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NUMERICAL REALIZATION OF A FICTITIOUS DOMAIN 

APPROACH USED IN SHAPE OPTIMIZATION 

PART I: DISTRIBUTED CONTROLS 

JANA DANKOVA, JAROSLAV HASLINGER, P r a h a 

(Received September 1, 1994) 

Summary. We deal with practical aspects of an approach to the numerical realization of 
optimal shape design problems, which is based on a combination of the fictitious domain 
method with the optimal control approach. Introducing a new control variable in the right-
hand side of the state problem, the original problem is transformed into a new one, where 
all the calculations are performed on a fixed domain. Some model examples are presented. 

Keywords: shape optimization, fictitious domain approach 

A MS classification: 49A22, 49D30 

1 . INTRODUCTION 

A fictitious domain approach is now very popular when solving large systems 
arising from the discretization of partial differential equations. Recently an optimal 
control based approach has been used in [1], [3]. Fictitious domain methods applied in 
shape optimization problems are also very attractive because of the specific character 
of the problem. The classical boundary variation technique does not seem to be 
very efficient: one has to create a new partition of the current domain, then to 
recompute the stiffness matrix, the load vector and to solve the corresponding system 
of algebraic equations. All this has to be done at each iteration. The use of a fictitious 
domain approach makes the numerical solution of the state problem more efficient: 
the problem is solved on a fixed domain Q with a simple shape, which does not 
change during the computation. Moreover, the state problem is still given by the 
same differential operator. The information on the geometry (related to our original 
optimal shape design problem) is encoded into the process through an aditional 
control variable appearing on the right-hand side of the state problem solved on Q. 
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Thus the stiffness matrix can be computed just at the beginning and factorized for 
ever. As usual, we have to pay for that. The external level (i.e., the minimization 
process) is now more involved: 

— the number of control variables increases, 
— the problem, originally smooth (differentiable), is in general converted into a 

non-differentiable one, and consequently special minimization methods have to be 
used. 

Mathematical analysis of the fictitious domain approach in shape optimization can 
be found in [5], where distributed controls are used, and in [6], where the technique 
of Lagrange multipliers is presented. The aim of the present paper is to study 
practical aspects of the approach based on the distributed controls. Recently, in 
[2] the method of Lagrange multipliers has been utilized also for shape optimization. 
However, there is one fundamental difference between our approach and that from [2]: 
in [2] the fictitious domain method serves as a "black box" solving the state problem, 
the output of which is then substituted into the optimal shape design problem. In 
our approach, the resulting optimal control problem involves two types of control 
variables which appear simultaneously: the design variable and an auxiliary variable, 

physical meaning of which is a force, by means of which the new formulation is linked 
to the original optimal shape design problem. 

The paper is organized as follows: Section 2 contains the formulation of an opti­
mal shape design problem, the state equation of which is given by the homogeneous 
Dirichlet boundary value problem. In Section 3 we recall the main idea of the ficti­
tious domain approach applied in shape optimization and based on the distributed 
controls. Section 4 deals with the discretization of the method using finite elements 
for the approximation of the state problem. The mathematical justification of the 
results presented in Section 3 and 4 can be found in [5]. The most important results 
of this paper are concentrated in Section 5, where practical aspects of the method 
are discussed. This part includes also the sensitivity analysis and the analysis of 
the smoothness of the resulting optimal control problem. Finally, in Section 6 some 
model examples are presented. 
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2 . SETTING OF THE PROBLEM 

Let Q(a) be a domain defined by 

Q(a) = {[xx,x2] G IR2| 0 < xi < a(x2), x2 G (0,1)} 

where a is a positive, Lipschitz-continuous function, which describes the variable 

part F(a) of df2(a) with 

T(a) = {[xx,x2] G R2| xx =a(x2), x2 G (0,1)}. 

(see Fig. 2.1). 

x2 

1 

0 

U(a) 

X\ 

Fig. 2.1 

Next we shall suppose that the function a belongs to the set Uad, where 

Uad = {ae C0'1^,!])! 0 < Co ^ a(x2) ^ Ci Vx2 G (0,1), 

|a '(x2)| ^ C2 a.e. in (0,1), meas f2(a) = C3}, 

i.e., Uad contains all functions which are uniformly bounded and uniformly Lipschitz-

continuous in [0,1] and preserve the area of f2(a). The constants Co,...,C3 are 

chosen in such a way that Uad 7-= 0-

On each f2(a), a G Uad, we shall solve the homogeneous Dirichlet boundary value 

problem 

(V(a)) 

f -Au(a) = f in Í2(a), 

u(a) = 0 on дf2(a), 
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or in the weak form: 

(V(a)) 

find u(a) G Vi (a) such that 

[ (Vtx(a), V<p)Q{a) = (/,y>)fl(«) V<D G Vi (a), 

where Vi(a) =^.Hg(i?(a)) and the symbol (.,.)^( a ) stands for the L2(J?(a)) scalar 

product. Let J? be a domain containing Q(a) for all a G Uad, /? = (0,d) x (0,1), 

d>Ci and f <E L2(J?). 

Finally, let I: (a,H) -> R1, a G Uad a H G Vi(a) be an objective functional and let 

us define the following problem: 

(p) 
find a* G Uad such that 

I(a*,u(a*)) ^ I(a,u(a)) Va G Uad, 

with u(a) G Vi(a) being the solution of (V(a)). 

