m / / e A;;u(t))ﬁ(z;zu(t)) dx dt

/T/ fi(X,t)Ai’hui(t) dxdtl

Ou; x+hek, au.-!x,t!
—u '(xv t) -
? 921 Auy(t) dxdt\

1
< 5/ (A;:UQ,'A;:UO,;) dx +
R

+1// u;(x + hey,t)

The first term on the left hand side of (3.47) is evidently non-negative. Similarly
as in (3.38) we can show that also the second term is non-negative.

As u € L*(I;W22(R™)™) and up € W?22%(R™)", the first two terms on the
right hand side of (3.47) can be estimated by means of the Holder inequality and
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Lemma 3.43. The estimate of the convective term is a bit more complicated. It
follows from the Holder inequality and Lemma 3.42 that

T o uj(x + hey, t) 2uCEReRt _yy(x, t)_i_l"’"é;;;"
/ / B kul(t) dx dt

< c/T [a(®)]1,2 (/R" (aixk (uj(x, t)aié(;j’—t)>)2 dx)% dt < using(3.31)

( [u(t)|?|D@u(t)|? dx+/ |Du(t)|4dx)§ dt
<&

/ (lu®)lleolu(t)l2,2 + [u(t)[2.,) dt

The first term is estimated by means of Lemma 3.18 and the apriori estimate in
L?(I;W22(R™)™). The other term can be estimated by the following interpolation
inequalities and imbeddings:

ayn=3

103 1,3
[ul1,e < |“|f,2|u|f,6 < |u|f’2|u|2“,2

and the boundedness follows from the estimate in L?(I; W22(R™)");

b)yn=2

luf1,e < |u|1 2|u|2 2
(see e.g. [18]) and we use again the same apriori estimate as above. Thanks to
the Korn inequality we have that fOT Jan ARDP (u(t))AR(D@ (u(t)) < é14 which
together with Lemma 3.44 gives |lul|z2(;;ws.2(rn)») < c14. Moreover, the term
IfOT Jan Tii(e(u(x,1)))e;; (A2"™u(t)) dx dt| is uniformly bounded for arbitrary h > 0.
O

4. WEAK SOLUTION FOR THE MONOPOLAR FLUID

Hereafter we will study the problem (3.1)—(3.3), assuming u¥ — 0*. We denote
by u" the solution of the problem (CBN) (i.e. with x!V), by u the solution of the
problem (CMN) (i.e. with g3 = 0). Our system of equations (for the monopolar
fluid) takes the form

8u,-

4.1 =
( ) aibi 0’

u; ou; or  Oti;
4.2 _ el R S . A .
(42) ot " Yigs, = "om T T
(43) Ui(x, O) - uO‘L( )1
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where the tensor function 7;;(e) satisfies the conditions (1.6)—(1.10).

Using the apriori estimates in L*(I; H) and L?(I;V,) (only these do not depend
on ul') we can get thanks to the estimate of the time derivative in L? (I; (X ()"
(X(Q) = {(p € Wg’z(ﬂ) NWLP(Q) N WL (Q); dive = O}, Q a bounded open sub-
set of R™) the existence of the measure-valued solution of the problem (CMN) for
p> %:5 It means that there exists a couple (u,v),

u € LP(I; Vo) N L*(I; H),
v € L2(Qr; M(R™))

(M (an) is the space of the Radon measures on an) such that

dyp; dy;
@y | (- w - wug +esle) [, mole) duid) - fups) axat

= / ugip; dx

for every ¢ € C1(I; 26(R™)"), o(T) = 0 and
(4.5) Du(x,t) = / , Adv()) ae. in Q.

In the case of the pertubated linear model (i.e. T(e) = (v + v1|e|P~2)e for p < 2)
we get the same result as above for arbitrary p > 1 in both the two- and the three-
dimensional case. This is connected with the fact that we have also an independent
estimate in L2(I;V;). For more detailed description see [16] or for the Dirichlet
problem [2] or [11].

