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DYNAMIC CREDIBILITY WITH OUTLIERS 

AND MISSING OBSERVATIONS 

TOMAS ClPRA, Praha 

(Received November 9, 1994) 

Summary. In actuarial practice the credibility models must face the problem of outliers 
and missing observations. If using the M-estimation principle from robust statistics in com­
bination with Kalman filtering one obtains the solution of this problem that is acceptable 
in the numerical framework of the practical actuarial credibility. The credibility models 
are classified as static and dynamic in this paper and the shrinkage is used for the final 
ratemaking. 
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1. INTRODUCTION 

From statistical point of view the credibility in actuarial science treats many (usu­
ally short) time series where each series represents insurance claims of different in­
surance groups. These groups (e.g. different geographical regions, different makes of 
cars etc.) have different historical insurance experience and the credibility models 
combine the individual experience of particular groups with the overall experience 
for sound future ratemaking. In this paper the credibility models are classified to 
static ones that are stable over time with deterministic trends (see Section 2 and 
3) and to dynamic ones that are more flexible allowing for time-varying parameters 
in the claim process (see Section 4 and 5). From the statistical point of view the 
combination of the individual and overall experience means to imply shrinkage of 
group-specific estimates towards their average (see e.g. [20]). 
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The objective of this paper is to modify credibility procedures for the case of data 
with outliers and missing observations. This is an up-to-date problem important for 
the actuarial practice (see e.g. [2], [10], [15], [18], [24]). The M-estimation principle 
of robust statistics seems to give results that are acceptable from the numerical point 
of view. In particular, if one robustifies the Kalman filter, as is done in [4], [23], one 
obtains a suitable instrument that, in addition, allows to treat the missing observa­
tions (see Section 5). Kremer [17] has already applied the results from [4] in this 
context but the problem of estimating the variance and covariance parameters stayed 
unsolved. Here the complete estimation procedure is suggested and demonstrated 
by means of a simple numerical example, 

2 . STATIC MODELS 

Let yu be the claim amount observed in the group i at time t (i = 1,...,A;; 
t = l , . . . , n ) where k is the number of groups under consideration and n is the 
number of periods of observations. The ratemaking consists in forecasting the future 
values yi,n+h for h steps ahead in each group, i.e. in constructing the forecast yin(h). 

In this static case one assumes for the observed claims yu linear models of the 
form 

(2.1) yit =x'uPi + eit 

(i = i , . . . , k; t = 1 , , . . , n), where xu are known />-dimensional vectors of regressors, 
Pi are p-dimensional regression parameters and eu are independent errors fulfilling 

(2.2) eu~N(0,a2) 

(the parameters ft and a2 are unknown). The classical least squares estimates of 

the parameters ft have the form 

(2.3) Pi = Vi^2xuyu 
t 

with 

(2.4) £ f t = ft, varft = <72Vi, 

where 

(2.5) Vi=(X>^) • 
t 
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One could consider a more general heteroscedastic case with var£tt = a2 jmu where 
the known scalars ma measure the volume of the data for the global claims ya. 

Since (2.1) are standard credibility models one assumes that ft are independent re­
alizations from a common distribution. Therefore one should shrink ft to a common 
value using the shrinkage model 

(2.6) ft = /? + e{ 

(i = 1 , . . . , fc), where e; are independent p-dimensional errors fulfilling 

(2.7) e{~N(0,a2B) 

(in addition to ft and a2 the parameters /3 and B of appropriate dimensions are also 
unknown). Using the above relations one can construct the general linear model 

(2.8) Cs) = 0 ) A + ' ' E6 = °' var<5 = *2(o I) 
which after some algebraic treatment gives the credibility estimates 6, of /?, as 

(2.9) bi = Zik + (I - Zi)0 

with 

(2.10) Zi = B(B + Vi)-1. 