The existence of at least one solution a* of (P) will be guaranteed provided the 

objective functional I is lower semicontinuous in the following sense (see [7]): 

(И)) 
an=$ a (uniformly) in [0,1], an,a G UaA 

Vn-^ym Hl(Q), yn,y G H^(f2) J 

=^ liminf I(an,yn\Q{otn)) ^ I(a,y\Q{a)). 
n—Vrv. v ' v ' 

3. FICTITIOUS DOMAIN APPROACH: DISTRIBUTED CONTROLS 

Let i? = (0,d) x (0,1), where d > Cx. Set ~(a) = ft \ Q(a) (see Fig. 3.1) 
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Instead of the problem (V(a)), which is defined on ft (a), we consider a new 

homogeneous Dirichlet boundary value problem which is formulated and solved on J?: 

(P(a,v)) 

-Aû = v in ӣ, 

û = 0 on дü. 

The right-hand side v plays the role of the control variable. Our goal is to find v in 

such a way that the solution u of (V(a,v)) restricted onto Q(a) coincides with the 

unique solution u(a) of (V(a)). This means that we have to find v such that 

(i) v = f in 0(a), 

(ii) u\r{a) = 0. 

The condition (i) represents the constraint imposed on the control v, while (ii) is the 

state constraint. 

In order to specify the class of controls v guaranteeing that (ii) is satisfied, we 

introduce the following notation: 

V2(a) = {ve H^a))! v = 0 on d~(a) \ F(a)}. 

By ^2( a) w e denote the dual space to V2(a) and by (.,.)a the corresponding duality. 
We set 

Qf(a) = {v = (vuv2)\ vi = /|r2(a), v2 e V2'(a)}, a G Uad. 

Then one can prove 

Lemma 3.1. For any a G Uad there is an element v G Q^(a) such that the 
corresponding solution u of (V(a,v)) satisfies (ii), i.e., the restriction U\Q^ solves 
(V(a)). Moreover, 

\\v\E{a)\\*ta < # -

where the symbol || ||*>a stands for the dual norm in V2(a) and the positive constant 

K depends on ||/||L2(/j), only. 

For the proof we refer to [5]. 

R e m a r k 3.L If (V(a)) is regular, i.e., its solution u(a) G H2(Q(a)) n 
Hl(Q(a)), then Lemma 3.1 holds with v G L2(Q). 
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d xi 

R e m a r k 3.2. Let 

Es(a) = {x = [xi,x2] G U2, a(x2) < xx < a(x2) + 6, x2 G (0,1)},<J>0. 

Then Lemma 3.1 still holds provided v = (v\,v2) G Qf(a), v2 G V2'(a) such that 
suppv2 C Es(a) (see Fig. 3.2). This means that the behaviour ofv is important 

only in a vicinity off(a). 

Put 

QÍd(a) = iV = (VUV2)\ Vl = f\(7(a), V2 € V2'(a).|MI*,a ^ K), C* € Uad, 

QL = U QU°), 
aeua 

where K > 0 is the same constant as in Lemma 3.1. 

The weak formulation of (V(a,v)) for a G Uad and v G Qf
ad(a) now reads as 

follows: 

(V(a,v)) 
find u = u(a, v) G V such that 

(Vfi, V<£)g = (f,0)f2(a) + (V2,<p)a V<£ G V, 

where V = H& (/?). 
Let e > 0 be a penalty parameter and define a functional Ee: Uad x Q^d -» 1R1 by 

1 Ѓ 
Eє(a,v) = / ( a , û | ß ( a ) ) + - / û 2d^ 2 , 

є Jo 

where I is the original cost functional appearing in the definition of (P), u = u(a,v) 

is the solution of (V(a,v)) and 

/ û 2 d x 2 = / (û(a(x2),x2))
2 àx2. 

Jo Jo 
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Instead of (P) we shall introduce the family of problems 

f find (a*, v*e) e Uad x Qf
ad(a*e) such that 

I E£(a*,v*) < Ee(a,v) V(a,w) e Uorf x Qf
ad(a). 

In [5], the following existence result is established: 

Theorem 3.1. Let the cost functional I satisfy (A). Then (P)£ has at least one 

solution for any e > 0. 

Let £k \ 0, k —>• oo, be a sequence of penalty parameters and define the problems 
( P ) ^ as above. As far as the mutual relation between (P) and (P)^., e* \ 0, is 
concerned, one can prove 

Theorem 3.° Let (a*k,v*k) G Uad x Qf
ad(a*k) be solutions of(P)£k. Then there 

exists a subsequence {(al.,vk.)} and an element (a*,v*) G Uad x Qad(a*) such that 

a*k. =3 a* uniformly in [0,1], 

v*kj^v* inH-l(h), 

^ u*k. —- u* in V, 

where u*k G V solve the corresponding state problems (V(a*k,vl)). Moreover, a* is 
a solution of (P) and U*\Q^*^ solves (V(a*)). 

For the proof see [5]. 

R e m a r k 3.3. Theorem 3.2 says that the problems (P) and (P)£k are close on 
subsequences for ek \ 0+. The problem (P)<-fc is nothing else than the penalty 
approach treating the state constraint (ii). 

From the definition of (P)^., the main advantage of the fictitious domain approach 
is readily seen: the state problem (V(a,v)) is still solved on the fixed domain fl. 
This fact is very important when realizing this method. 