In the next part we will try to find new estimates of solution of the problem (CBN)
which will make the limiting passage in the nonlinear term possible. So we will get
a weak solution of the problem (CMN). In fact the estimates will guarantee that
Du¥ = Du in L*(I; L?(R™)"’), i.e. Vu¥ — Vu a.e. in Qr. Then, using Lemma
2.9, we will get the desired limiting passage. About the data we will assume the
following:

(4.6) up € WH(R™)" N H,
{Lz(I;Lz(R")”), p>2

LY (I LF (R™)™), p<2,p =2

The weak solution of the problem (CMN) is defined as follows:
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4.7. Definition. Let ug, f satisfy (4.6), and let p > 1 + 112—4’_‘2 Then a function
u, where

(4.8) u € LP(I;V,) N C(I; H) N L2(I; WH2(R™)™),
(4.9) %—;‘ € L*(I; H),

is called a weak solution of the problem (CMN) if
a’ui aui
(4.10) —p;dx + / uj=—p;dx + 1ij(e(u))e;j(p) dx = fipidx
n Ot R™ sz R» R"

is satisfied a.e. in I for every ¢ € V, N W1.2(R™)™.

4.11. Definition. Let ug, f satisfy (4.6), and let p > f—:z Then a function u,
where

(4.12) u € LP(I;V,) N L*=(I; H),

is called a weak solution of the problem (CMN) if

(4.13) —/ u,--%dxdt+/ uj%«pidxdtﬁ-/ Tij(e(u))ei;(p) dx dt
T ot Qr 3:1:]

T

= fipi dxdt+/
R

UQi i (0) dx
Qr t

7

is satisfied for every ¢ € C! (I; 2o(R™)™) with o(T') = 0.

4.14. Remark. The existence of a weak solution means that the Young measure
v from (4.4) is the Dirac measure a.e. in Qr, i.e. vx ¢ = §(A—Du(x,t)) for a.e. (x,t) €

Qr.

Let uM be a solution of the problem (CBN), i.e. with ul¥ > 0. Let ud’ — 0%
for N = oo. From Chapter 3 we have the following apriori estimates, which do not
depend on p;: '

(4.15) lluN||L°°(1;H) < a,
(4.16) IDUN| Lo (1, Lo(nyn2) < C2-

From Theorem 3.45 we know that u” is bounded in L?(I; W32(R™)™) and there-
fore also in L2(I; W1 (R™)") (of course, the estimate tends to co when u¥ — 01).
We want to use Au" as a test function in (3.9). However it is not possible to
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use it directly. Let us assume that the test function w € Zy(R™)™ and w = Av.
Integrating by parts we get

8?ulN dv; 0 ouN\ Ov;
4.17 i — (uN =) =
(4.17) T /R Bz; (u] oz; > By, 9%

. / am(e(uzv))eij( ov. ) dx

3.’le 3.’tk

+2u{v/'; ei;j(AuM)e;;(Av) dx + filv;dx =0
n R

The fourth term in (4.17) is finite thanks to the regularity of the solution. The
equality (4.17) is satisfied for arbitrary v € 25(R™)™. Thanks to the density property
(Lemma 3.10) and regularity result (Theorem 3.45) we take a sequence v}, such that
vl = ul in W32(R™")" NV, for a.e. t € I, N fixed. For p > 2 all the limiting
passages can be done very easily. For p < 2 we should get similar results, but the
limiting passage in the nonlinear term is not completely clear to the author. After
multiplying by (1 + [u¥[?,)=*, A > 0 and integrating over (0,T) we get

T N |2 )\1 d N |2
(4.18) /0 (1+ VR (/ IVub| dx) dt

T 3 N o
+/ (1+|uN|f’2)"\< uj du duf’ )dt
0

3a:k G:c] Oy,

T ij Oe;;
[ (a0 o

a.’ltk axk

T
# [ ar iz ([ etouiesdut)ax) ar
0 R»

T
+/ 1+ [uNE )™ (/ firul dx> dt = 0.
0 R™

We can calculate:

d 1 N2 \1-X
1d SN sy (1 + [ul | ) , A#1
(4.19) (1+[uV 12 - |N|12 {

2.dt L 1log(1 + [uN|? A=1.
By means of (1.9) and (1.10) we get from the nonlinear term

