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SEASONAL TIME SERIES WITH MISSING OBSERVATIONS 

TOMAS RATINGER, Praha 

(Received July 27, 1994) 

Summary. Popular exponential smoothing methods dealt originally only with equally 
spaced observationc When time series contains gaps, smoothing constants have to be 
adjusted. Cipra et al., following Wright's approach of irregularly spaced observations, 
have suggested ad hoc modification of smoothing constants for the Holt-Winters smoothing 
method. In this article the fact that the underlying model of the Holt-Winters method is 
a certain seasonal ARIMA is used. Minimum mean square error smoothing constants are 
derived and compared with those of Cipra. 
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AMS classification: 62M10, (62M20, 90A20, 93E14) 

1. INTRODUCTION 

Exponential smoothing methods, especially Holt's and Holt-Winters methods, 
have achieved great popularity in practical time series analysis. The reason is that 
they are easy to understand and to compute. Although they are ad hoc methods, 
they produce satisfactory forecasts comparable with, for example, ARIMA models. 
Originally, these methods have been designed for time series with equally spaced 
observations. If time series contains missing observations, methods have to be ad­
justed. Wright [6] proposed to treat the problem of missing observations as irregu­
larly spaced data, and modified in that sense the nonseasonal exponential smooth­
ing methods. Cipra et al. [5] suggested an extension of Wright's approach to the 
(seasonal) Holt-Winters method. Utilizing the fact that exponential smoothing tech­
niques are optimal provided the investigated process follows a certain ARIMA model, 
Aldrin and Damsleth [3] derived optimal smoothing constants for non seasonal meth­
ods for a single gap of missing observations. This paper extends their approach to 
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the Holt-Winters method. In the next section we introduce the seasonal ARIMA 
model corresponding to the Holt-Winters additive method. Since we deal with non-
stationary time series we cannot use the infinite linear process representation, which 
is essential for further explanation. Section 3 shows how to overcome this problem. 
Optimal smoothing constants are derived in Section 4. Sections 5 and 6 are devoted 
to the properties of smoothing constants and to their comparison with those derived 
by means of the irregularly spaced observation approach. 

2. HOLT-WINTERS ADDITIVE METHOD 

Suppose that z\, . . . , zn are observations of a time series following the seasonal 
additive model 

(2.1) zt+j = Tt+j + St+j + et+j, 

where the trend component is linear, Tt+j = fit+j = Ht + fit], and the s seasonal 
factors Si = 5t-+5 = . . . (for i = 1, . . . , s) are restricted add to zero. As usual, error 
components et represent a zero mean process of independent identically distributed 
random variables (white noise). Three possibly different smoothing constants are 
considered in the Holt-Winters Additive Seasonal Forecast Procedure: one to update 
the level, one for the slope, and one for the seasonal components (see [2], pp. 167-
170). An estimate of fj,£+\ can be constructed as a linear combination of the most 
recent observation, zt+i, adjusted by its seasonal factor and the trend estimate 

(2.2) (k+l = OL\(zt+\ - S t+ l -a ) + (1 - OL\)([lt + ft). 

Similarly, the estimate of the slope /3t+\ is taken as a weighted average of the most 
recent and the previous estimates of the slope 

(2.3) /3t+i = a2(fit+\ - At) + (1 - a2)j9f 

Finally, the estimate of the seasonal coefficient St+\ is a weighted average of the 

most recent estimate of the seasonal factor and its previous estimate 

(2.4) St+i,8 = St+\ = ct3(zt+\ - At+i) + (1 - a3)St+i-a-

St+\j — Stj+\ = St+\-s+j, j = 1 , . . . , 5 — 1. 

After obtaining the estimates for the trend, the slope and the seasonal components, 
we can calculate the forecast of the future value zt+\ from the time origin t as 

(2.5) zt(m) = At + Ptm + St+m-s for ra = 1,2,... , s 

(2.6) zt(m) = At + Ptm + St+m-2s for m = s + 1 , . . . , 2s 

42 



and so on. S denotes the most recent estimate of the corresponding seasonal com­

ponent. Previous equations (2.2)-(2.4) can be transformal to the error correction 

form 

(2.7) fit = OLi(zt - i t - i ( l ) ) + £ t - i + 4 t - i , 

fit = ocia2(zt - i t - i ( l ) ) + A - i , 

St = Stj = a 3 ( l - ai)(.z t - zt-i(l)) + St—,., 

St J = St-lJ+l = St-s+jy j = l , . . . , 5 — 1. 