If y = (v\,V2) G Qad(a), then v2 belongs to V2'(
a)- For practical reasons, however, 

such a choice of v is not suitable. A natural question arises, what happens if more 
regular controls are admitted, namely if v G Qad(r,a), where 

Qf
ad(

r,a) = {v = (vi,v2)\ vi = / | tf(a),v2 G L2(~(a)), |MI~(a) < r}, 

and r > 0 is a given constant which does not depend on a G Uad. If the state 
problem (V(a)) is regular for any a G Uad in the sense of Remark 3.1, then the 
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previous approach can be applied with Qad(r,a) replacing Qad(oc) taking r > 0 
sufficiently large. Unfortunately this is not our case. On the other hand using the 
fact that L2(S(a)) is dense in V£(a), one can define the problem (P)£, using controls 

V€ Qld(ria): 

~ J find (a£,v£) G Uad x Qf
ad(r,a£) such that 

\ E£(a£,v£) ^ E£(a,v) V(a,v) G Uad x Qf
ad(r,a), 

where E£(a,v) is the same as before, i.e., 

1 f1 

E£(a,v) =I(a,u\Q{a)) +- / u2 dx2, 
£ Jo 

and u = u(a, v) G V solves the problem 

(V(a, v)) (Vfi, Vc.% = (/, <p)nM + K <p)s(a) V^ G V. 

The relation between (P) and (P)e is analyzed in [4], where the following result is 
established: 

Theorem 3.3. Let the cost functional I be uniformly continuous on Uad x V in 
the following sense: 

Vx>036>0Vu,veV \\u-v\\d ^5\ 

VatPeUadWa-PWcuo,!])^* j 

=> \I(a,u\Q{a)) - I(P,v\Q{p))\ ^ x 

and lete>0 be fixed and rj > 0 be an arbitrary number. Then there exists f = f(n, e) 

such that for any solution (a£,v£) G Uad x Qad(f, a£) of (P)£ we have 

\E£(a£,v£) -q\^ T(rj) + c | + g(e), 

where q = inf I(a, u(a)), F(r)) -¥ 0-f, g(e) —> 0+ if s,rj -> 0+ and c is a positive 
cxeuad 

constant. 

In the subsequent sections we shall deal only with the regular controls v, i.e., 

v G L2(Q). 
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4. FINITE ELEMENT APPROXIMATION OF (P) e 

The aim of the present section is to describe briefly an approximation of the 
problem (P)£ for a fixed value of the penalty parameter e > 0. The approximation 
will be based on a suitable finite-element discretization of the state problem, solved 
on the fixed domain Q. 

First, we start with the approximation of the space V. Let {Th}, ft -r 0-f, be a 
regular family of partitions of Q in the standard sense. With any Th we associate a 
finite-dimensional space VhCV containing piecewise polynomial functions over Th> 

Instead of Uad its approximation U^d by piecewise linear functions will be used: 

U^d = {OLH € C([0,1])| OLH is piecewise linear in [0,1]} D Uad-

R e m a r k 4.1. The reason why we restrict ourselves to the case of piecewise 
linear functions is that the constraints imposed on a G Uad can be easily realized by 
them. The mesh sizes ft and H related to Vh and U^d are independent of each other, 
in general. 

Let an G U^d be given. Then Q = J?(O:H) U E(an)- Now, it remains to con­
struct an approximation of the set of controls Qad(

r,OLn), defined on E(an)- Let 
{71K(®H)} be a regular family of partitions of E(an)> With any 7ZK(&H) we as­
sociate a finite-dimensional subspace LK(OLH) of L2(E(an)) containing piecewise 
polynomial functions on 7ZK(OLH), and define 

#K,ad ( r ' a " ) = iVK e L2(^\ VK = f™ V(aH), 

VK G LK(OLH) on B(aH), \\VK\\S(OLH) < r l -

R e m a r k 4.2. Again, the partition TZK(CZH) can be independent of Th and con­
sequently the mesh sizes ft, H, K are independent of each other. In practical realiza­
tion, however, the situation is less complicated. Indeed, the partitions defining U^d 

and QK,ad(riaH) are usually defined by means of % (see Fig. 4.1). 

In the situation depicted in Fig. 4.1 all nodes determining the piecewise linear 
function an G U^d lie on horizontal sides of rectangular elements R belonging to Th, 
while the partition 7ZK(OLH) of B(an) consists of all elements of the form RnS(an), 
R eTh- Consequently, instead of three independent mesh parameters ft, II, K only 
one, namely ft describes the corresponding partitions. 

First, we start with the approximation of the state problem (V(a,v)). Let an G 
U^d and VK G Qx,ad(r 'a1I) be given. We define 

,-, v N f find uh = Uh(oLH,vK) G Vh such that 
(V(aH,vK))h < 

{ (Vuh,Vyh)n = (f,<Ph)n(aH) + (vK,<Ph)s(*H)V<Ph G Vh. 
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The approximation of the whole problem (P)£ (e > 0 being fixed) now reads as 

follows: 

(p)e approx 

find a*eH £ U^, v*K e Qf
KM(r,a*eIi) such that 

. E£(a*H,v*eK) ^ E£(aH,vK) Va/I G U?d, VvK e Qf
KM(r,aH). 

Here we will not deal with the mutual relation between (P)£ and (P)e,apProx when 

h,H,K -» 0+. The detailed analysis of this problem can be found in [5], in the 

case when Vh consists of piecewise linear triangular elements and the controls v are 

approximated by piecewise constant functions. Again it is possible to show that (P)£ 

and (P)e,approx are close on subsequences (in the sense of Theorem 3.2). 