However, 6t- depends on unknown parameters, and one must estimate them using 
e.g. the moment estimates 

(2-12) /J=(^zi)_1EZ^> 
i i 

(2-13) II = Jt^T E Z«(& " 0X& " #)'. 
t 

(2.14) B=^(H + H') 

constructed e.g. in an iterative way (see [6], [7], [19]). 
Then the credibility forecasts of the future claims have the form 

(2-15) yin(h) = x'itn+hbi. 
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As special cases of the static models described one obtains 

(i) Btihlmann-Straub model for xu = 1 (see [3]); 

(ii) Hachemeister model for xit = (!,£)' ( s e e [H])-

3 . STATIC MODELS WITH OUTLIERS 

Robustification of the static models which should be insensitive to outliers can be 
based on the M-estimation approach using IWLS scheme (Iterated Weighted Least 
Squares, see e.g. [13]): 

The corresponding normal equations have the form 

(3-D ^(_LZiM)^-0, 

(3-2) _L_ £,(______ W 
n - p z--/ V G J 

where Q(Z) is a suitable robustifying loss function, ip(z) = Q'(Z) is the corresponding 
psi-function, \(z) — zip(z) — Q(Z) and the constant d = |{t/j2(Z)} with Z ~ jN(0,1). 
If one uses the usual Huber's psi-function 

Í
z for \z\ ^ c, 

csgn(z) for \z\ > c 

(the constant c is chosen according to contamination by outliers, e.g. one recommends 
c = uo.95 = 1.645 for 5%-contamination) then (3.2) rewrites to the form 

(3.4) _ 1 _ E ^ ( _ _ ^ _ _ _ ) =0.7785 

(see e.g. [1]). 

The IWLS scheme solves the normal equations (3.1) and (3.2) by means of an 
iterative procedure that converges under weak assumptions (see [8]). It seems con­
venient to combine this scheme with the iterative estimation of unknown parameters 
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from Section 2 so that one obtains for the ra-th iteration 

(3.5) #*> = y/*"-1* ^ u ^ x u y u , 
t 

^'b) [<T ] -fc(n-p)d-VV V ^(m_1) '' 
(3.7) Z H = ^ ( m - 1 ) ( 5 ( m - 1 ) + y ( m - 1 ) ) - 1 , 

(3.8) j§
(m) = ( ^ z - m ) ) _ 1 X l Z i m ) A- m ) ' 

(3.9) H(m) = - J — ] T z j m ) ( $ m ) - /3(m))(/3t
(m) - /3 (m))', 

(3.10) B W = _ ^ - ( t f M + #(•»>'), 

where 

(3.ii) ^^(E^rW.,) -1 

t 

and the weights wvf1' are defined as 

(3.12) «,(•> = ^ g f t " f ^ m ) ) / y i t - f f - m ) . 

In the special case of Huber's psi-function one uses I^H in (3.12) and replaces the 
relation (3.6) by 

r - (m- l ) l 2 /qt - ' / 5 ( m - 1 ) \ 

<"3> w-o&^xxM*^-)-
As the missing observations are concerned it is no problem to treat them (in addi­

tion to the outliers) in this static case: the only difference from the situation without 
missing observations will appear in the different numbers n i , . . . ,n/c of observations 
yu in particular groups. 
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4. DYNAMIC MODELS 

The dynamic models allow for time-varying parameters (see e.g. [5], [14], [16], [19], 
[20], [21], [25]). One can extend the static models from Section 2 to the dynamic 
ones e.g. replacing (2.1) by the system 

(4.1) yit = x'it(5it + eit, 

(4.2) fa = Tfo-i + vit 

(i = 1 , . . . , k\ t = 1 , . . . , n), where the models (4.1) fulfill the same assumptions as in 
Section 2, i.e., in particular, 

(4.3) ^ ~ N ( 0 , a 2 ) , 

T is a known matrix and vit are independent p-dimensional errors that are indepen­
dent of errors en in (4.1) and fulfill 

(4.4) vit ~N (0 , a 2 A) 

(the parameter matrix A is also unknown). The interpretation of (4.1) and (4.2) 
in the actuarial context is the same as in Section 2: one considers n claims yu 

with dynamic development in time (t = 1 , . . . , n) observed in k insurance groups 
(t = l , . . . , k ) . 