Although the updating equations do not necessarily restrict seasonal factors to add 
to zero, the appropriate normalization at each time period leads to the fulfillment of 
these constraints. The observed time series (z\,..., zn) can be viewed as a particular 
realization of a stochastic process. The ARIMA model implied by the Holt-Winters 
additive method is of the form 

8+1 

(2.8) (1 - B)(l - Bs)zt = ( 1 -YjjBj )et 

j=l ' 

with 0i = 1 - a i ( l + a 2 ) , 

Oj = - a x a 2 , j = 2 , . . . , 5 - 1, 

6S = (1 - a3) - a i ( a 2 - a 3) , 

08+i = - ( l - a i ) ( l - a 3 ) , 

where B represents the backshift operator (see [1]). In order to show this denote 

(2.9) et = zt-zt-i(l), 

Ai=ai, A2 = axa2, Cj = 0, j = 1 , . . . ,5 - 1, C8 = a 3 ( l - a i ) . 

Then zt can be expressed as 

(2A0) zt = fit-i + h-i + St-i fi + et. 

Since 

(2.11) (1 - Bfiit = (-4i + (A2 - Ax)B)eu 

(1 - B)Pt = A2eu 

s 

(l-JB
s)5t = e t^C J^-1 , 

3 = 1 
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we get 

(2.12) (1 - B)(l - Bs)zt = (^Bi-Ail - B ) 2 / ^ 

+ (1 - Bs)(l - £)&_i + (1 - B)(l - 5s)5t_i 

+ (1-Bs)(l-B)et 

S 8 

= et AX(B - Bs+l) + A2^Bj + J2CjBj 

L i = i i = i 
s+ l 

-^2cj-iBJ +* - B - B'+-9S+1 

3=2 

which yields the coefficients of Bj given by (2.7), (2.8). 

3. LINEAR FILTER REPRESENTATION 

Due to reasons which will be apparent later, it would be useful to have the seasonal 
ARIMA model (2.7), (2.8) in its linear filter representation 

(3.1) 2f = 5 3 * i ^ - i . 
3>0 

Since the underlying process is not stationary, the infinite expansion (3.1) does not 
make much sense. Nevertheless, since we need several first summands on the right-
hand side of (3.1) we might only modify the understanding of that equation. 

After some algebraic treatment it is not difficult to show that 

h 

(3-2) zt = £ *3et-5 = Y, *&-* + ̂ lil-t) 
3>0 j=0 

with initial values yo> 2/i, • • • > 2/-s+i orthogonal to £*, i = t - /i, ..., t (the values 
2/o, 2/i, • • •> 2/-s+i depend on t and /i). The function [] denotes the integer part of 
the argument. In what follows we will understand linear filter representation (3.1) 
exactly in this sense. Now, a comparison of coefficients at e in (2.7), (2.8) and (3.1) 
yields 

(3.3) *o = 1, Vj+ns = Xj + n A s + i , 

where 
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Xo = 1 + Os+\, 
k 

Afc = 1 - ^ ^ , fc = l , . . . , s + l 

i=1 

for j = 0, . . . , 5 - 1 and n = 1, 2, 3, Prom (2.7), (2.8) we obtain the coefficients 
\Il in terms of the smoothing constants a\, a%, a% 

1, i = 0, 

(3.4) $i = { a\(l + ia2), i > 0, i^ns, n = 0 , l , . . . 

. a i ( l + 2*a2) + a 3 ( l -a\), i = ns, n = l , 2 , — 

4. T H E SINGLE GAP CASE 

Assume that z\, . . . , z*-fc-i, zt are observed, while 2t_fc, . . . , zt-\ are missing. 
When there are no missing observations, the linear ra-step-ahead (in MSE sense) 
forecast from the origin t is given by 

(4.1) žt(m) = E{zt+m\zt-k-i, • • •] = X^ *i £ t+m-i + V(.[i)s-t) = X ) * ' £ t + 

(see [2]). When data are missing we can calculate the (k + l)-step-ahead forecast of 
zt from the time origin t — A; — 1 with forecast errors given by 

k 

(4.2) zt - zt-k-\(k + 1) = J T tf^,. = <St. 
i=o 

The forecast zt(m) can be expressed in the form 

(4.3) zt(m) = co6t + ^ Cj£t-k-j, 
i^ i 

where the coefficients Co, Cj, j > 0, have to be determined. By (3.1) for zt+m, the 
forecast error can be calculated as 

