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A SIMPLE MODEL OF THERMOELECTRIC OSCILLATIONS 
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(Received October 22, 1993) 

Summary. A system of ordinary differential equations modelling an electric circuit with 
a thermistor is considered. Qualitative properties of solution are studied, in particular, the 
existence and nonexistence of time-periodic solutions (the Hopf bifurcation). 
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1. INTRODUCTION 

In the electric circuit of Figure 1 RT 

is a special resistor called "thermistor" 

whose conductance a is a function of the 

temperature u, R is an ordinary resistor 

and C a capacitor. We make the simplify­

ing assumption that the temperature and 

the electric potential ip across the ther­

mistor depend on time only. Let ua be 

the room's temperature. By Newton's 

law of cooling we have, taking into account the Joule heating, 

Fig.l 

(1.1) Я — = -k(u - ua) + a(u)(p2 

Qt 

where H and k are the incremental heat capacity and the incremental dissipation 

constant. Using Kirchhoff 's principles we obtain 

(1.2) V = (p-r g [ (pa(u) + c (vи-OO + c-^) 
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where Q is the resistance of R, c the capacitance of C and V a fixed applied differ­
ence of potential. This circuit is interesting for two reasons: firstly, multiple states 
of equilibrium (typically three) can exist, secondly, low-frequency thermoelectric os­
cillations are observed experimentally. This effect gives rise to various practical 
applications, see e.g. [2]. In Section 2 we find conditions under which time periodic 
solutions cannot exist, in particular this will be the case when - ^ < 0. Section 3 is 
devoted to the study of the local stability of stationary points and to the proof of 
the existence of periodic solutions using Hopf s bifurcation. Sections 4 and 5 deal 
with a more specific conductivity and with the corresponding bifurcation diagram. 
The physically crucial problem of the stability of periodic solutions is discussed in 
Section 5. Finally a more realistic, but more difficult, model is presented in the last 
part. 

Let s(y) € C2(RX) and suppose 

(1.3) s(y) ^ 5m > 0 for all y ^ 0. 

We assume a(u) to be an empirically given conductivity of the form 

(1.4) ^ . , . w ( - - i ) . 

Use will be made of the following dimensionless quantities 

y = (u-ua)/ua, X = if/V, cx=kQc/H, T = t/CQ, 

7] = ((ToQcV2)/HUa, a = Q(Jo, 0 = Ci/f]. 

System (1.1), (1.2) can be rewritten in dimensionless form as follows: 

(1.5) x = F(x, y, a) := 1 - x - axs(y) 

(*-£) 
(1.6) y = G(x,y,0,r1) := t](x2s(y) - /?y). 

By their physical meaning a, (3 and 77 must all be positive. Concerning the global 
behaviour of (1.5), (1.6) we have 

Lemma 1.1. There exists a constant C = C((3,r)) such that 

M= | ( x , y ) ; 0 < a r < l , 0 < y , y + — < c\ 
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forms an invariant absorbing set for the system (1.5), (1.6), i.e. any solution 

(x(t),y(t)) of the problem reaches and remains inside M after a finite time. 

P r o o f . By direct inspection we find from (1.5), (1.6) that for any (x(0), y(0)) € 
R2 there is t0 = to(\x(0)\,y(0)\) such that 

(1.7) 0 < x(t) < 1 0 < y(t) for all t ^ t0. 

* and, settL*6 ^ v^ - 2 , ^, Now we can multiply (1.5) by x(t) and (1.6) by ^ and, setting z(t) = \ + ^ , we 

obtain 

(1.8) m+W** <*-**. 

Seeing that the right-hand side of (1.8) is bounded for t ^ to and (3n > 0, the 
standard decay estimates for first order O.D.E. yield 

(1.9) z(t) ^ C(/3, rj) for all t^h 

with t\ = £i(|:r(0)|, |y(0)|) which, along with (1.7), completes the proof. D 

2. NONEXISTENCE OF PERIODIC SOLUTIONS 

Lemma 2 .1 . If 

ds 1 
(2.1) — < -(l + as(y)+n(3) for all y > 0, 

ay n 

then the only periodic solutions of system (1.5), (1.6) are the stationary ones. 