One can treat the dynamic models of this type recursively by means of the Kalman 
filter. If one writes pit\yitt-i, 2/M-2, • • • ~ N0l^,cr2F£_1) and pit\yxu 2 /M-I , • • • ~ 
N0lt,a

2Plt) then the Kalman filter provides 

(4.5) h = fr1+PL'1** Tzi1^1 

(4.6) Pi = Pft __, o t_ . 

XuPttXit + 1 
P Í ~ 1 T - . T / P í _ 1 

t _ pfc-1 _ rit Xit^itrit 

AtPu^a +-' 

where the predictive values f3it and Pit are given by 

(4-7) &"1 = Tfcllt 

(4.8) p„ - 1 = r7V,r_ ]r
, + A-

It is not difficult to show that (4.5) can be obtained by the minimization procedure 

(4.9) $U = argmin [\{fol - /?«) V - ^ - 1 ) - 1 ^ . . - 1 - M + ^(Vu " x'it0it)
2} .2V 

= a r g m i n í ^ - 1 - PitYiK'1)'1^1 ~ 0«) + (»« - -4&t) 2 } , 
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where argmin is taken over /3it € Rp. The estimation of a2 and A can be based on 

the maximum likelihood principle giving in the case of a non-informative prior (see 

e.g. [19]) 

MIO. 1 - p y ( I t a - ^ f f r 1 ) ' 
( } ~(»-p>*feJbi^~-~1*« + 1 

and the concentrated log-likelihood function for A 

(4.11) A = argmax {constant - ( n ~ P) loga2--^] ]£ log^F^1^ +1)}. 
i= i t=p-f-i 

The shrinkage model of the dynamic credibility approach has the form 

(4.12) Pin = (3n + ein 

(i = 1 , . . . , fc), where ein are independent p-dimensional errors fulfilling 

(4.13) e i n~N (0 ,<r 2H n ) 

(the parameters (3n and Bn of appropriate dimensions are unknown). It is sufficient 
to formulate the shrinkage model only for the time t = n since the claim forecasts 
should be based on parameter estimates from the current time n. The corresponding 
credibility estimates bin of f5in including the estimates $n and Bn of j3n and Bn can 
be obtained as b;, $ and B in Section 2 (see also Section 5). 

As a special case of the described dynamic models one obtains the Gerber-Jones 
evolutionary model for xit = 1 and T = 1: this model is a random walk 

(4A4) Pit = Pi,t-i + "a 

observed with a random error 

(4A5) yit = 0it+€it 

(see [9]). As practical applications are concerned the dynamic models include the 
cases of dynamic trends, dynamic seasonality or general structural models (see 
e.g. [12]). 
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5. DYNAMIC MODELS WITH OUTLIERS AND MISSING OBSERVATIONS 

The Kalman filter robustified by means of the M-estimation principle (see [4], 

[23]) seems to be a suitable instrument from the practical point of view for treating 

outliers and missing observations in the dynamic models from Section 4. 

If outliers appear among observations yit which can be modelled by contaminating 

the normal distributions of the errors eit in (4.1) by heavy-tailed distributions then 

one replaces the minimization procedure (4.9) by 

(5.1) 4 = argmin { i ^ - 1 - /?«) V - ^ 1 ) - 1 ^ - 1 - Pu) + Q(VH "' * ' A % 

where Q is a robustifying loss function with psi-function ip — Q' (the special choice 

Q(Z) = z2/2 reduces (5.1) to (4.9)). 

In the most common case of Huber's psi-function ipn the explicit solution of (5.1) 

can be found as 

(5.2) ft-^^'^-Ugl^C.)) 
with P/t calculated for simplicity according to (4.6). For a general psi-function ip one 

can use (5.2) (with ip instead of tpn) as an approximation, or the IWLS scheme can 

be applied similarly as in Section 3. 

