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41 (1996) APPLICATIONS OF MATHEMATICS No. 1, 1-17 

ON THE SOLVABILITY OF SOME MULTI-POINT 

BOUNDARY VALUE PROBLEMS 

CHAITAN P. GUPTA, Reno, S.K. NTOUYAS, P . C H . TSAMATOS, Ioannina 

(Received June 21, 1994) 

Summary. Let / ' \ l ] x R —> R be a function satisfying Caratheodory's conditions and 
let e(t) £ L [0,1]. Let fi,Tj 6 (0,1), Ci,aj £ R, all of the c '̂s, (respectively, a^'s) having 
the same sign, i = 1, 2 , . . . , m — 2, j = 1, 2 , . . . , n — 2, 0 < f i < f 2 < • • • < fm-2 < 1, 
0 < T\ < T2 < . . . < Tn-2 < 1 be given. This paper is concerned with the problem of 
existence of a solution for the multi-point boundary value problems 

(E) x"(t) = f(t,x(t),x'(t)) + e(t), te(0,l) 
rn-2 n - 2 

(BC)mn -c(O) = J2 C^'(&), *(1) = Yl aix(ri) 
1=1 j=l 

and 

(E) x"(t) = f(t,x(t),x'(t)) + e(t), t 6 (0 ,1 ) 
m - 2 n - 2 

(BC)mn x(0) = J2 ^'(W, X'W = E ai^(ri)' 
1=1 3=1 

Conditions for the existence of a solution for the above boundary value problems are 
given using Leray-Schauder Continuation theorem. 

Keywords: multi-point boundary value problems, four point boundary value problems, 
Leray-Schauder Continuation theorem, a priori bounds 

AMS classification: 34B10, 34B15 



1 . INTRODUCTION 

Let / : [0,1] x 1R2 —•> (R be a function satisfying Caratheodory's conditions and 
e: [0,1] -» R be a function in Lx[0, 1], Ci,a3- G R, with all of the cVs, (respectively, 
aj's), having the same sign, &,Tj G (0,1), i = 1,2,... ,m - 2, j = 1,2,.. . , n - 2, 
0 < fi < £2 < • • • < £m-2 < 1, 0 < TX < T2 < . . . < rn_2 < 1. The main purpose 
of this paper is to get results on the solvability of the following boundary value 
problems (BVPs for short) 

(E) x"(t) = f(t, x(t),x'(t)) + e(t), t G (0,1) 
m-2 n -2 

(BC)m n x(0) = ^2 Cix'(ti), x(l) = ] T ajX(Tj) 
i = i 3=1 

and 

(E) x"(t)=f(t,x(t),x'(t)) + e(t), t€(0,l) 
m-2 n -2 

(BC)^n x(0) = J2 Cix'(^), a/(l) = £ W'irj) 
i = l 3=1 

The results are motivated by the so called "nonlocal" BVPs studied by Il'in and Moi-
seev [5], [6]. Using the Mawhin's version of "Leray-Schauder Continuation theorem" 
([8]), we prove the existence of a solution of the BVPs (E)-(BC)m n and (E)-(BC)m n . 
This method reduces the problem of existence of solutions of a BVP to the problem 
of establishing a priori bounds for the set of solutions of a family of these problems. 
Hence our main purpose is to give conditions on / which imply the needed a priori 
bounds. 

It is well known (see [5], [6]) that if a function x G C1 satisfies the boundary 
condition (BC)m n or (BC)m n and Q , a,j, i = 1,2,... ,m - 2, j = 1,2,... ,n - 2 are 
as above, then there exist C G [£i,£m-2], n £ [/T"i,'l"n-2] such that 

x(0) = 7.2/(0, x(l) = ax(r?) 

or 

* ( 0 ) = 7 * ' ( 0 , x'(l) = ax,(r]) 
m-2 n-2 

respectively with 7 = ^2 Ci, a = 2 aj- Hence for every solution x of the BVPs 
i=l 3 = 1 

(E)-(BC)m n or (E)-(BC)m n there exist C G [£i,£m-2], r? G [r!,rn_2] such that x is 
a solution of the following four point BVPs 

(E) x"(t) = f(t,x(t),x'(t)), te[o,i] 

(BC)4 rr(0)=7*'(C), *(1) = aafa). 