(4.4) Zt+m ~ Zt(m) = ] P VjEt+m-j - CoSt - J ^ CjSt-k-j 
j>0 j>l 

m—1 
= z2 ®3£t+m-j + 2^(^m+A:+-7' "" cj)£t-k-j 

i=o j^i 
fc 

+ I ] ( * m + i - C o ^ ) ^ - i . 
i=o 
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To ensure that the forecast minimizes the squared deviation the coefficients c's are 
given by 

A: 

Z.V ^j^rn+j 

(4-5) Co = 3-^—k , Cj = Vk+m+j-

3=0 

Hence, 

(4.6) 22 C3£t-k-j = 2 J ^k+m+jGt-k-j 
3>l 3>l 

= ] P ^jSt-k-l+m+k+l-j = zt-k-i(m + fc + 1), 
j^m+k+1 

which implies the formula for the m-step-ahead forecast as a linear combination of 
(m + fc + l)-step-ahead forecast from the time origin before the gap and the error 
of the forecast of the first observation after the gap constructed from the available 
observations before the gap 

(4.7) zt(m) =Co(zt- zt-k-i(k + l)) + zt-k-i(m + k + 1). 

Let us define 

(4.8) (fj = a i ( l + j a 2 ) for j > 0, (Do = 1, V = a 3 ( l - a i ) . 

Then we have 

( <Pi for j --- ns, 3 

= ipj +n for j = ri5, n = 1,2, 

It can be easily derived that 

/ x " ^ , fc(fc + l) 
(4.10) ^ ( D j = f c a i + a i a 2 - ^ — - , 

i = i 
k 

v-> 2 2f, „ fc(fc + l 2k(k + l)(2K; + i)\ Y^ Ч>) = a? (fc + 2a2 g + a\ -- £ J . fc(fc + l) 2fc(fc + l)(2fc + l) 
p- = a x i л; -i- zc*2 ' л ' ~ 

J = l 
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After substituting (4.9) into the sum of the squared \I>j we obtain 

3=0 
(4.И) E*? = 1 + Ľv?+2»»Éw- + [*У 

= l + l ц i + ajfc + l)+a^ fc + 1)f + 1)) 
+ 2a,(l-o1)(a1[J]+a1a a |g](g] + 

+ al(l-a1)
2[J]. 

According to the formulas (3.4) and (4.8) we have 

(4.12) ^ j + m — < 

for m ф n 2 + s and 

r ^ + m a i a 2 , j 7- n\s - m, j ?-= n 3 s , 

^ j - n + m a x a 2 , j ^ n x s - m, j = n 3 s , 

, ^ j + n + m a i a 2 , j = n x s - m, 

# i + m = *j- + m a x a 2 

for m = n2s where ni , n 2 , n 3 , are positive integers. Similarly, we can express the 

product tyjtyj+m in the form 

( *? + m a i a 2 ^ , j фni- m, j = n3s, 

(4.13) Ф . Ф ^ = { 

for m / n 2 + s and 

*? + m a i a 2 ^ j - n^-, j = nis, 

^ + m a i a 2 + $j + n\I>j, j = ns — m, 

* j * i + m = $ 2 + m a 1 a 2 $ j 

for m = U2S. If m = ri2S, then we have 

(4.14) J2 VjVj+m = *rn + J2 * i + m a i Q 2 5Z *J 
i=o i = i j=i 

= ai + 
K / K \ 

•J2*2j+ m a i a 2 ( i + Y, * i ) +1-
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We proceed similarly if m differs from the integer product of a seasonal length s 

(m 7-= n2s): 

k k , k v 

(4.15) YL *i*i+™ = «i + _C *i + m a i a 3 ( * + _C *J ) 
i=o j = l ^ j=l ' 

, IT) ( ^ 1 V 

+•?(-_£**.+ E *i-™.)-
v i=i j=t!?]+i y 

The last term in this equation can be further simplified to 

[-£-] [7] 

(4.16) £ * J - - m - 5 > i -
j= [m]+l j = l 

[_±!_] [&] 

= £ Vi, - £ * j . - maia2 ([—7-̂ ] - [7]) 

- • (m - [7] - f f l )+ - - i {m (m+ i ) 
-[7](["]+1)-[.]([_ + 0}-«[;] 
—(m-ra) 