5 . ON PRACTICAL ASPECTS OF THE FICTITIOUS DOMAIN APPROACH 

USED IN SHAPE OPTIMIZATION 

In this section we will discuss the main features of the approach presented above. 

To this end we shall present the matrix form of the state problem (V(aH,vK))h. Let 

us suppose that the mesh sizes h, H, K are given. Then the problem (V(aH, vK))h 

reduces to a system of linear algebraic equations 

(5.1) 

where 

Au(a ,v ) = F i ( a ) + F 2 ( a , v ) , 

A = {aij}lj=1, &ÍJ = {V<Pi,V(f>j)í}, 

Fx(a) = {F^(<x)}U, F ! ( ť ) = / ffrdx, 
Jn(aH) 

F 2 ( a , v ) = {F 2
( i ) (a,v)K* = 1 , F 2

( i ) = / vK<fidx 
Js{aH) 
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are the stiffness matrix and the discretization of the right-hand sides of (V(an, VK))h, 

respectively. The symbols a G (Rm, v G Up stand for the discrete variables related to 

an G U^, VK G LK((*H), respectively. Finally, {&} are the basis functions of Vh> 

From (5.1) the main advantage of the fictitious domain approach is readily seen: 

the stiffness matrix A does not change during computations. It is computed at the 

beginning once for ever. Thus the linear system (5.1) can be solved very efficiently 

for various right-hand sides. 

Next, we shall analyze in more details the properties of the mappings 

a -> F i ( a ) , (a ,v) -> F 2 ( a , v) 

and consequently also of 

(a,v) - > u ( a , v ) 

by virtue of (5.1). 

Clearly, the mapping 

v -> F 2 ( a , v ) 

is linear and continuous, but the mappings 

a - > F i ( a ) , 

a -> F 2 ( a , v ) 

are Lipschitz-continuous only, in general. For the detailed analysis we pass from the 

matrix formulation of the state problem to its finite element formulation. 

Let a G Uad and g G L2(Q) be given. Then the functional 

$(a) = / gdx 
JQ{oc) 

is only Lipschitz-continuous on Uad, in general. If the function g is more regular, 

namely if g G Hl(Q), then $ is already continuously differentiable on Uad- Indeed, 

let Tt: U2 —> U2 be a mapping of the form 

Tt=id + t(e,0), t ^ O , 

where the function 0 G Wl'°°(Q) is such that Tt(Q) = ft and Q(a(x2),x2) = 6(x2), 

i.e. Tt maps i? onto J? and the boundary r(a) onto r(a+t8). Denote ftt = Tt(Q(a)) 

and $t(a) = JQ gdx. Using Fubini's theorem, one can easily prove that 

(5.2) ftФt(a) = / 7T— (gO)dx+ f gOmds, 
t=o Jn(a) °xi Jr(a) 
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where n = (ni ,n2) is the unit outer normal vector to Q(a). This yields that the 
smoothness of $(a) depends on the regularity of the integrands. Applying this result 
to the mapping 

<*H -> vK<Pidx, vK e LK(aH), aH G Ua", 
Jz(otH) 

we arrive at the following conclusion: smoothness of the state problem (5.1) depends 

on the type of finite elements used for the approximation of the control variable v: if 

the elements are of the class C°, i.e., LK(OLH) C Hl(S(an)), and if we assume that 

the right-hand side f G Hl(Q), then the state problem is continuously differentiate, 

if not, the solution of (5.1) is only a Lipschitz-continuous function of ex, in general. 

Next we will analyse the smooth case only, i.e., LK^H) C Hl(E(an))• Moreover, 

we will assume that {7^,} is a regular family of rectangulations of i? for h —> 0+ and 

any Vh is the space of piecewise bilinear functions over Th. Let OH £ C0,1([0,1]) be 

a piecewise linear function having the same nodes as the functions from U^d. The 

directional derivative of uh at an in the direction 6H is defined as follows: 

М а я ( ^ н ) = 411т = - | - « л ( а я + < в н , « к ) 
t=0+ 

Using (5.2) one can easily show that (uh)'aH = (uh)aH(0H) £ Vh solves the problem 

(5.3) (V{uh)'aH, V ^ ) g = / (/ - vK)9Hn^h ds V0fc G Vh. 
Jr(aH) 

Next we shall consider the cost functionals 

~ " 2 - ( l ? ( a H ) ) ( Ji(aн,ûh) = \\ûh - z\\2

L2Waн))ì 

J2(0tH,Uh) = \\Uh-z\\L2{fiy 

Js(aH,Uh) = H V ^ - z)\\2
L2{ny 

K J±(aH,Uh) = -(uh,f)a(aH), 

where uh = uh(aH,vK) solves (V(aH,vK))h, & C f2(aH) VaH € U?d is a given 
domain which does not depend on an and z is a given function. If uh is continuously 
differentiable with respect to aH € U"d and VK £ LK(aH), then the same holds 
for the mappings (an,VK) -> Ji(oiH,Uh(otH,^K)), i = 1,...,4. Indeed, using the 
adjoint state technique, one can easily derive formulae for the gradients of the cost 
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functionals Ji{aH,Uh(aH,VK)), i = 1 , . . . ,4, with respect to the variable vK-