or 

(E) x"(t) = f(t,x(t),x'(t)), te[0,l] 

(BC)i * (0 )=7 - r ; (0 , x'(l)=ax'(n) 

respectively. We shall prove that all solutions of the BVPs ( E A ) - ( B C ) 4 and 
( E A ) - ( B C ) 4 are a priori bounded, with bounds independent of £ and n, where 
(E\) stands for the equation x" = Xf + Ae. Then, it is obvious, that these a priori 
bounds are also a priori bounds for the solutions of the BVP (E)-(BC)m n and 
(E)-(BC)^n . Recently Gupta, Ntouyas and Tsamatos studied in [3] and [4] the 
above BVP when 7 = 0. Here we extend the results for general 7. For some recent 
results on the three point BVPs see [1], [2], [7]. 

We use the classical spaces C[0,1], Ck[0,1], Lk[0,1], and L°°[0,1] of continuous, k-

times continuously differentiable, measurable real valued functions whose fe-th power 
of the absolute value is Lebesgue integrable on [0,1], or measurable functions that 
are essentially bounded on [0,1]. We also use the Sobolev spase W2ik(0,1), k = 1,2 
defined by 

W2>k(0,1) = {x: [0,1] -> R x,x' abs. cont. on [0,1] with x" G Lk[0,1]} 

with the usual norm. We denote the norm in Lk[0,1] by ||.||fc, and the norm in 

Z,°°[O,l] by IMIoo. 

2. MAIN RESULTS 

2A. T H E BOUNDARY VALUE PROBLEM ( E ) - ( B C ) M N 

We study first the BVP (E)-(BC)m n . We begin with the following definition: 

Definition 2 .1 . A function / : [0,1] x 1R2 -> R satisfies Caratheodory's conditions 
if (i) for each (x,y) G R2, the function t G [0,1] -> f(t,x,y) G R is measurable on 
[0,1], (ii) for a.e. t G [0,1], the function (x,y) G R2 —> f(t,x,y) G R is continuous 
on R2, and for each r > 0, there exists gr G L^O, 1] such that \f(t,x,y)\ ^ gr(t) for 
a.e. t G [0,1] and (x,y) G R2 with ^x2 + y2 ^ r. 

Lemma 2.2. Let ^rje (0,1) he given and x(t) G W2^ (0,1) be such that x(0) = 

7x ' (0 , z( l) = ax(rj). Then 

Woo <-411-r'IU, II^IU^HH^IIi 



where 

A= < 

Г1, if 

L, if 

Л + І7І, if 

a<_0 

a> 0, aф 1, 

a= 1 

and 
П , 

£ = < 
1 

1 - Q ' 
1 

1-5' 

a ^ 0, 7 = 0 

a ^ 0, 7 Ф 0 

a > 0, a ф 1 

a = l 

if 

if 

if 

\ 1, if 

where for a > 0, a ? 1, M = min{a, ±} < 1, L = m i n { T ^ 7 , 1 + ^ j , 1 + J ^ f i , 1+ 

| 7 | } , 5 = min { ^ L , ^ L , ^L}, Q = min { i = * j ^ ~ ) , ^} if a < 0 and for 

a = 0, Q = 4T provided Q < 1, and 5 < 1. 

P r o o f . We consider the following cases: 

Case 1. a ^ 0. In this case x(l) -x(r)) -$ 0 and accordingly there exists a 0 G [77,1] 

such that x(0) = 0. Hence it follows that ||-c||oo ^ ll '̂lloo- Also if 7 = 0, we have from 

x(0) = 0 and x(6) = 0 that there exists a z G (0,0) such that x'(z) = 0. Accordingly, 

we get that ||a;'||oo ^ lk"l|i- Suppose, now, a < 0 and 7 ^ 0 . Next we see from 

Mean Value Theorem there exists an a; € (77,1) such that 

(a — l)x(rj) = x(l) - x(rj) = (1 — ri)x'(OJ) 

and hence 

(2.2) 

Also, since x(l) = ax(r]) we get 

(2.3) 

It then follows from the relations 

(2.4) 

Ф) = Ţ Z ' M -
a — 1 

, ( 1 ) = ^-ЛÏx'(Ш). 
a — 1 

(2.5) 

and 

(2.6) 