P r o o f . By Lemma 1.1 all possible periodic solutions are contained in M. A 
direct computation shows that 

ds 
Fx + Gy = - 1 - as(y) + nx2— - n(3. 

ay 

Since 0 < x < 1 on M, condition (2.1) implies Fx+Gy < 0. Hence, by the Bendixon 
criterion [1] no periodic solution can exist in M and therefore in the whole phase 
plane. D 

Note that, by virtue of (1.3), the inequality (2.1) is satisfied in the physically 
relevant case ds / dy < ft for all y ^ 0. 
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3. LOCAL STABILITY 

The stationary points of system (1.5), (1.6) are given by 

(3.1) X(x, y, a) := 1 - x - axs(y) = 0, 

(3.2) Y(x,y,(3):=x2s(y)-(3y = 0. 

From (3.1) we have 

(3.3) x = 6(y, a) := — — . 
1 + as(y) 

Substituting into (3.2) we find 

(3.4) P = H(y,a):= fy) 

y(l + as(y)) 

If a is fixed, the plot of (3.4) gives the bifurcation diagram for the solutions of (3.1), 

(3.2). Let 

(3-5) ( ^ ) = (TT^) 
be any stationary point of (1.5), (1.6) and A(y, a) the 2 x 2 matrix of the correspond­

ing linearized system. Note that XxYp = (l + as(y))y ?- 0 if (x,y) is a stationary 

point. Calculating Det A and using (3.3), (3.4) we have 

(3.6) r,Hy(y,a) = -
DetA 

XXYP .r=£(2/,a)/3=H(т/,a) 

In view of (3.6) we have that the curve of the plane y, a in which Det A(y, a) vanishes 

coincides with the locus of points in which Hy(y,a) is zero. The equation of this 

curve is given by 

,~ 7, f, x 1 y(ds/dy)-s(y) 
1 j n V ) ' s(y)y(ds/dy) + s(y)' 

The following lemma gives a partial information concerning the stability of the sta­

tionary points. 

Lemma 3.1. Let a, (3 and y satisfy (3.4) and assume a < f(y), ys'(y) + s(y) > 0. 

Then the corresponding stationary point (3.5) is a saddle point. 

P r o o f . Simply note that if a < f(y) we have Det A(y, a) < 0 by (3.6). • 
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R e m a r k 3.1. The degree of the mapping (F,G) evaluated with respect to dM 
is one. Therefore the existence of a saddle point implies the existence of at least 
one other stationary point. If, in particular, Det A 7-= 0, there must be at least two 
different critical points either attracting or repelling. 

To make further progress in the study of the local stability we need the trace, 
TrA, of A which is given by 

/ 3 8 v rfr^ = r](y(ds/dy) - s(y)) - y(l + as(y))3 

y(l + as(y))2 

Using the well-known Hopf's bifurcation theorem (see [4]), we can prove 

Lemma 3.2. Suppose a, (3 and y satisfy (3.4) and 

(39) A = y ( 1 + 5 s ( y ) ) 3 

{ } V y(ds/dy)-s(yY 

Assume 

(3.10) a > f(y) 

and 

(3.11) y(ds/dy)-s(y)>0. 

Then there exist two continuous functions u,r)\ (0,£o) ->• R+> < (̂£) -> w, rj(£) -> 77 
as f -> 0 + . and a branch of non-constant periodic solutions of system (1.5), (1.6) 
(with a = a, (3 = ft, r] = rj(£)) with period T^ = 2rc/u/(f) for any £ e (0, fo). 

P r o o f . First of all, (3.11) implies fj > 0 and, therefore, the result is physically 
meaningful. The surface of the y, a, rj space on which TrA vanishes is (3.9). Con­
dition (3.10) guarantees that Det A > 0 by (3.6). Hence, A(y,a) has two purely 
imaginary complex conjugate eigenvalues A = ±icj. By (3.11) we have 

(3.12) —-ReA(?7)>0 
d77 

when t) is given by (3.9). All hypotheses of Hopf's bifurcation theorem are satisfied 
and the lemma holds. • 

To prove the stability of these periodic solutions is a more difficult task. A result 
in this direction is presented in Section 5. 
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4 . A THREE SOLUTIONS CASE 

The bifurcation diagram (3.7) may have many shapes corresponding to the possible 

choices of s(y). We examine in detail the following case which makes it possible to 

predict the three solutions situation which is typical of the circuit. Assume 

(4.1) 

(4.2) 

dj/2 
•^-j >• m > 0 for all y >• 0, 

>»° 
The function f(y) defined in (3.9) vanishes when y( ds/ dy) — s(y) = 0. By (1.3) and 

(4.1) there exists a unique yo > 0 such that f(yo) = 0. Suppose df/dy to vanish 

only when y = yM with yM > yo (see Figure 2). This implies f(y)>0ify>y0 

and f(y) -> 0 when y -> oo. Define aM = /(2/M)- We distinguish the following two 

cases: 

U 
< 

(+) 

/ 1 ^ 4 ^ 
a 1 (-) 

1 
1 

/Уo Уы j-*" 

Fig.2 

Case (A). Let 

(4.3) 0 < a < aм-

The bifurcation diagram (3.4) has in this case the characteristic S shape of Figure 3. 