97i;(e(u’)) aeu(uN) / 9%9(e(u”)) deim (u™) de;;(ul)
R oxy oxy, I ae,mae,] Oz oxy
> {csfm(lﬂe(u”)l” 2) Qeylu’) degul) - > 2

(4.20)

¢3 fqn le(uM)P- Za_eu_(“_%é_i‘:_) p<2.
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4.21. Remark. For the perturbated linear problem we get on the right hand
side of (4.20)

aij N 3ij N
C3/"(1+|e(uN)|p—2) eaz(;: ) eai‘: )

dx p>1

We denote the term on the right hand side of (4.20) by _# and
(4.22) | (1+ V) g =
As the term with u is obviously non-negative, we can rewrite (4.18) as follows:

1

(4.23) TN

T
1+ [u™(T) ?,2)1‘)‘ + C3/ K dt
+c(uo)+/ (1+(uN 2 ’\luN|l dt
+/ (1+]uN|f,2)">‘/ fiAusdxldt
0 Rn

(for A =1 the first terms on the left hand side is replaced by }log(1 + |[u” 1)

4.24. Remark. Using a similar technique as in Remark 3.34 we would obtain
the same results for ug € H but only on [§,T], § > 0 arbitrary. This remark holds
for everything which will be proved in this chapter.

4.25. Lemma. For u smooth enough we have

(4.26) I1DPully < 04/2 forp > 2,
(4.27) IDPu]|, < c5|u|1;, Fi forl<pg2

Proof. Theinequality (4.26) is a direct consequence of the Korn inequality and
the definition of _#. The other one follows from the Holder and Korn inequalities:

Oeij (u) de;j De; LI
D(2) P < / geii\ty / 1) 1] p—2
” u” | 6a;k n aile ailik lel lel ’ dx
e

2 @2-pr
<c g2 / |e]P dx <c/ ]u]l’p .
[Rn

a

4.28. Remark. For the perturbated linear model we get that the inequality
(4.26) is satisfied for p > 1.
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The forcing term can be now estimated by means of (4.26) (for p > 2) or (4.27)
(for p < 2). Let us demonstrate this in the latter case.
From (4.21) and the Young inequality it follows that

T
(4.29) / (1+|u”[§,2)-*| / fiduN dx|dt
0 R
T
< / (1+ [V 2 )" |l [ DD M|, e
T 2-p
S C”/o LN 2 (14 [uN2) "R Il (1 + [al |0) " E
T T
se/O Jt’dt+c(a)/0 (1+IuN f,z)_’\llf||f,,|uN|f;fdt.

The first term is transferred to the left hand side of (4.23) with a small coefficient
while the second term can be estimated by means of the Holder inequality:

T R T , T e
(4.30) /0 ||f||§,|u|1,p”dt<( /0 ||f||;,dt) < /0 ¥ f,pdt)

= ”f”izn’(j;u’(nn)n)”“N”i:{hv,,) < cff).

2(p—1)
)

We obtain

T
(4.31) 5(—1—-1_—/\)(1 +uN (D)) + 523/0 X dt

T
<cfuo£) + [ (1 [0 M.
0
Now it remains to estimate the convective term on the right hand side of (4.31). If
we get such an estimate with A < 1 then we have from the first term on the left hand
side of (4.31) that u € L>(I; W!2(R")") and consequently from the other term (if

p > 2) we obtain our desired estimate in L*(I; W%2(R™)"). For A > 1 we have only
fOT.)( dt < const.

Hereafter, we will write only u instead of u”¥. We will deal with the problem for
n = 3 and at the end we will only give a sketch of the proof for n = 2.

a. Cauchy problem in 3 space dimensions.