' VvKJi(aH,Uh\n(aH)) =Pih\s(a„), where pi/, G Vh solves 

(Vpifc, V(ph)u = 2{uh - z, <Ph)n(aH) V<Ph e Vh; 

VvKJ2(aH,Uh\n(aH)) =P2h\s(*H), where p2/i G Vh solves 

(^P2h,VVh)n = 2(fih ~ *,£/i)/5 V ^ G V ;̂ 

VU|C J3(a.w,fi/ib(aH)) =P3fcI =•(««), where p3/ l G V* solves 

(Vpafc, VwOg = 2(Viifc - V*, V ^ V ^ G 14; 

VVKJ4(aH,Uh\o(aH)) =P4h\s(aH), where p4/i € 14 solves 

, (Vp4/i, V ^ J / j = -(f,<i>h)n(aH) Vfa G 14. 

The corresponding derivatives with respect to the design variable a// G U^d are given 

by 

' (Ji)'«H WH) = Í ((ů" - *) 2 + (/ " " * W ) * H » I ds, •/r(a„) 

(•&)«„ (**) = / ( / " VK)P2h0HTll ÚS, 
Jr{a„) 

WaH (Pn)= [ (f~ VK)pzhOHni ds, 
Jr{aH) 

WaB (eH)= I {-fúh + (/ - vK)Pih)eHni ds, 
l. Jr(a„) 

where p\h,... ,p±h are the adjoint states introduced above. 
Now let us examine in more detail the penalty term1 

Jo(aн,ûh) = / {ûh)
2ds. 

JГ(ocH) 

1 Ins tead of t h e integral /Q u dx2, used for theoretical purposes, t h e integral along F(o;# ) 

is now considered. 
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Differentiating Jo with respect to VK, we obtain 

VVKJ0(aH,uh) =Po/i|s(aH)> wherepoh solves 

(Vpofc,V<ŕ/i) 
Jг(aн 

úhčhds \/0h e vh. 

The derivative of Jo with respect to an is more involved. The formal differentiation 
leads to the following expression: 

(5.4) { 

Í (Joh)'aH (9H) = f (f- vK)PoheHni ds + 2 [ uh^9H as 
Jr(a„) Jr(a„) oxi 

/ ul(aH(x2), 
Jo 

'н(x2)a'н(X2) 

As the solution uh is a piecewise bilinear function, its derivative duh/dx\ is discon­

tinuous on vertical interelement boundaries M, the union of which will be denoted 

by AT. If the intersection of F(aH) with all M G M is a set with a positive measure 

(see Fig. 5.1b)) then only the directional derivative of Jo with respect to an exists. 

On the other hand, if such an intersection contains a finite number of points, then 

Jo is continuously differentiable at an (cf. Fig. 5.1a)). 

X2 

1 

O xi 

1 
< 

1 

I 

1 •w. 

0 *Xl 

a) b) 

Fig. 5.1 

We use a more convenient expression of the second term on the right-hand side of 

(5.4), namely 

./ 
Jг(aн 

чh^( н)+ds + 2 f 
дXi JГ(aн 

л д ûfc 
uh— ( н) ds, 

Г(aн) ÖXl 

where d±uh/dx\ stands for the partial derivatives of uh from the right and the 

left, respectively, 0# = max(0/y,O), 0^ = min(0/L,O). From the analysis presented 

above we see that the whole optimal control problem (P)e,approx is non-smooth, in 
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general. The possible non-differentiability is due to the penalty term fr<aH)(v>h)2 ds. 
A natural idea arises, namely to replace this term by a "smooth" one. Proposition 
A.l in [5] implies that there is an element v G Qid(a) s u c n ^ a t t n e corresponding 
solution u(a,v) of (V(a,v)) is identically equal to zero not only on T(a) but also in 
Es(a) ( defined in Remark 3.2). Thus as the penalty term we can take 

Js(otH,Uh) = \\^h\\2
L2(Es{ckH)y 

An easy computation shows that J^ is continuously differentiate with respect to 

VK € LK(OLH) and an G Uj?d. Indeed, 

VVKJs(aH,Uh) =pSh\s{aH), where ps
h G Vh solves 

(Vp{, Viph)n = 2(uh,iph)~s(*H) V ^ G Vh 

and 

(Js)aH (^H) = [ ( ( / - vK)p{ - uDOnri! ds + / u\0Hni ds, 
Jr{aH) JT(aH+<5) 

where F(a/L + 5) is parallel to F(a//) and dist(F(a// + 6),T(an)) = S. Replacing 

•In by Js, the whole problem (P)e>approx is converted to a smooth one. 

The main difficulty, however, is related to the so called locking effect Let an G U^d 

be given. If there is a VK € LK(OLH) such that the corresponding solution Uh(otH, VK) 

of (V(an, v>K))h vanishes on F(a#) and if F(a#) does not contain vertical segments 
(i.e., parallel to rz^-axis), then Uh is identically equal to zero in all elements from Th, 
the interior of which has a non-empty intersection with F(a//). Such phenomenon 
is undesirable in practical realization because it makes minimization procedures non 
sensitive with respect to the change of the design variable a # G U^d. 