Moreover, H(y, a) -> oo when y -> 0+ and H(y, a) -> 0 when y -> oo. Referring to 

Figure 2 we see that Det^4 is positive in region (+) and negative in region (-) by 
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(3.6). Let 2/1, 2/2 (2/1 < 2/2) be the local minimum and the local maximum of H(y1a) 

ß
t 

s(yo) Һ 
\\ - . . Я t ø . б ) 

ß
t 

s(yo) Һ X 
- . . Я t ø . б ) 

ÿ(l+as(з/))2 

ßl 
{ X - . . Я t ø . б ) 

ÿ(l+as(з/))2 

ßl X - . . Я t ø . б ) 

УoУ 1 2/2 

Fig.З 

and put fa = H(ylla)1 fa = H(y2la). Clearly fa < fa and y0 < 2/1 < 2/2- To 

concentrate on a specific case, let us assume 

(4.4) fa> *ы 
2/o(l+ as(2/0)) 

2 * 

We consider the following four sub-cases. 

(A,) If 

(4.5) (3 > fa 

then there is only one fixed point (xi,yx) with 

(4.6) j/i < 2/0. 

This implies DetA(yl,a) > 0 and T r A ^ ^ a ) < 0. Thus (xi,27i) is asymptotically 

stable for every TJ. 

(A„) If 

(4.7) ß2>ß> s(yo) 

yo(l+as(y0)) 

then there are three fixed points (#1,2/1), (^2,2/2) a n d (#3,2/3) s u c h that 

(4-8) y\<yo<y2<y^ 
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Since DetA(y1,a) > 0 and TrA(y1,a) < 0, (xi,yx) is asymptotically stable for all 
77. Moreover, Det A(y2,a) < 0 thus (x2,y2) is a saddle point in accordance with 
Lemma 3.1. Finally, Det.A(^3,a) > 0 and the sign of TrA(y3,a) (and therefore the 
stability) depends only on the numerical value of 77. 
(Am) If 

(4.9) «<*> > / ? > / ? ! 
y0(l + as(y0)) 

then there are again three stationary points, but now 

(4.10) 2/o <Vi <y2 <y3-

The stationary point (x2,y2) is again a saddle point. Since Det A(x\,yx) > 0 and 

Det A(x3,y3) > 0, the stationary points (xi,yx), (x3,y3) can be asymptotically stable 

or not depending on the value of 77. 

(Aiv) When 

(4.11) /?!</?, 

then there is only one fixed point (x,y) with Det A(y,a) > 0. The sign of TV .A and 

therefore the stability depends only on 77. 

Case(B). If 

(4.12) aM < a 

then there is one and only one stationary point for all (3 > 0 and Det-4(y,a) > 0. 
The asymptotic stability depends on the value of 77. 

R e m a r k 4.1. It is interesting to note that the existence of three nondegenerate 
stationary points such that one of them is a saddle, while the other one is a repel-
lor, necessarily brings about the existence of at least one closed trajectory, either a 
homoclinic orbit or a periodic one. 
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5 . STABLE PERIODIC SOLUTIONS 

As a consequence of the Poincare-Bendixon theorem [1] we have 

Lemma 5.1. If the invariant absorbing set M guaranteed by Lemma 2.1 contains 

exactly one unstable stationary point (x,y), this point is surrounded by (at least 

one) stable periodic orbit. 

To apply the above Lemma we note that a sufficient condition for the existence of 
a unique stationary point (x, y) is given by 

ds 
(5.1) — > 0 for all y > 0, 

dy 

(5.2) as(0) > 1. 

Assume further that there exists an interval (2/1,2/2) such that 

ds 
(5.3) y — - s(y) > 0 for all y G (2/1,2/2). 

dy 

From (3.4) it follows that 

s(y) (5.4) ß = 
y(l + as{y))' 

Hence, there exists an interval (/Ji,/^) such that for any /? G (/3i,/?2) we have y G 
(2/1,2/2)- Thus, recalling the expression for Tr A, i.e. (3.8), there exists 770 = T1O(OL, /3, s) 
having the following properties: if 77 < 770 the unique stationary point is locally stable, 
if 77 > rjo the stationary point is unstable and therefore by Lemma 5.1, M contains 
a stable limit cycle. 