4.32. Lemma. For u smooth enough we have
(4.33) luly3p < 6 f7.
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Proof.
pi2 2\ 2 _o 0e;ij Oei;
= < Pt —=—dx < 2,
lelf |, /R (V(lel®)) dx\/l;" e ~* G 5 dx <

the inequality (4.33) follows from the imbedding W?(R3)3 — L8(R3)3 and the Korn
inequality. (]

We will solve separately two cases:

(i) p>3
(i) 1<p<3
ad i) p>3 :
Put A = 0. From Lemmas 3.16 and 4.25 we see that |ulf, < C”“"‘Z/%- The
interpolation inequality

op=3 r

(4.34) |“ﬁ 3 |u|1 h |u|1',;2

and the Young inequality yield

T .-3
/0 ufd g dt < / ull g 7 o) 2
//dt+ce)/ 7T dt.

The first term is transferred to the left hand side of (4.31), the other is finite because
p_zT <1lforp>3.

ad ii)1<p<3

Considering the fact that 2 < 3 < 3p and p < 3 < 3p for p € (1,3) we can use the
following interpolation inequalities:

(4.35) fulys < Jul2 772 *lu li"”s,f,

(4.36) lul1,3 < IUII,, lull 3p-

From (4.33) we get

- 3(a+1-— -
(4.37) [l 51+ [uf2 )™ = {57 + a2 )
<& FO (1 + o} ) T,

where Q; = —é;—%l + 30137;2, Q2= 3a%1. Integrating (4.37) over (0,T) we obtain
(4.38)

T T
~ _ —1)(-a
/0 af? o (1 + Jul? ;)= dt < & /O A (1 4 Juf2 ;) MHEREFL A g
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We claim

(rp-1)1-0)

3p_2 +/\Q1=O.

(4.39) ~A+3

Using the Holder and Young inequalities under the assumptions Q6 = 1, @20’ =p
and %+%=1weget

T T 1 T ¥
(4.40) / |u|f’3(1+|u|i2)”’\dt<c( / Ji’dt) ( / |u[f,pdt) .
0 0 0

From (4.16) and (4.40) it follows by means of the Young inequality

1

(4.41) TSy

T
(1+Iu(T)|§,2)1‘*+64/ X dt < c(ug, f).
0

It remains to find the values of a, A, 4, §' and verify whether their values are in
the required intervals. Solving the above mentioned system of equations we find

_pBp-5)
(4.42) =S
3—p

Henceae [0,1] <= pe€[3,3]and A > 0 <= p € (3,3]. Moreover, A <1 <=p >
L. We can also verify that § and ¢’ > 1.

4.44. Remark. In the case of the perturbated linear model we can use the
interpolation of W13(R™) between W12(R™) and W!¢(R") and then, thanks to the
imbedding of W22(R™) — W6(R"), we can estimate the convective term by means
of a similar technique as above for A =2(3 —p),i.e. A > 0Vp> 1.

As A < 1for p > 3+ we get the following lemma:

4.45. Lemma. Letp > ? and let g, f satisfy (4.6). Then the sequence of

solutions of the problem (CBN) for uY¥ — 0% is uniformly bounded in the following

norms:

(4.46) la™ || Lo (r;wr2R3y3) < o,
(4.47) a2 we2@meys) < co,
(4.48) o™ || Lo rwron o)) < er.
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Proof. From the inequalities (4.15) and (4.41) we immediately get (4.46). As
p > 2, the estimate (4.47) is a consequence of (4.46) and (4.26). The last inequality
follows from (4.46), (4.33) and the following considerations:

3p
WH(R3) & L¥(R?) <= ¢ = ——.
() = LP(R) = g = L2
As 2 < g < 3p, we get
N _21'_2 3;,——22
[u™1,q < [uly% * ul%,
Evidently 2=% 3 < 1. Then
TN TN Ry
(4.49) /0 la™ |15, dt < /0 [u™f, < /0 [uli" * ufy 3, * dt
202
< E”uN“Z';(Zhwl.z(Ra)a) ||DuN”LI’([;L3p(R3)O) .