4 

x'(t) = x'(w) + / x"(s)ds = ^----sfa) + / x"(s)ds, 
Ju> -• V Ju 

'(t) = x'(u>) + f x"(s)ds = " ~ 1 .x(l) + / *"(*)ds 

x'(t) = x ' ( 0 + / :r"(s)ds=i.r(0)+ / x"(s)ds 
jo 7 .!o 



that 

(2.7) Halloo ^ Y^gll^lll . 

where Q = m i n { ^ , \afcZv). j^[} i f Q < 1- -Finally, for a = 0, 7 ^ 0 it is easy to 
see from (2.4), (2.6) that Q = T-W since we require that Q < 1 and 7-7- > 1. 

Case 2. a > 0, a ^ 1. We first consider the relations 

x(t)=x(l)+ / x'(s)ds = ax(rj) + / x'(s)ds 

and 

x(t)=x(rj)+ / x'(s)ds = -x(l)+ / x /(s)d5 
Jn a J77 

and 

/rj ~ ^77 

Since, now, M = min{a, ^ } < 1, we get from the above relations that 

IMIoo < i ^ l l ^ H o o . 

Next, we use the equations (2.2) and (2.3) to get the relations 

x(t)=x(l)+ f x'(s)ds= a(<1~^x'(uj)+ [ x'(s)ds 
J1 a ~ l Ji 

x(t)=x(rj)+ [ x'(s)ds = ^—^x'(u) + I x'(s)ds. 
JV <* ~ 1 Jrj 

Also 

x(t)=x(0)+ J x'(5)d5 = 7rr/(C)-r- / x'(s)ds. 
Jo Jo 

It is then immediate that 

IMIoo ^ LWx'Woo, 

where L = m i n ^ , 1 + ^ 1 + i ^ j z l , 1 + | 7 | } . 
Further, we see using the relations (2.4), (2.5) and (2.6) that 

(2-8) IIX'IU < Y^glW'h, 

where S = m i n l ^ L , ^ L , ^L) if 5 < 1. 
Case 3. a = 1. Since x(l) = x(rj) there exists an u € (/?, 1) with X'(UJ) = 0. 

It is then immediate that H-c'Hoo ^ Ik'lli- A l s o s i n c e x(t) = x(0) + f*x'(s)ds = 

7x'(C) + J0 x'(s) ds, it is immediate that ||:r||oo ^ (1 + bDlk'lloo-
This completes the proof of the lemma. • 

5 



Theorem 2.3. Let / : [0,1] x IR2 -> R be a function satisfying Caratheodory's 

conditions. Assume that there exist functions p(t), q(t), r(t) in Lx[0,1] such that 

(2.9) \f(t,u,v)\^p(t)\u\+q(t)\v\+r(t) 

for a.e. t e [0,1] and aii (u,v) e LR2. Also let rj e (0,1) be given and a , 7 G (R with 

14-77- a(l + v)- Moreover we assume that Q < 1 and 5 < 1. 

(I) If a < 0, 7 = 0 then the BVP (E)-(BC)4 has at ieast one solution in C*[0,1] 

provided 

(2.10) lipid + \\q\U < 1. 

(II) If a ^ 0 and 7 / 0 then the BVP (E)-(BC)4 has at ieast one solution in 

C![0,1] provided 

IIPlli -f- Ikl l i < 1 - Q . 

(III) If a > 0, a 7- 1 then the BVP (E)-(BC)4 has at ieast one solution in Cx[0,1] 

provided 

(2-11) LHPHX+ 11*11! < 1 - S 

(IV) If a = 1 then the BVP (E)-(BC)4 has at ieast one solution in C1 [0,1] provided 

(2-12) (l + |7 l )Ni + IMIi<l. 

P r o o f . Let K be the Banach space Cx[0,1] and Y denote the Banach space 

Ll(0,1) with their usual norms. We denote a linear mapping L: D(L) C X -> Y by 

setting 

D(L) = {xe VV2'x(0,1): x(0) = 7*'(C),*(1) - <*x(ri)}, 

and for x e D(L), 

Lx = x". 

We also define a nonlinear mapping N: X —•> Y by setting 

(iVa:)W = /(*,-cW^ /(0)> *€[0,1] . 