Now we show that under certain circumstances the locking effect may arise. To this 
end we again pass to the algebraic formulation of the state problem. Let an G U^d be 
fixed and let us consider the situation depicted in Fig. 4.1 and mentioned in Remark 
4.1: all vertices of the polygonal domain Q(an) lie on the horizontal interelement 
boundaries of elements R G 7^. The partition 7£(a#) used for the construction 
of LK(OLH) is made of elements R n E(an), R G % and the space LK(OLH) itself 
contains all continuous piecewise bilinear functions on 7£(a#). Let X be the set of 
the indices of all nodes {a*}, i G X, belonging to Th- The set X will be split as follows 
(see Fig. 5.2): 

X = JUXQUXIUX2, 
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where 

J = {iel\cn edh}, 

2o = {i G 1 \ J | di is a vertex of a rectangle R G Th such that 

int(R) D T(aH) ?9}\J{ieI\J\aie T(aH)}, 

Xi = {iel | a{e 0(aH), i $ 1Q}, 

12 = {iel\ a{e S(aH),i£lo}-

Set rii =card li, i = 0,1,2. 

%2 j 

i f 

o 
<Ь <Ь <Ь ^ > <Ь <Ь <i> <І> ..• 

Xi 

x the nodes a
t
-, i G 2o 

o the nodes a;, / G 1\ 

• the nodes ai, I e 12 

o the nodes ai, I e J 

Fig. 5.2 

Now we use the matrix formulation (5.1) of the state problem (P(an,VK))h- As 

an € U^d is assumed to be fixed, we omit the symbol a in what follows. The 

resulting system of linear algebraic equations, which takes into account the definition 

of LK(&H), reads as follows: 

(5.5) 

where 

Au = F i f + F 2v, 

Fl = { # ' } , /i*' = (<^,W)<?(«„), 

F2 = {/£'}, /2
fc' = (^,w)s (o„), 

k e l \ J , I e l . Here {<£j}, 3 e l are piecewise bilinear functions over Th such that 

(Pj((ii) = Sij, i,j e 1 

and f, v are the vectors of the nodal values of / (here we assume / G C(f2), otherwise 

we pass to a suitable approximation of / ) and VK (here VK is a continuous piecewise 
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bilinear extension of VK on i?) at o», z G 1. We shall show that for any choice of 
Z{ e U1, / e 1Q UX2, there is a right-hand side v for which the corresponding solution 
u of (5.5) satisfies U{ = z\ for all / € 1Q U X2. 

First of all it is easy to see that if U{, I e 1Q, are given a-priori, the components ui, 

I e 1\, of the vector u are already uniquely determined. Indeed, let u be the vector 
the components of which are U{, I el\. Using the fact that (F2v); = 0 for all i e 1\ 

and for all v, we can see that u solves the system of linear equations 

(5.6) AS = FYf - d, 

where A = (a^-), i,j e 1\, Fif and d are vectors the components of which are 

(Fif)i, i e 1\ and JZ Qijzj-> i £ Xi(here we use the fact that atj = 0 for i el\, 
jeio 

j e X2), respectively. 
Such u solving (5.6) is unique and independent of v. Substituting u together 

with Z{, I e 1Q UX2, into (5.5), we get equations from which v can be determined. 
Its components Vi, i e J Ul\, can be chosen arbitrarily. The remaining (no + n2) 
components Vi, i e 1Q UX2, form a vector denoted as v*, which can be found by 
solving the system 

(5.7) F 2 V = A u " - g - F 1 7 , 

where F 2 = {/2 '}, k, I e X0 U X2, Au, Fi f and g are the vectors the components of 
which are {Au};, {Fif}; , i e X0 U X2 and ]T) f2lyh k e 1Q UX2. As F 2 is regular, 

there is a unique v* solving (5.7). Applying this result to the special choice of Z{, 
namely z\ = 0 for all / e 1Q we arrive at the assertion on the existence of the locking 
effect at the nodes a*, i e 1Q. 

To avoid the locking effect, we need to modify the definition of Z /K(^H) - Instead 
of the partition 7l(an) created directly from Th, a corser partition of S(an) has 
to be used. Nevertheless such a partition still can be related to Th (see Fig. 5.3, 
where each element from 1Z(an) is the intersection of S(an) with the union of four 
elements from Th)-

As in all state constrained optimal control problems, special attention has to be 
paid to the mutual relation between the penalty parameter e and the mesh size h > 0. 
The general strategy is to choose e > 0 fixed and let h -> 0-h 

139 



* 2 A 
1 7 щш 

t шш 
т^ 

" 1 ' 

/ 

Л I 
л 
_/-.... 
1 
I w 

0 *xi 

Fig. 5.3 

6. EXAMPLES 

In examples presented below, the piece wise bilinear approximation of the solution 

u as well as of the control variable v will be used and i? = (0,1.5) x (0,1). The 

fictitious domain _1 is cut into squares with the size h. 

E x a m p l e 1. Here 

f(xi,x2) = 1, 

C0 = 0.7, Ci = 1 . 3 , C2 = l, C3 = l 

(for the meaning of C0, Ci, C2, C3 see the definition of Uad) and the cost functional 

J = J4 (see Section 5). 

E x a m p l e 2. Here 

z(xi,x2) =.TiX2(l -x2) I 

f(xi,x2) = - A z , 

sin^пxг) 1 
— j - -xl + l - -

Co = 0.6, Ci = 1.3, C2 = 1.6, C3 = 1, 

f2 = (0,0.5) x (0,1), 

and the cost functional J = J z, i = 1,2,3. 