O

4.50. Lemma. Let uo, f satisfy (4.6) and let ug € V,. Let p > % Then a{‘;—:
is uniformly bounded in L?(I; L?(R3)3).

Proof. We revert to the Galerkin approximation of the (CBN) problem and get
a new estimate of the time derivative, which does not depend on ;. Using wi(x)
as test functions, multiplying by g%ﬂ and summing up we obtain

ou™ d de;j(u™) de;j(u™)
(4.51) H o / 9e(u™)) dx + 2u1 / o dx
u} n Ouf Ouy
f‘ dx"/ﬂa Y ae, ot

As ug € WH2(R3)3 N H we can construct such a sequence of initial conditions that
u | D@} || remains bounded. Integrating over (0,T) and using the Holder and
Young inequalities we obtain

(4.52) / ” || dt+/ 9(e(u™(T))) dx < c(uo, )+/ [u" 2| Du” |2 dx dt.

Qr

Using (4.46), (4.47) and Lemma 3.16 we obtain an indepedent estimate of the con-
vective term

.
(4.53) / [ 2 Du”? dxdt < ¢ / ™3 5| Dur 2 , dt
Qr 0

< Iz w22y 10 | o (1, wr2(reys)

which, taking ¥(e) > 0 into account, gives the desired estimate. a
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4.54. Theorem. Let u, f satisfy (4.6) and let uo € V,. Let p > L. Then there
exists a unique weak solution of the problem (CMN) in the sense of Definition 4.7.
Moreover, the solution is regular, i.e. u € L>(I; W12(R3)3) n L2(I; W22(R3)%) n
LP(I; Wt3P(R3)3).

Proof. FEristence. The same method as in Lemma 3.10 gives that there exists
a countable subset of 2o(R®)? which is dense in W2(R%)3 N V,. Similarly as in
Theorem 3.36 we get a “diagonal” subsequence such that for arbitrary R positive
DuM' - Du in L*(I; L*(Bg)?), i.e. Du' — Du" a.e. in I x Bg. Using Lemma
2.9 we get

(4.55) w,z/; dxdt + /

Uj— oz, w,w dxdt + / Tij(e(u))e;; (w)y dx dt
Qr Qr

Qra

= fiwipdxdt V¢ € C°(),Vw € 90(R3)3.
Qr

Similarly as in Theorem 3.36 we will prove that (4.55) is satisfied for all w €
W12(R%)2 NV, and a.e. in (0,T).

Let w be an arbitrary function from W12(R3)3 N V,, w™ € 2(R3)3, w™ - w
(i.e. w®» - w in W12(R3)? and Vw™ — Vw in LP(R3)®). Then, thanks to the
estimates from Lemmas 4.45 and 4.50 we get that (4.55) is satisfied for all w €
W1,2(R3)3 a) VP

To complete the existence part of the proof we must verify that u € C(I; H). This
can be done in the same way as in Theorem 3.36. We get again that u € C2(I; H).

Uniqueness. It will be proved similarly as for the (CBN) problem. Let u, v be
two different solutions, w = u — v. Using w as a test function in (4.10) we obtain

@56)  gpIwlE+ [ (rs(e() = my(ees(w)dx = [y Siuidx

In the same way as in the uniqueness part of Theorem 3.36 we can prove

/R3 (1i5(e(u)) — mij(e(v)))ei;(w /Rs/ 682 » eij(w)er (w) dadx

e”aekl

with 9% = d(e[v + a(u — v)]).
However, (1.10), the Korn inequality and the fact that p > 2 imply

(457) | (s e(u) = ms(evess(w) dx > el

Integrating (4.56) over (0,t), using (4.57) and w(0) = 0 we obtain
1 t ’ 2

(4.59) SIWIB +c [ wiadt= [ Iwiifula dr
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From the interpolation inequality ||w|ls < ||w||3||w||&, the imbedding W1:2(R3)
< L%(R3) and the apriori estimate of u in L®(I; W12(R3)3) we get

(4.59) nwmﬁscéuwum&h

Then the Gronwall inequality gives |[w(t)]|z =0 ae. inl,ie. u=vae inQr. O

4.60. Remark. When uy ¢ V,, we do not have the information about the
time derivative from Lemma 4.50. Nevertheless we can get the estimate of the time
derivative in L2(I;(W22%(R")" N V,)’) which implies (see [5 pp. 147-149)) that u
belongs to C(I; H). So we get the existence (and uniqueness) of the weak solution of
the problem (CMN). However we have to assume (4.13) instead of (4.10) with test
functions ¢ € L2(I; V, n WY2(R™)™) with 32 € L2(I; L2(R™)™).