Moreover, if in addition to outliers some observations yit are missing the following 

iterative procedure is suggested using the previous results: 

(5.3) P^m)=TPlti[
m), 

(5.4) Pit"Hm) = TP-jl[m)T' + A(m>, 

_ / At —l(m) 

(5.5) fiT]A ^W(-i)[^r1(m)*« + i] ; 

t - l ( m ) 
l ßu 

(5.6) Pu
{m) = < 

t-Цrn) i p t - l ( m ) 
it љгt^jt 

U ~ „I Ľft-Цm)n 

pi-íy™}- „i pL-
p t - l ( m ) _ _ _ dJ^ťLit^it 

x'p!r1{m)xu + i 
p t - l ( m ) 

^ rit 

(the first variant in (5.5) and (5.6) is for the observed yit and the second one for the 
missing yit), 

( 5 J ) [a ] - 0.7785(5 - kp) \ -V * " Ue»--)Kf?r1(m)*« + 1]1/2 ' ' 
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where S is the number of all observed yu, the sums are taken over all observed yu 

and the value A (m) necessary for recursive calculation of (5.3)-(5.7) is obtained by 

minimizing 

(5.8) A<m> = argmin {(S - kp) \og[a^}2 + £ ~~] log[x'uP*t-
1{m)xit + 1]}. 

i t 

Now one can continue the iterative procedure in a similar way as in Section 3: 

(5.9) 

(5.10) 

(5.П) 

(5.12) 

(5.13) 

~ťľ' 
гn 

ß(: 

н(: 

в(: 
uЫ. 

-ҶŞ-£))~1Ç-.ľ)Д.ľ). 
i i 

= ^ £ "iľ)(Д.ľ) - /^xДíľ* - &m))', 
i 

= — - — Ѓ H ( m ) -f- H(m)/) 

_ y(™) fÅ™) i ( Ţ _ ӯ(rn)\ß('m) 
^in "in ' V1 -°in /AЛг 

6. NUMERICAL EXAMPLE 

The recursive relations (5.3)-(5.8) that form the substantial part of the suggested 

iterative estimation procedure for dynamic models with outliers were applied to data 

from [22] simulated by means of the model (4.14) and (4.15) for k = 1 and n = 31: 

(б.i) 

(6.2) 

yt = ßt + st, e t ~üd .V(0 ,4 ) , 

ßt = ßt-i+vt, v t ~ ü d i V ( 0 , l ) 

(t = 1 , . . . ,31), i.e. O-2 = 22, cr2A = 1. The simulated values yt and f3t are given in 
Table 1. Obviously, the value H20 = 35.00 is an outlier. Here in difference from the 
previous treatment of these data (see [4], [22]) the variances a2 and cr2A are taken 
as unknown. 

We used Huber's psi-function (3.3) with c = 110.95 = 1.645 and the initial values 
/31

1(m) = yu pW - var(/31
1(m) - /3i)/V2 = var(yi - px)/a

2 = 1 for each m and 
[<7(0)]2 = _2(Vt ~ y)2/(n ~ 1) (sample variance). 

After m = 20 iterations of (5.3)-(5.8) we obtained a2 = 2.782, a2A = 0.85 and 
the estimates J3t (t = 1 , . . . , 31) given in Table 1. The results for /3t are comparable 
with those in [4], [22] in spite of the unknown variances in this case. 
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Table 1. Data and estimates after m = 20 iterations using (5.3)-(5.8) 

t Уt ßt ßt t Уt ßt ßt 

1 8.65 10.00 8.65 17 7.29 3.69 7.17 
2 7.28 9.83 7.93 18 5.94 3.37 6.83 
3 7.44 9.98 7.74 19 1.96 3.25 5.48 
4 11.13 8.99 8.86 20 35.00 2.81 7.23 
5 11.18 9.36 9.56 21 -0.62 2.36 5.48 
6 5.45 8.50 8.37 22 4.13 2.46 5.11 
7 6.17 8.90 7.74 23 -0.84 0.82 3.46 
8 3.92 8.20 6.67 24 2.78 0.24 3.27 

, 9 12.32 8.47 8.25 25 1.93 1.62 2.90 
10 6.95 7.46 7.89 26 0.45 1.46 2.22 
11 10.46 6.49 8.60 27 2.54 1.96 2.31 
12 9.54 7.34 8.86 28 -0.95 2.62 1.41 
13 7.07 7.82 8.36 29 2.69 2.95 1.76 
14 8.17 7.06 8.31 30 -0.89 1.40 1.03 
15 5.59 6.85 7.56 31 2.83 2.84 1.53 
16 5.99 5.67 7.12 
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