In both the examples h = 1/16 and the sequential quadratic programming method 

NLPQL (see [8]) has been used. The initial shape Qin = (0,1) x (0,1) and the initial 

value vin of v is equal to 0. Two choices of the functional EEa have been tested, 

namely 

(6.1) Ee(a,v) = Jt(a,M(a,v)|rt(a)) + - / u2ds, i = 1,... ,4, 
6 Jr(a) 

(6.2) 
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where 

Ma,u) = \\u\\lHS8(a)) 

(see Section 5). Results of the first example for different values of the penalty 
parametr e are depicted in Figs. 6.1, 6.2 when (6.1) was used and in Fig. 6.3 for 
(6.2) with 6 = 0.05 (and i = 4). Figures are amended by tables, the columns of 
which have the following meaning (TABLE 1): 

- IT = the number of iterations needed; 

- E(0) = the initial value of Ee: E€(ain,u(ain,vin)); 

- E(IT) = the final value of EE\ E£(aopt,uopt)); 

- Jo(IT) = the value of fr,a t\(u(aopt,vopt))
2 ds (the information how the ho­

mogeneous Dirichlet boundary condition is satisfied); 
- JA(IT) = the value of J4(aopt,w(aopt,t;0pt)); 
- Jl(IT) = the value of the cost functional J4 recomputed by using the fictitious 

domain approach (see [1]) with h = 1/64 over the domain Qopt. 

The last line contains the following information: 

- Jo(0) = the value of j r(a .n)(fi(a.n,v.n))2 ds; 
- J4(0) = the value of J4(ain,u(ain,vin)); 
- J4 (0) = the value of J4 computed by using the fictitious domain approach with 

h = 1/64 over the domain Qin = (0,1) x (0,1). 
Table 2 shows the results when (6.2) was used. This example was recomputed 

by R. Makinen (University of Jyvaskyla) by using the classical boundary variation 
approach. His result corresponds to ours for e = 0.1. In Fig. 6.2 the influence of the 
locking effect is readily seen. The designs only slightly change Qin = (0,1) x (0,1). 
In Fig. 6.4, 6.5 and 6.6 the final shapes for Example 2 and the cost functional (6.1) 
with i = l ,2 and 3, respectively, are shown. Results for E£ given by (6.2) are almost 
the same, therefore the variant (6.1) is presented, only. 
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X2 1 

0.8 

0.6 

0.4 

0.2 

0 

•є = 1 
•є = lE-l 
•є = 1 E - 2 

0 0.2 0.4 0.6 0.8 1 1.2 

Fig. 6.1 

1.4 я i 

IT E(0) E(IT) Jo(IT) Miт) JІ(IT) 

І E + Ol 50 - A 3 9 E - 0 1 - . 5 6 8 E - 0 1 . 1 3 9 E - 0 1 
1E + 00 44 - . 2 9 6 E - 0 1 - . 3 8 9 E - 0 1 .249E - 03 
І E - O l 61 Л14E + 00 - . 3 6 6 E - 0 1 . 3 7 7 E - 0 5 
1 E - 0 2 69 Л55E + 01 - . 3 6 0 E - 0 1 . 8 8 3 E - 0 7 
І E - O З 63 A59E + 02 - . 3 5 9 E - 0 1 .180E - 08 
1 E - 0 4 200 Л59E + 03 - . 3 5 7 E - 0 1 .227E - 08 

- .707E-01 - . 3 6 6 E - 0 1 
- A 1 4 E - 0 1 - . 3 6 9 E - 0 1 
- .369E-01 - . 3 6 7 E - 0 1 
- .361E-01 - . 3 6 7 E - 0 1 
- .359E-01 - . 3 6 1 E - 0 1 
- .359E-01 - . 3 6 1 E - 0 1 

J c (0) = A5931E - 02, J 4 (0) = - A 5 5 E - 01, Jf(0) = .351E - 01 

Table 1 
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1.2 1.4 *i 
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xì \ 
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// 
/'** 

/' 0 0.2 0.4 0.6 0.8 
Fig. 6.3 

1.2 1.4 xi 

IT E(0) E(IT) J C (IT) Ыiт) Jf(IT) 

AE-01 59 - . 3 8 7 E - 0 1 - A 3 7 E - 0 1 .592E - 04 - A 9 6 E - 01 - .365E - 02 
. I E - 0 2 50 . 2 2 3 E - 0 1 - . 3 8 3 E - 0 1 A07E - 05 -.394E - 01 -.366E - 02 
. I E - 0 3 124 .632E + 00 -.362E - 01 A61E - 06 -.378E - 01 - .368E - 02 

J c (0) = .67764E - 04, J 4 (0) = - A 5 5 E - 01, j£(0) = .351E - 01 

Table 2 
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— opt. 
- є = 1 
- є = l E - l , 1 E - 2 , І E - З , 1 E - 4 , 1 E - 5 , 1 E - 7 
..•є = l E - 6 , 1 E - 8 

x2 1 

0.8 

0.6 

0.4 

0.2-

0 

N Д 

^ \ 
э» \ :»» \ 
:'» \ •' • \ • •' \ :' ' / 
• i i / 
:»» / 

íì / 
v / 

J 
0 0.2 0.4 0.6 0.8 

Fig. 6.4 

1.2 1.4 я i 

IT E(0) E(IT) Jo(IT) Ą(IT) J f ( I T ) 