We note that N is a bounded mapping from X into Y. Next, it is easy to see that 

the linear mapping L: D(L) C X -> Y, is one-to-one mapping. Next, the linear 



mapping K: Y —> X, defined for y € Y by 

(Ky)(t)=J ( t - s ) y ( a ) d a + 7 / »(*)<-»+ 1 + 7 I^ 7 + t?) [ a j [ fa - *)l/(*) da 

- / (1 -s)y(s) d5 + 7 ( a - 1) / y(s) ds 
Jo Jo 

ÍЄ[0,1]. 

is such that for y G Y, Ky G D(L) and LKy = y; and for u G -O(I-0, I-"Lt/ = 

u. Furthermore, it follows easily using the Arzela-Ascoli Theorem that KN maps 

bounded subsets of X into relatively compact subsets of X. Hence KN: X —> X is 

a compact mapping. 

We, next, note that x G Cx[0,1] is a solution of the BVP (E)-(BC)4 if and only if 

x is a solution to the operator equation 

Lx = Nx + e. 

Now, the operator equation Lx = Nx + e is equivalent to the equation 

x = KNx + Ke. 

We apply the Leray-Schauder Continuation theorem (see, e.g. [8], Corollary IV.7) to 

obtain the existence of a solution for x = KNx + Ke or equivalently to the BVP 

(E)-(BC) 4. 

To do this, it suffices to verify that the set of all possible solutions of the family 

of equations 

(E)A x"(t) = \f(t,x(t),x'(t)) + \e(t), t G (0,1) 

x(0) = 7a/(C), x(l) = ax(rj) 

is, a priori, bounded in C^O, 1] by a constant independent of A G [0,1]. 

(I) Assume that a ^ 0, 7 = 0. From Lemma 2.2 we have 

IkHoo < Halloo < 11*1. 

Let, now, x(t) be a solution of (EA) for some A G [0,1], so that x G VV2,1(0,1) with 

x(0) = 7X/(C), x(l) = ax(f]). We then get from (EA) that 

| |a:"| |i--A||/(«> a:(t), * '(*))+c(*)ll i 

< M i Woo + IMIiMoo + ||r||i + ||e||1 

^ (IWIi + IMIi)ll*li + l|r||i + Held 



It follows from the assumption (2.8) that there is a constant c, independent of A G 
[0,1], such that 

i nk < c 

It is now immediate that the set of solutions of the family of equations (EA) is, a 
priori, bounded in Cx[0,1] by a constant independent of A € [0,1]. 

(II) Assume that a -̂  0,7 ^ 0. Then we have, by Lemma 2.2 that 

IW|oo<|k'||oo,||a:'||oo<r4glk"lll-

We then get from (EA) that 

||.-"||i=A||/(t,.-(«), .V(t)) + e(0IU 
^WiWoo + IMklklloo + IHIi + INix 

[̂IIPlll + Nlllj^gll^lll + IMIl + INIl. 

We proceed as in case (I). 

The process for the other cases is similar to the previous cases and we omit the 
details. This completes the proof of the theorem. • 

Theorem 2.4. Let f: [0,1] x IR2 -> R be a function satisfying Caratheodory's 

conditions. Assume that there exist functions p(t), q(t), r(t) in Lx[0,1] such that 

(2.13) \f(t,u,v)\^p(t)\u\ + q(t)\v\+r(t) 

for a.e. t G [0,1] and all (u, v) G U2. Let c{, ctj G R, with all of the c» 's, (respectively, 

dj 's), having the same sign, f», rj G (0,1), i = 1,2,..., m - 2, j = 1,2,. . . , n - 2, 

0 < fi < 62 < . • • < fm-2 < 1, 0 < n < r2 < . . . < rn_2 < 1 be given. Suppose that 
• m - 2 v / n - 2 v n - 2 m - 2 n - 2 

1 + ( X) ci) ( l - Z) ao) ~ E ajTj 7- 0. Let 7 = Yl ci and a = £ cij. Moreover 
\ i=l ' ^ j=l ' j=\ i=l j=l 

we assume that Q m n < 1, and 5 m n < 1, where M = min{a, ^} < 1, 

-"--"•{i^+l^T^r1*"}-
---- {^^hL^ 

~m„ r l - a 1 — a l i 
Q m n = min , —rr- T, p r V 

U - r n _ 2 | a | ( l - r n _ 2 ) | 7 | j 



(I) If a ^ 0, 7 = 0 then the BVP (E)-(BC) m n has at least one solution in Cx[0,1] 

provided 

(2.14) HPIII + I M I I < 1 . 