-([-7=]-["І-Й) 
"чm-вий-а-]-'!^ 

Note that this expression equals — n[k/s] for m = ns, n = 1, 2, . . . . and 

<«•"> • ( [ t r 1 ] - [ ; ] ) — ' ( [ i 7 - ] - [ ; ] - " ) 

does not depend on the forecasting horizon m; it only corresponds to the time within 

the period 5. Let us denote the first two terms in the last row of (4.16) by r. Then 

we can rewrite (4.15) as 

k k ( k \ rki 

(4.18) YL *i*i+™ = a i + _C *? + maia2 ( 1 + ̂  ^ J + r,r - r?2 [-]. 
i=o j=i ^ j=i ' 
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After combining the last equation with (4.14) we obtain the general formula for the 

sum of \£j $j+m products 

(4.19) _T * i* i+m = a i + _T * i + Wr ~ V2 ["] + mana* _T Vj 
j=0 j=l j=0 

+1) + rr2 — for m = ns 

+ 0 elsewhere, 

(n = 1, 2, . . . ) . Hence, Co can be written as 

(4.20) Co = u + mv + ws,m, 

where the parameters u, v and w are given by 

nr - n 2 - - (1 - a i ) 
(4.21) u = 1 + --J - --, 

A: 

£*; 
v = aia2--r , 

3=0 

Ws.тn -

for m = ns, n = 1,2,... 

elsewhere. 

As we are looking for optimal smoothing constants Ai (for the level), A2 (for the 

slope) and ^43 (for the seasonal component), in the case of a gap of the length k we 

replace the smoothing constants a i , a 2 , a3 in (2.7) by them. In accordance with the 

forecasting formula (2.5), we have 

(4.22) zt(m) = AiStiit-k-i + (k + l)A_*-i + m($t-k-i + ££j St) 

+ A3(l - Ai)St + 5 t _ ( [ ^ + 1 ) s for m = ns, n = l , 2 , . . . , 

+ St+TO_([fc±m]+1)a elsewhere, 

= St [Ax + mY~T + lm,a-43(l - Ax) J 

+ fit-k-i + (m + k + l)$t-k-i + ^+m_([_±zii]+i)s 

( >4 1 AO \ 

Ai + m"jr—y + lm,sA3(l - Ai))6t + zt-k-i(m + k + 1), 
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where *,m?s = 1 whenever m = ns, n = 1, 2, ..., and 0 elsewhere. 

The comparison of this result with (4.7) and (4.20) yields straightforward rela­
tionships between the optimal smoothing constants and c0 

(4.23) Ax=u, v = y^fi wmta = A3(l-Al). 

Therefore, the optimal smoothing constants are 

(4.24) ^ i = a i { l + aifc(l+a2(Jb + l) + a i ( f c + 1 ) ^ 2 f c + 1 )) 

-*<'-«.>(m-[?M?]) 
+ 1 

S J L S J / M S J _ . „ 
j=0 

(k + l)E *J 
(4.25) M = а Ą — '=° 

'Ai 
Ľ*? 

5=0 

where 

(4.26) J2 ф^ = - + fcQi + a i Q - 2+ [-]a3(l-ai), 
j=0 

алd 

l + a з ( l - a i ) [ ] 
(4.27) A3=а3:

 SV Я s J 

'1+ «!(!-<*!)[£]• 
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5 . PROPERTIES OF OPTIMAL SMOOTHING CONSTANTS 

The optimal smoothing constants are functions of the gap length fc. Since -41(0) = 
ai, -42(0) = a2, -43(0) = a3, when there are no missing observations the Holt-
Winters method is unmodified. 

In order to analyze the case of the infinite gap we can use the following asymptotic 
properties: 

(5.1) £ > -=*«! + a 1 a 2 M f c - ^ = 0(k2), 
J=i 

(5.2) £ tf = ka\ + a\a2k{k + 1) + «\a\ fc(fc + 1)(2fc + 1) = 0(k% 
i=i 

k 

(5.3) Yiqfj = 1 + ^ipj+v[-]=0(k2), 
3=1 j = l 

(5.4) J2 *i = X + E V? + 27l E Vi. + t?2 [7] = 0(fc3), 
j=l j=l j=l 

<«' — '(m-s-ra) 
+ 0iai.([t±=]. [=])([*!=]. [ t ] . = ) . w 

Hence, from equations (4.24) and (4.27) we get limits for optimal smoothing constants 
A\ and «42: 

(5.6) lim Ai(k) = 1, lim A3(k) = 1. 
k—>-oo /c—• oo 

As the asymptotic behaviour of A2 is connected it follows from (4.25) and (4.27) 
that 