.1E + 
ЛE + 
ЛE-
ЛE-
ЛE-
ЛE-
ЛE-
ЛE-
ЛE-

147 
84 
74 
59 
60 
76 

200 
53 

200 

Л 1 8 E -
. И 6 E -
Л15E + 
. П 5 E + 
Л1БE + 
.И5K + 
Л15E + 
Л15E + 
Л15E + 

02 . 1 5 4 E - 0 4 
01 . 2 0 1 E - 0 4 
00 . 2 4 3 E - 0 4 
00 . 5 6 7 E - 0 4 
02 .269E-03 
03 .248E-02 
04 Л 0 6 E - 0 2 
05 .249E + 00 
06 .428E + 00 

.324E - 05 

.107E - 05 

.371E - 07 

.365E - 07 

.256E - 07 

.246E - 07 

.103E - 08 

.249E - 07 
A28E - 08 

J 0 (0) = A1532E - 02, Ji(0) = -.307E - 04, Jf (0) 

Table 3 

. 121E-

.190E -

.206E -

.202E -
Л36E -
.141E-
.268E -
.139E-
.243E -

= .682E 

04 Л 8 6 E - 0 4 
04 Л 8 6 E - 0 4 
04 . 1 9 7 E - 0 4 
04 Л 9 3 E - 0 4 
04 . 1 2 6 E - 0 4 
04 . 1 3 2 E - 0 4 
04 . 2 6 9 E - 0 4 
04 . 1 2 9 E - 0 4 
04 . 2 3 9 E - 0 4 

- 0 4 
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• opt. 

•є = l, І E - I , 1 E - 2 , І E - З , 1 E - 4 , 1 E - 5 , 1 E - 6 , 1 E - 7 
•є = 1 E - 8 

X2 1 

0.2 

IT 

0.4 

E(0) 

0.6 0.8 

Fig. 6.5 

1.2 1.4 zi 

E(IT) Jo(IT) J2(IT) J2

P(IT) 

.1E + 
ЛE + 
. 1 E -
. 1 E -
. 1 E -
. 1 E -
. 1 E -
. 1 E -
. 1 E -

01 

00 

01 

02 

03 

04 

05 

06 

07 

154 

100 

77 

59 

60 

76 

200 

53 

200 

Л 1 5 E -
. 1 1 5 E -
.115E + 
. И 5 E + 
. П 5 E + 
Л15E + 
. H 5 E + 
Л15E + 
Л15E + 

Jo(0) = Л1532E-02, 

02 . 3 5 9 E - 0 6 
01 . 6 8 9 E - 0 6 
00 . 3 8 7 E - 0 5 
01 . 3 6 8 E - 0 4 
02 . 2 5 4 E - 0 3 
03 . 2 4 6 E - 0 2 
04 . 5 6 7 E - 0 2 
05 .249E + 00 
06 .254E + 00 

Ј 2 (0) = - .775E 

.561E - 07 

.369E - 07 

.354E - 07 

.365E - 07 

.254E - 07 

.246E - 07 

.567E - 08 

.249E - 07 

.254E - 08 

-06, 4 ( 0 ) 

.ЗOЗE -

.319E -

.327E -

.ЗЮE -
Л95E -
Л99E -
.388E -
Л96E -
.432E -

= Л79E 

06 Л 5 2 E - 0 6 
06 Л 5 7 E - 0 6 
06 Л 6 3 E - 0 6 
06 Л 5 0 E - 0 6 
06 . 7 3 0 E - 0 7 
06 . 7 5 4 E - 0 7 
06 . 2 3 1 E - 0 6 
06 . 7 2 3 E - 0 7 
06 . 2 7 8 E - 0 6 

- 0 5 

Table 4 
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— opt. 
-є = l, І E - I , 1 E - 2 , І E - З , 1 E - 5 , 1E-
-є = l E - 4 
..•є = l E - 6 , 1 E - 8 

0.2 0.4 0.6 0.8 1 

Fig. 6.6 

1.2 1.4 *i 

IT E(0) E(IT) Jo(IT) ^Iз(IT) Jf(IT) 

ЛE + 
ЛE + 
Л E -
Л E -
Л E -
Л E -
Л E -
Л E -
Л E -

01 

00 

01 

02 

03 

04 

05 

06 

07 

154 

66 

64 

57 

57 

80 

61 

48 

200 

Л 1 8 E -
Л 1 6 E -
Л15E + 
Л15E + 
Л15E + 
Л15E + 
Л15E + 
Л15E + 
Л15E + 

02 

01 

00 

01 

02 

03 

04 

05 

06 

.498E - 05 

.774E - 05 
Л 1 6 E - 0 4 
.443E - 04 
.260E - 03 
.247E - 02 
.253E - 01 
.249E + 00 
A08E + 00 

Л 7 1 E - 0 5 
.796E - 07 
.363E - 07 
.365E - 07 
.255E - 07 
.246E - 07 
.253E - 07 
.249E - 07 
.408E - 08 

Jo(0) = Л1532E - 02, J3(0) = -.225E - 04, Ą(0) 

Table 5 

.327E -

.694E -

.798E -

.776E -

.476E -
A85E -
.493E -
A81E -
Л74E -

= .486E 

05 A97E-05 
05 . 3 7 1 E - 0 5 
05 A32E-05 
05 . 4 1 3 E - 0 5 
05 A95E-05 
05 . 2 1 0 E - 0 5 
05 .130K-05 
05 . 2 1 0 E - 0 5 
04 . 1 2 4 E - 0 4 

- 0 4 
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