Now we will deal with the case p < 1L, separately for p > 2 and p < 2.
ad a) p>2
We can dispose only with

(4.61) / 1+ |u|12)*23n 5 _#dt < const.

4.62. Lemma. Let (4.61), (4.15) and (4.16) hold. Then foT ID@u||2? < ¢
Withﬁ:i;-’;%g forp>2,B8=7%forp=2.

Proof. For some # < 1 (which will be specified later) we have

T T
@o2) [ D@l dr<en [ #00 +ult )L+ full 25 g
0 0
T B T 3 s
<o [ a) ([ v rabatopeits)
0 0

where Lemma 3.16 was used. As we know that u is bounded in L*®°(I; H) we can
put

3-p B
2=2—
g 3p—-51-
and get 8 = —E‘—g. Now we use the Young inequality and transfer the term
€ fo |D@ul|2? dt with e sufficiently small to the left hand side. For p = 2 we can
use directly the estimate in L?(I; V) and get 2%1—85 =1,ie f=1. m]

193



Let us note that 8 € (0, 1) for p € (2, 4
Thanks to the apriori estimates we have

T
(4.64) / lull25 < cs
0

Using the imbedding W%2(R3) — W!+?(R3) which holds for s = 67;2 (ie. s €
(33,1] for p € [2,4) ) we see that fo HuI[HSP < cg. We choose ¢ € (1,p). Let
o € (0,s) (which will be specified later). The interpolation inequality (2.4) implies

(4.65) allito,p < cllulliy lullfys

and therefore

1-z
(4.66) / lalle,,, < / Il )25,

1
o(1-2)8 25\
s( / a2~ ) ( /0 uuuhs,p) ,

where % + % = 1. Both terms on the right hand side are bounded when

g

(4.67) ¢(1-2)s=n,
Is —
qsé = 20.

(fOT [luljzdt < oo because of the imbedding W' ?(R?) — LT?T'([R:*) and the interpo-
lation between L?(R?) and L35 (R?).)
Solving the system (4.67) we get

_s(-928

(4.68) P

We can also verify that &, ' > 1. So we have

4.69. Theorem. Let ug, f satisfy (4.6) and let p € [2, 15—1). Then there exists
a weak solution u of the problem (CMN) in the sense of Definition 4.11. Moreover,
u € LI(I;WtoP(R3)), where q € (1,p) and o satisfy (4.68).

Proof. Let u?" be our bounded sequence in LI(I; W1*7P(R3)3). Because of
the estimate of the time derivative mentioned at the beginning of this chapter we
get from the Lions-Aubin Lemma that u¥ — u in L9(I; W?(Q)3), where  is an
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arbitrary bounded open subset of R3. We use again the technique of the “diagonal”
subsequence. From Theorem 2.9 we get for ¢ € C1(I; 20(R3)3), o(T) =0

(4.70) —/ ui—aﬁdxdt+/ Uj%QOidxdt'i'/ 7i5(e(u))e;; () dx dt
or Ot Qr 97; Qr

= fipsdxdt + / Ui Pi (0) dx.
Qr R

O

4.71. Remark. We can try to close the test functions in C(I; V,N\W12(R3)3).
(We know that Z5(R?)? is dense in V, N\W12(R3)3.) We would have to assume that
|7| < c|e|P~! in order to control the nonlinear term.

ad b)p<2
Now let p < 2. We can make use only of (4.61) and the apriori estimates (4.15)
and (4.16). Using (4.27) (Lemma 4.25) we see that

T
4.72 ul2_|ulP72(1 + |ul? ~257% 4 < const.
o 2,pl=11,p 1,2

For some 3 < 1 we calculate

T
(4.73) / ID@ || dt
0
" (a2 = 2 y-222\7 | 62-p) 2 \2p2L
< 0 (|u|2,p|u1’p (1 + lufiz) 3"”) [ufy, (1 + |ulf o) 3e=5 dt
g 2 2 2.3=p
< C(ﬂ)/o |u|2,p|u f,p (1+lu|§,2)_ =5 dt
T  pe=-p) .
+e(6) / a7 (1+ uf} )77 575 dt.
0