(II) If a ^ 0 and 7 ^ 0 then the BVP (E)-(BC)4 has at ieast one solution in 

C 1 [0,1] provided 

(2.15) l|p||i + l l « l l i < l - Q m n -

(III) If a > 0, a 7- 1 then the BVP (E)-(BC) m n has at least one solution in 

C1[0,1] provided 

(2.16) i- m n | |p | | i + ||g||i < 1 - S m n . 

(IV) If a = 1 then the BVP (E)-(BC) m n has at least one solution in CX[0,1] 

provided 

(2-17) (l + |7l)l|p||i + l l4 l l i<l . 

P r o o f . As we have remarked in the introduction, we study the multi-point 

BVP using the a priori estimates that can be obtained for a four-point BVP. This is 

because for every solution x(t) of the BVP (E)-(BC) m n , there exist Є [fl,£тn-2]j 

C ^ [ri,rn_2], depending on, x(t), such that x(t) is also a solution of the BVP 
m-2 n-2 

(E)-(BC)4 with 7 = zC CІ a n d a — __ľ aj- The proof is quite similar to the proof 
ѓ = l j = i 

of Theorem 2.3 and uses the a priori estimates obtained in the proof of Theorem 2.3 

for the set of solutions of the family of equations (Eл)-(BC)4- We note that it was 

shown that the set of solutions of the family of equations (E\)-(BC)Ą was, a priori, 
bounded by a constant independent of Л Є [0,1] and both rj, £ Є (0,1), and this fact 

is the key point needed in the proof of Theorem 2.4. 

Let X be the Banach space CҶ0, 1] and Y denote the Banach space LҶ0,1) with 

their usual norms. We denote a linear mapping L: D(L) C X -> Y by setting 

s m—2 n—2 ч 

D(L) = lxe кV2>Ҷ0,l): x(0) = ^ <**'&), x(l) = ^ajX^) [, 
^ 2 = 1 j=l ' 

and for x Є D(L), 

Lx = x". 



We also define a nonlinear mapping IV: X -+ У by setting 

(tf*)(0 = / (M0,^tø) , *є[o,i]. 

We note that IV is a bounded mapping from X into У. Next, it is easy to see that 

the linear mapping L: D(L) C X -> У, is one-to-one mapping. Next, the Hnear 

mapping K: У -> K, defined for y Є У by 

(Iv"2/)(ř) = [ (t- 5)2/(5) d5 + ci + k, í Є [0,1] 
Jo 

where c and k are given by, 

fГП—2 ч / n-2 ч n-2 / m ~ \ / ľ-ZГ \ ÜZ_ľ 1 /П—Z ч srn—2 -f̂  ч 

- + ( £ «J (1 - 5> j -EÛІГІJC= ( E a i - ( E c

 o *tø< 

+ /.ľ aJ / (Ti " 5 ^ ( 5 ) d5 - / (1 - 5)7/(5) d5 
J = 1 Io Jo 

and 

/ m—2 \ / n—2 \ n—2 -1 m—2 n—2 «7--

1 + ( J2 Ci) ( 1 ~ S ° i ) ~ £ ° i T i fc = ]C Ci £ ° i / (TJ ~ s^( s)d s 
L \ i = 1 / \ j = 1 / i = 1 J i = 1 j=1 Jo 

m—2 -1 • n—2 s m—2 „^i 

~~ 5 > / v1 - 5)2/(5) d5+ ( l - V a , - , - ) Y~ Ci / 2/(5) ds 
i=i y ° V i=i ' .=1 y ° 

is such that for y £ y , Ify £ I}(L)and LKy = 2/5 a n d for 1/ G D(L), KLu = 

u. Furthermore, it follows easily using the Arzela-Ascoli Theorem that IfIV maps 

bounded subsets of X into relatively compact subsets of X. Hence If IV: X -» X is 

a compact mapping. 