(5-7) k 

A2 = ^ ^ ^ 
1 E ^ 

j=o 

x | l + aik ( l + a2(fc + l ) ( l + " 2 ^ ^ ) ) 

a fc + mi r/n r m 1 \ 
—MIHT])*""*" 

* ( [^]- [" ] ) Oři+ [;]+'-")}"' 
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The numerator and the denominator are of the same order 0(fc3). The constants 

at fc3 are \axa\ for the numerator and \a±a\ for the denominator. Therefore, the 

limit of A2 for the infinite gap is given by 

(5.8) lim A2{k) = Џl(Ą 

fc—>oo f a i a з 

It also follows from these results that the limits of the discount coefficients (up = 

1 - a p , p = 1, 2, 3, see [2] p. 85) are 

(5.9) lim uл(fc) = 0, lim u)2(k) = - - , 
k—ïoo k—>oo 2 

and lim u;s(k) = 0. 
k—Юo 

This result is in accordance with the result of Aldrin & Damsleth [3] for Holt's 

method, where the negative value of the discount coefficient for slope has been also 

advocated. The behaviour of the smoothing constants in the dependence on the 

length fc and the forecasting horizon m is shown in graphs. The smoothing constant 

A2 increases sharply for lower values of fc. It is also obvious how the seasonal pattern 

of the underlying process is transmitted into the smoothing constants. In the figures 

(Fig. 1, Fig. 2) the numbers along the horizontal axes represents the size of the gap 

fc, while blank ticks correspond to the forecasting horizon m (m = 1, ..., 2s) for 

each fc. 

Optimal smoothing constants (Winter's additive method) 

s = 4, a i = .1, a2 = .1, a3 = .1 

0.8 

1 1 1 1 1 1 1 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 U 1 1 1 1 1 1 

1 2 3 4 5 6 7 8 9 10 11 12 

k = 1,.. .,3s, m = 1,... ,2s 

Fig. 1 
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Optimal smoothing constants (Winter's additive method) 

5 = 12, a i = .1, a 2 = .1, a 3 = .1 

1.2 

o 

ьo 

o 
o 

Є 

co 

S 
O 

т—i—i—1—i—i—i—i—i—i—i—i—i—i—I I i — i — i — i — i — i — i — г - 1 — i — г п — i — i — i — i — i — 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

k = 1,... ,35, m = 1,... ,25 

Fig.2 

6 . COMPARISON TO W RIGHT'S TYPE SMOOTHING CONSTANTS 

Cipra, Rubio and Trujillo [5] have extended Wright's approach of irregularly spaced 

data to the Holt-Winters seasonal method. According to their results the smoothing 

constants for a single gap of a length k are given by 

(б.i) 

( l - a 3 ) ^ + 1 + a 3 ' 

All smoothing constants of Wright's type converge to 1, if A: goes to infinity. In 

contrast to our procedure, .A^' does not depend on a 2 , a3 and .A2 does not depend 

on a i , a3, and both are independent of the position of the forecasting horizon within 

the seasonal period. The comparison of our MMSE smoothing constants and those 

derived by Cipra et al. is illustrated for various lengths of the gap in the pictures 

Fig. 3-Fig. 5. It is evident from the graphs that the methods differ substantially for 

smoothing constants relating to the slope. 

Ы _ OLI 

11 " ( 1 -- a i ) f c + 1 + a i ' 

W - OL2 
2 " ( 1 -a2)

k+1 + a 2 ' 

,н _ c*з 
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Optimal and Wright's smoothing constants (Winter's additive method) 

s = 4, a i = .1, a2 = .1, a 3 = .1 

0.4 

k = 1 , . . . ,3s, m = s 

Fig. 3 

Optimal and Wright's smoothing constants (Winter's additive method) 

s = 4, a i = .1, a2 = .1, a3 = .1 

0.8 

Fig. 4 
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Optimal and Wright's smoothing constants (Winter's additive method) 

s = 4, a i = .1, a2 = .1, as = .1 

0.135 

0.13 

д 0.125 
cтЗ 

+-> 

1 0.12 
ьo 

| 0.115 
-t-э 

o 

I 0.11 

0.105 

0.1 

Alpha 3 constants 

Wright's 

Optimal 

I Г 1 г 

2 3 4 5 6 7 8 9 

1,... ,3s, m = s 

— i 1 1 — 

10 11 12 

Fig. 5 
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