Using the interpolation inequality

5p—6 3(2—-p)
(4.74) lahi2 < fuly 7 [l 3
'3—p

and the imbedding W1?(R3) < L3%7 (R®) we see that the second term in (4.73) is
bounded by

T T
(4.75) /0 | @ [u]9 dt + /0 |u|§f"’"‘%dt

P

195




with Q1 = (2-p+2CEES) £, and Qp = 62520-0) £ The second term
in (4.75) is finite if 8 < Z. The first term can be estimated by means of the Young
inequality

T T
(4.76) / [l ul®2 dt < e / 2% dt + c(e) / a2
0 0

The first integral is transferred to the left hand side of (4.73) and the other is
finite when the following holds (; + & = 1):

4.77) 026 =28
Q10 =p.

Solving (4.77) we get

p(5p—9)

(4.78) B= 2 +8p—09)

and therefore g € (0, %) forp € (%, 2). We get that p must be greater than % instead
of %, which was the bound from the estimate of the convective term. The case p = %
must be excluded. Evidently, the condition 8 < ¥ is satisfied as well as 4, §' > 1.
From (4.16) and the above proved estimate we see that

T |
(479) | 10wl < o
0

with g satisfying (4.78).
Let us choose o € (0,1). More precisely, o must satisfy (4.83) as will be seen later.
Thanks to the interpolation inequality (2.5) we get |[Dul|,,, < cl|Dull{ || Dull;~.
Let ¢ > 1. Then

T T
(4.80) /0 IDulle, < c /0 IDull?% | Dull¢=)e dt

- ;
<( [ wutzs a)” ([ it ar)
0

Solving the system (} + # = 1)

(4.81) oqd’ =2p
(1-o)gé=p
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we obtain

_ 28p
(4.82) T op+2B8(1-o0)’
where o must satisfy
(p-1)(5p-9)
4.83 o< —.
(483) p(3-p)

Therefore we have

4.84. Theorem. Letp > %, let uo, f satisfy (4.6). Then there exists a weak
solution of the problem (CMN) in the sense of Definition 4.11.

Proof. It is analogous to the proof of Theorem 4.69. a

4.85. Remark. It is possible to close the test function in C(I;V,) but only
forp > 3—"55@. This bound follows from the estimate of the convective term.

When we assume the perturbated linear model, i.e. with 7(e) = (1o + v1]e|P~%)e
for p < 2, we can get the existence of a weak solution for all p > 1. As we have the
estimate of the convectlve term for p > 1 we can get by means of a similar technique
as above that fo ||Du|| < ¢ with § = 525 and therefore we have

4.86. Theorem. Letp > 1, let ug, f satisfy (4.6) and 7(e) = (vp + v1|e|P~?)e.
Then there exists at least one weak solution of the problem (CMN) in the sense of
Definition 4.11.

b. Sketch of the proof in 2 space dimensions.

First we will estimate the convective term in (4.31). As for p > 3 the proof is
completely analogous to the three-dimensional case, we will deal separately with two
cases:

(i) 2<p<3

(ii)) p< 2

ad i) 2<p<3

4.87. Lemma. Letp € [2,3). Then for u smooth enough we have

(4.88) uffs < cluf, (£ + Il s 1),
(4.89) juff s < clul?,, (/%ﬂuuni—?”/’—?).
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Proof. Ws’ (Rz) — L3(R?%), which together the interpolation inequality
||Vu|| 1 c||u||2 ||u||1 o and Lemma 3.16 gives the first inequality.