We, next, note that x e C^O, 1] is a solution of the BVP (E)-(BC)m n if and only 

if x is a solution to the operator equation 

Lx = Nx + e. 

Now, the operator equation Lx = IVx + e is equivalent to the equation 

x = KNx + Ke. 

We apply the Leray-Schauder Continuation theorem (see, e.g. [8], Corollary IV.7) to 

obtain the existence of a solution for x = KNx + Ke or equivalently to the BVP 

(E)-(BC) ron . 

10 



To do this, it suffices to verify that the set of all possible solutions of the family 

of equations 

(E)x x"(t) = \f(t,x(t),x'(t)) + Ae(t), t G (0,1) 
m - 2 n - 2 

(BC)mn x(0) = J2 <**'(&)» *(1) = Yl a^Ti) 
i = l 3=1 

is, a priori, bounded in Cl[0,1] by a constant independent of A G [0,1]. 

Let, now, x(t) be a solution of (E;\)-(BC)mn for some A G [0,1], so that x G 
m - 2 n - 2 

TV2'1^, 1) with x(0) = £ Cix'fe), x(l) = £ ajx(rj). Accordingly, there exist 
i=l j=l 

C € [£i>fm-2] a n d ry G [ri ,rn_2] depending on a:(t), such that x(t) is a solution of 
the four point BVP 

x"(t) = \f(t,x(t),x'(t)) + \e(t), t G (0,1) 

x(0) = 7 ^ ( 0 , x(l) = ax(rj) 

It then follows, as in the proof of Theorem 2.4 that there is a constant c, independent 

of A G [0,1], and rj G [£i,fm-2], C € [ri,rn_2] such that 

lk| |oo^Ci| |a; , | |0 0^c2 | |a: , , | | i ^ c, 

where ci, c2 are constants independent of A, 77, C according to the cases (I), (II) or 

(III). Thus the set of solutions of the family of equations (EA)-(BC)mn is, a priori, 

bounded in C^O, 1] by a constant, independent of A G [0,1]. 

It is important to remark that the assumptions of Theorem 2.4, ensure that the 

needed a priori bounds are independent of C £ [£i>£m-2] and rj G [Ti,rn_2]. This 

completes the proof of the theorem. • 

2B. THE BOUNDARY VALUE PROBLEM (E)-(BC)mn. 

In this section we study, by a similar way, the BVP (E)-(BC)m n . 

Lemma 2.5. Let rj G (0,1) and 7, a G R be given. Let x(t) G VV2'!(0,1) be such 

that x(0) = 7rc'(C),z'(l) = otx'(rj). Then 

N l o o ^ ( l + |7|)lkf||oo, WAU^AWx"^ 

11 



where 
( 1, if a < 0 

A={ 1 
[ T ^ , if a>0,a^l 

and M = min{a, ^} < 1. 

P r o o f . First we have from the relation 

x(t)=x(0)+ [ x,(s)ds = ix,(0+ [ x'(s)ds 
Jo Jo 

that 

IW|oo<(l + |7|)|W||oo 

Next, when a ^ 0 there exists a 6 G [rj, 1] such that x'(6) = 0 from which we get 

that llx'Hoo < ll^'lli- Now, if a > 0 and a / l w e see from the relations 

x'(t)=x'(l)+ f x"(s)ds = ax'(rj)+ f x"(s)ds 

x'(t)=x'(r1)+ ( x"(s)ds=-x'(l)+ f x"(s)ds 
Jv & Jv 

that 

| | ^ , | | 0 0 ^M| |x , | | 0 0 + ||x , ,||1 

and hence 

l l * ' l l o o < r z ^ | | : r " | | i . 

This completes the proof of the lemma. • 

Theorem 2.6. Let f: [0,1] x [R2 —> (R be a function satisfying Caratheodory's 

conditions. Assume that there exist functions p(t), q(t), r(t) in Lx[0,1] such that 

\f(t,u,v)\^p(t)\u\+q(t)\v\+r(t) 

for a.e. t G [0,1] and ail (u, v) e U2. Also let rj, C G (0,1) be given and a, 7 G R with 

a^l. 
(I) If a ^ 0 then the BVP (E)-(BC)4 has at least one solution in Cx[0,1] provided 

(2.18) (1 + |7)IIPIII + N I I < 1 . 