Under the assumptions of Lemma 3.2 it is also possible to prove the existence of 

periodic solutions using the following version of Hopf 's bifurcation. 

Theorem 5.1. Assume the system 

(5.5) x = X(x, y,rj) y = Y(x, y, 77) 

has a fixed point (x, y) for all values of the parameter 77. Furthermore, suppose 

the eigenvalues of the linearized system \i(rj), \2(vi) are purely imaginary complex 

conjugate when 77 = 770. If the real part of the eigenvalues satisfies 

(5.6) — Re[A(ry)] > 0 when 77 = 770 
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and (x,y) is asymptotically stable when n = rj0, then 

a) there exists 771 < 770 such that when 77 € (171,770), (x,y) is a stable focus; 

b) there exists 772 > 770 such that when 77 G (770,772), (x,y) is an unstable focus 
surrounded by a stable limit cycle. 

A proof of Theorem 5.1 is to Chaffee and can be found in [3], Theorems (3.1), 

(3.B4). Let the hypotheses of Lemma 3.2 hold. To apply Theorem 5.1 it remains 

to check if the fixed point (x, y) is, in certain cases, asymptotically stable when 77 is 

given by (3.9). We can use (see [3]) the following algorithm: 

a) translate the fixed point to the origin, 

b) find a non-singular matrix M such that 

M~lAM = 
0 -u 

u 0 

where A is the matrix of the linearized system and A = ±iu, 

c) transform the system by the change of variable x = My, x = (x,y), y = (u,v) 

into 

u = —LUV + f(u,v) v = u)u + g(u,v) 

with / (0,0) = g(0,0) = 0, D/(0,0) = Dg(0,0) = 0, 

d) calculate the index 

& = Juuu ~r Juuv T 9uuv "r gvvv 

' V*• / ^ )[Juu\Juu T Jvv) 1 9uu\9uu 1 9vv) Juu9uu 1" Jvv9vv\ 

where all partial derivatives are computed at (u,v) = (0,0). If a < 0, (x,y) is 
asymptotically stable and the conclusion of Theorem 5.1 follows. The calculations 
involved in computing a in the present case are rather tedious but straightforward. 
A computer program using the language for symbolic manipulation MAXIMA has 
been written to obtain an explicit expression of a in terms of a, /?. This formula is 
however too massive to be reported here. We simply use it in the following 

E x a m p l e . Let s(y) = exp(y), a = 1 and /? = 15. We find (x,y) = 
(0.23305,1.19142) and 770 = 149.471. Using our MAXIMA code we find a = 
—528634.05897. The periodic solution given by Lemma 3.2 is therefore stable. 
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6 . AN OPEN PROBLEM 

To get a more accurate description we can treat the thermistor as a three-
dimensional body, represented by a bounded domain ft of R3. The metallic, and 
therefore equipotential electrodes of the thermistor are assumed to be two disjoint 
surfaces S and 5 such that dfi, = S U 5. If J and E are the current density and the 
electric field in fi, we have, by Ohm's law, 

(6.1) J = a(u)E. 

If <p(x, t), x € ft is the electric potential inside ft, we can write, assuming quasistatic 
conditions, 

(6.2) E = -V<p. 

By the law of conservation of charge we have 

(6.3) V • J = 0. 

Let i(t) be the current crossing R. We have 

(6.4) i(t) = c$(t) + [ a(u)^-dS 
Js an 

where n is the unit vector normal to S and 

(6.5) <p = $(t) on 5, <p = 0 on S. 

Hence 

(6.6) V = Qi(t) + $(t). 

Assuming the usual heat equation to be valid and inserting (6.1) and (6.2) into (6.3), 
we arrive at the following problem: 

To find a period T and three T-periodic functions <p(x,t), u(x,t) and $(£) such that 

(6.7) V • (a(u)Vxl)) = 0 

(6.8) <p = $(t) on 5, <p = 0 on S. 

(6.9) V = gc$(t) + Q [ a(u)^dS + $(t) 
Js d n 

(6.10) ut = ai An + a2a(u)\V<p\2 

(6.11) u = 0 xedn 
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where a<i — \/dcv (d mass density, cv specific heat), whereas a\ — KJa<i (K thermal 
conductivity) is the diffusivity. However, the application of the theory of Hopf's 
bifurcation to problem (6.7)-(6.11) seems to present serious difficulties. 

Acknowledgement. It is pleasure to thank S. Steffe for his help in preparing the 
computer programs.* 
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