The other one follows from the 1mbeddmg W2 " P(R2) — L3(R?), the interpola-
tion inequality ||Vu||2%_—puy c||Vu||,, |qu|| 2 , the imbedding W1:2(R?) < W37,
(4.26) and Lemma 3.16. O

Now we can apply Lemma 4.87 to the convective term and we get, similarly as in
the three-dimensional case, the following system of equations (} + # = 1):

a+(1-a)3-p)

(4.90) “A+a+A 5 =0
014-(1—01)(3—1))6::1
2
p(l —a)d =p.
Solving the system (4.90) we obtain

3-p

(491) a = 4—_1—),

(4.92) A=3-p,

ie. a € (0, %] and A < 1 for p € [2,3). We can also verify that §, §' > 1.

ad ii) 1<p<2

4.93. Lemma. Letpé€ [g, 2). Then we have for u smooth enough

5p—6 p(2=p) X
(4.94) laf} 5 < clulfs ™ ulfG 0 g T,
(4.95) |u|13 clulf p/ 5

Proof. As W}P(R?) — L7 (R?) and (4.21) hold, the first inequality is a

S5p— G p

. L . G- ). ZTED

consequence of the interpolation inequality |u[} 5 < [ul{5 ™" [u] 7z,
2L

The other one follows from by same argument and the interpolation inequality
5p—6 2(3-p)

[aff s < fuly g lal, B - u

198




Now we will apply the previous lemma to the convective term and get the following
system of equations (} + 3 = 1):

ap 3-p _

(4.96) o0 +(1- a)——p =Q
5p — 6 .

“At+a 4@ )+AQ 0

Q=1
a(2—-p) _ 1 _
(m’f‘l a)é—l.

Solving the above mentioned system we get

(4.97) a= 2—(”—_51%)(‘2;"),
(4.98) a=2 _i’

ie.a€ (3,1 forpe[3,2), A > 1for p<2. We can also verify that 4, §' > 1.

499. Remark. For the perturbated linear model we can make use of (4.88)
and 4.95. This enables us to estimate the convective term with \ = 3(3;—”1 forp > 1.

Now we revert to the case when p > 2, i.e. A < 1. Similarly as in three space

dimensions we get

4 100. Lemma. Let u" be solutions of the problem (CBN) with uY > 0,
— 0F. Let p > 2. Then u" are unifromly bounded in the following norms:

(4.101) ||uN”Loo(1;W1,2(R2)2) < ¢,
(4.102) ”uN”Lz(I;Wz.z(Rz)2) < ¢,
(4.103) o™ lle (;wrrR2)2) < 3.

4.104. Theorem. Let uo,f satisfy (4.6) and ug € V,. Let p > 2. Then there
exists a unique weak solution of the problem (CMN) in the sense of Definition 4.7.
Moreover, the solution is regular, i.e. u € L (I; W12(R?)2) N L2(I; W%2(R?)2).

Proof. The proof is analogous to the proof of Theorem 4.54 and Lemma, 4.50.
Only in the uniqueness part we use |luf|; < 2% ||u||2 |u|1 o (see [17]). O
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Now let us solve the case when p < 2,ie.p€ [%, 2). We can make use only of
T 3-p
(4.105) / 1+ lulf,z)_v—l S dt < const
0
together with (4.15) and (4.17). From (4.105) and (4.27) we get
T 3-p
(4.106) / uf a2 =21 + a2 )5 dt < const .
0

For B < 1 (which will be specified later) we get from the interpolation inequality

p—1 2—-p

2‘.—— —)L . . 1 2 _21’_.
lali2 < |uly 7 Iull,az"- and the imbedding W?(R?) — L2-7(R?) analogously to
'3-p

the three-dimensional case

T
(4.107) / ID@ w8 dt < 14
0
with
_ _p@2p-3)

The case p = 2 must be excluded again.

4.109. Theorem. Let uo, f satisfy (4.6), p > 3. Then there exists a weak

solution of the problem (CMN) in the sense of Definition 4.11.

Proof. It is completely analogous to the proof of Theorems 4.84 and 4.69
including the part between (4.79) and (4.83). O

4.110. Remark. It is possible to close the test functions in C*(I;V,) for p >
&23@. This bound follows again from the estimate of the convective term.

For the perturbated linear problem we can get thanks to the estimate of the
convective term similarly as above the following theorem:

4.111. Theorem. Let uo, f satisfy (4.6). Then there exists at least one weak
solution of the problem (CMN) in the sense of Definition 4.11.
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