(II) If a > 0, a 7- 1 then the BVP (E)-(BC)4 has at least one solution in Cx[0,1] 

provided 

(2.19) (l + |7l)IHi + N l i < l - M . 
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P r o o f . Let X be the Banach space C*[0,1] and Y denote the Banach space 

L*(0,1) with their usual norms. We denote a linear mapping L: D(L) C X -> Y by 

setting 

D(L) = {xe JV 2 ' 1 ^ , ! ) : x(0) = 7*'(C),*'(1) = ax'fa)}, 

and for x G D(L), 
Lx = x". 

We also define a nonlinear mapping IV: X -> Y by setting 

(Nx)(t) = f(t,x(t),x'(t)), *G[0,1] . 

We note that N is a bounded mapping from X into Y. Next, it is easy to see that 
the linear mapping L: D(L) C X -> Y, is one-to-one mapping. Next, the linear 
mapping if: Y -> X, defined for y G Y by 

(Ky)(t)= J (t-s)y(s)ds+^^\aj\(s)ds- J y(s)ds 

+ 7 / 3/(s)ds, t € [0,1]. 
Jo 

is such that for y G Y, ify G -O(L) and Lif^ = 2l, and for u G -O(L), ifFu = 
u. Furthermore, it follows easily using the Arzela-Ascoli Theorem that KN maps 
bounded subsets of X into relatively compact subsets of X. Hence KN: X -> X is 
a compact mapping. 

We, next, note that x G Cx[0,1] is a solution of the BVP (E)-(BC)^ if and only if 
x is a solution to the operator equation 

Lx = Nx + e. 

Now, the operator equation Lx = Nx + e is equivalent to the equation 

-r = KKX + Ke. 

We apply the Leray-Schauder Continuation theorem (see, e.g. [8], Corollary IV.7) to 
obtain the existence of a solution for x = KNx + Ke or equivalently to the BVP 

(E)-(BO;. 
To do this, it suffices to verify that the set of all possible solutions of the family 

of equations 

(E)x x"(i) = \f(t,x(t\x'(t)) + \e(t), t G (0,1) 

a ( 0 ) = 7 - r ' ( 0 , x'(l) = ax'(rj) 
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is, a priori, bounded in Cx[0,1] by a constant independent of A € [0,1]. 
Assume that a ^ 0. Prom Lemma 2.5 we have 

N l o o ^ ( l + |7|)ll*'||oo,||a:,||oo<||-5"||i 

Let, now, x(t) be a solution of (EA) for some A 6 [0,1], so that x € W2'1(Q, 1) with 
x(0) = -yx'(Q,x'(l) = ax'(rj). We then get from (EA) that 

\W'h=\\\f{t,x(t),J{t))+e(t)\\i 

^IIPllilNloo + IMIilli'lloo + IMIi + llell! 

< ( ( i + l7l)INi + IMIi)ll*"lli + IMIi + IHIi 

It follows from the assumption (2A3) that there is a constant c, independent of 
A G [0,1], such that 

\\x"\\i^c. 

It is now immediate that the set of solutions of the family of equations (E^) is, a 
priori, bounded in C^O, 1] by a constant independent of A G [0,1], 

The case a > 0, a ^ 1 is similar and simple. 
This completes the proof of the theorem. • 

Theorem 2.7. Let f: [0,1] x IR2 -> R be a function satisfying Caratheodory's 

conditions. Assume that there exist functions p(t), q(t), r(t) in Lx[0,1] such that 

\f(t,u,v)\^p(t)\u\ + q(t)\v\+r(t) 

for a.e. t G [0,1] and all (u,v) G R2. Let Ci,a,j G R, with all of the c^s (respectively, 

dj ys), having the same sign, &, Tj G (0,1), i = 1,2,..., m - 2, j = 1,2,.. . , n — 2, 

0 < £i < & < • • • < £m-2 < 1, 0 < TI < T2 < . . . < Tn_2 < 1 be given. Suppose that 
n - 2 

1 " £ a5 ± 0. 
3 = 1 

Then for any given e(t) in Lx(0,1), the mn-point BVP (E)-(BC)'mn has at least 

one solution in C1^, 1]. 

P r o o f . As we have remarked in the introduction, we study the mn-point BVP 
using the a priori estimates that can be obtained for a four point BVP. This is 
because for every solution x(t) of the BVP (E)-(BC)mn there exist C € [£i,£m-2], 
rj G [Ti,Tn_2], depending on x(t), such that x(t) is also a solution of the BVP 

m - 2 n-2 
(E)-(BC)4 with 7 = J2 ci a n d ct = £ aj ¥" -•• T n e proof is quite similar to 

t=i i = i 
the proof of Theorem 2.6 and uses the a priori estimates obtained in the proof of 

14 



Theorem 2.3 for the set of solutions of the family of equations ( E A ) - ( B C ) 4 . We note 

that it was shown that the set of solutions of the family of equations ( E A ) - ( B C ) 4 

was, a priori, bounded by a constant independent of A G [0,1] and 77 G (0,1), and 

this fact is the key point needed in the proof of Theorem 2.7. 

Let X be the Banach space CX[Q, 1] and Y denote the Banach space L^O, 1) with 

their usual norms. We denote a linear mapping L: D(L) C X -> Y by setting 

m - 2 n - 2 s 771— _ 71 — _ <v 

D(L) = lxe W2>\0,1): x(0) = £ Cix'&), x'(1) = ^ . - ' ( T J ) [, 

and for x G D(L), 

Lx = x". 

We also define a nonlinear mapping IV: X -> y by setting 

(Nx)(t) = f(t,x(t),x'(t)), t € [ 0 , l ] . 

We note that IV is a bounded mapping from X into y . Next, it is easy to see that 

the linear mapping L: D(L) C X -> y , is one-to-one mapping. Next, the linear 

mapping AT: Y -> X, defined for y G y by 

(Ky)(t) = £ - \J2 aj / y (» ds - / y(s) c 
l _ ^ a . L j = 1 Io Jo 

m - 2 . { . .t 

+ z2cч y(sïds + ( ŕ - s t ø ( s ) d S ' * € [°»Ч 
i = l -!0 -!0 

is such that for y G Y, Ky G D(L) and LKy = y, and for u G -O(L), I_Xu = 

u. Furthermore, it follows easily using the Arzela-Ascoli Theorem that KN maps 

bounded subsets of X into relatively compact subsets of X. Hence KN: X -> X is 

a compact mapping. 

We, next, note that x G C 1 ^ 1] is a solution of the BVP (E)-(BC)'m n if and only 

if x is a solution to the operator equation 

Lx = Nx + e. 

Now, the operator equation Lx = Nx -f e is equivalent to the equation 

x = KNx + Ke. 
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We apply the Leray-Schauder Continuation theorem (see, e.g. [8], Corollary IV.7) to 
obtain the existence of a solution for x = KNx + Ke or equivalently to the BVP 
(EHBC) ' m n . 

To do this, it suffices to verify that the set of all possible solutions of the family 
of equations 

(E)A x"(t) = \f(t,x(t),x'(t)) + \e(t), t e (0,1) 
m - 2 n - 2 

( B C ) ^ x(0) = £ cix>(ti),x>(l) = 2 > : r ' ( T ; ) 
i=l j=l 

is, a priori, bounded in Cx[0,1] by a constant independent of A £ [0,1]. 
Let, now, x(t) be a solution of ( E A ) - ( B C ) ^ for some A £ [0,1], so that x € 

m—2 n—2 
VV2 '1^,!) with x(0) = £ Cix'(Zi), x'(l) = £ a3x'(Tj). Accordingly, there exist 

i= i j=i 

C £ [fi>Cm-2]j V € [ri ,rn_2] depending on x(t), such that x(t) is a solution of the 
four point BVP 

x"(t) = \f(t,x(t),x'(t)) + \e(t), t e (0,1) 

s(0) = 7-r'(C), x'(l)=ax'(r1) 

It then follows, as in the proof of Theorem 2.6 that there is a constant c, independent 

of A € [0,1], and C 6 [f 1 ,^ -2 ] , ^ € [ri,rn_2] such that 

lk | |oo^ci | |a ; , | | 0 0^c 2 | |x , , | | 1 ^ c . 

Thus the set of solutions of the family of equations (EA)-(BC),
mn is, a priori, 

bounded in Cx[0,1] by a constant, independent of A G [0,1]. 
This completes the proof of the theorem. D 
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