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ASYMPTOTICALLY NORMAL CONFIDENCE INTERVALS 

FOR A DETERMINANT IN A GENERALIZED 

MULTIVARIATE GAUSS-MARKOFF MODEL 

WlKTOR OKTABA, Lublin 

(Received June 29, 1993) 

Summary. By using three theorems (Oktaba and Kieloch [3]) and Theorem 2.2 (Srivas-
tava and Khatri [4]) three results are given in formulas (2.1), (2.8) and (2.11). They present 
asymptotically normal confidence intervals for the determinant |<r2E| in the MGM model 
(17, XB,o £ ® V), S > 0, scalar o > 0, with a matrix V ^ 0 . A known nxp random 
matrix U has the expected value E(U) = XB} where the nxd matrix X is a known matrix 
of an experimental design, B is an unknown d x p matrix of parameters and o E <g> V is 
the covariance matrix of (7, ® being the symbol of the Kronecker product of matrices. A 
particular case of Srivastava and Khatri's [4] theorem 2.2 was published by Anderson [1], 
p. 173, Th. 7.5.4, when 17 = I, o = 1, X = 1 and B = y! = [/xi,..., /xp] is a row vector. 
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1. SOME THEOREMS 

Theorem 1.1 Multivariate central limit theorem (Anderson [1] pp. 76-77). 
Let Z(n) be an m-component random vector and b a fixed vector. Assume 

p lim Z(n) = b i.e. Z(n) converges stochastically to b. Let a = y/n[f(Z(n) — b] —> 
n—•oo 

1V(0, T*), i.e. a is asymptotically distributed according to IV(0, T*). Let w = /(z) 
be a function of a vector z with the first and second derivatives existing in a neigh­
borhood of z = b. Let ^ £ ~ be the i-th component of&b- Then the limiting 
distribution of ni[/(Z(n) - /(b)] is 

(1.1) 1V(0,*;T**6). 
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Srivastava nad Khatri [4] present the following Theorem 1.2 without proof. We 
give the proof using the idea of Anderson [1] p. 173, who proved it a special case 
(cf. Summary). 

Theorem 1.2. If i/K~Wp(v,E), then 

(1.2) «/- __a 
Lisí 

- i N(0,2p) 

as v -r oo, where \K\ denotes the determinat of the px p matrix K, 2p being the 
variance. 

(1.3) 

P r o o f. By virtue of \uK\ = u*\K\ and Oktaba [2], (2.1) we obtain 

\K\ u'\K\ \uK\ _ 
\W\ = 

|S | |E|Í/P |S|I/P 

where 

(1.4) 

Xu ' Xu—1 ' • • Xu—p+1 Xu Xu—1 Xu—p+1 

l/P v V ' V 

= Vl(u)-V2(u)...Vi(u)...Vp(u), 

u • VІ(U) = XІ-P+ІУ t = 1, • • • ,P-

are independent. 

Note that the standardized variate 

r, -\ „ xl-P+i-Exl-p+i _ uVi(u)-(v-p + i) _ Vj(u)-l + *? 
(1.5) u. = . —=— — /.. = = — — yv . 

JVvUl-^i) y/2{v-p + t) ^ 1 - - = -

is asymptotically normal iV(0,1). Thus 

^ M - l ] 4 i V ( 0 , 2 ) . 

If we replace z» by v{ and Z(n) by V(i/) = [V_(i/),..., Vp(i/)] in the multivariate 

central limit theorem 1.1 then by virtue of V = [ 1 , . . . , 1] we have 

m = j _ f = / ( v ( " ) ) = w • • • Vp(l/)'T*=2/p' 
дVi 

= 1 and Ф'ЬГ*Ф4 = 2p. 
v=ь 

Hence we get (1.2). D 
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2 . ASYMPTOTICALLY NORMAL CONFIDENCE INTERVALS FOR |<72E| 

IN THE M G M MODEL WITH A SINGULAR COVARIANCE MATRIX 

We apply Theorem 1.2 to the MGM model (cf. Summary) with a singular covari-
ance matrix and to three theorems (Oktaba and Kieloch [3]). In this way we get the 
following three theorems. 

Theorem 2.1. In the MGM model (U, XB, cr*E <g> v) (cf. Summary), the (1 - a) 

percent asymptotically normal confidence interval for the determinant |cr2E| is of the 

form 

(2.1) - - J - - . < |<r2E| < ! - - 3- . 
Ve + Uay/2pUe Vl — Uay/2pUe 

where 

(2.2) Se=U'C1U, 

(2.3) ve=r(V\X)-r(X), 

(2.4) Ci = T- - T~X(X'T-X)-X'T, 

(2.5) T = V + XMX', M = M' is such that R(X) C R(T), 

ua is obtained from the standard normal distribution N(0,1) and given in 

(2.6) p(—ua < u < ua) = 1 - a 

where 1 — a is the confidence. 

P r o o f . Using (1.2), vK = Se and replacing E by <r2E we obtain directly 

i 

= 1 - 0 . , 

where Se~Wp(ve,<j2H) (Oktaba and Kieloch [3]). By solving the inequality in (2.7) 
we get (2.1). D 

Theorem 2.2. In the MGM model (U, XB, cr2E ® V), the (1 - a) percent asymp­
totically normal confidence interval for the determinant |o"2E|, provided the hypo­
thesis Ho; L*B = i\) is true, is of the form 

(2.8) I ^ L _ _ _ < k 2 E | < \SHL 
vv

H + u ^ v / - ^ * 2 VH - ua\/2pvH
 5 
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where (Oktaba nad Kieloch [3]) 

(2.9) SH = (L*B - il>)'L-(L*B -ip), B = {X'T'X)'X'T'U, 

(2.10) vH = r(L),L = L*CAL%Ci = (X'T'X)' - M, 

M and T being defined in (2.5). 

P r o o f . We consider vK = SH, replace E and v by <r2E and vHy respectively. 
We know (Oktaba nad Kieloch [3]) that 

SH~Wp[r(L),a2X]. 

Applying Theorem 1.2 we get (2.8). • 

Theorem 2.3. In the MGM model (1 - a) percent asymptotically normal confi­
dence interval for the determinant |cr2E| can be presented as 

(2.11) ' g y l . < k 2 S | < | S y l , , 
Vy + Uay/2pVy * Vy~Uay/2pVy

 5 

where 

(2.12) Sy = Se + SH, vy = ve + vH, 

with Se and SH in (2.2) and (2.9), respectively and ve) vH in (2.3) and (2.10). ua is 
defined in (2.6). 

P r o o f . By virtue of Se~Wp(ve, <r2E), SH~Wp(vH, r/2E) (Oktaba and Kieloch [3]) 

and additivity of the Wishart distribution we state that 

Se + Sa = Sy~Wp(ve + vH,a2Z). 

Applying Theorem 1.2 we get (2.11) analogously as in the proofs of Theorems 2.1 
and 2.2. D 

Particular case (Anderson [1]). In the standard multivariate model (U, 1 /x', E® 
In) (cf. Oktaba [2]) the asymptotic normal confidence interval for the determinant 
|E| can be obtained if we put: X = 1, Se = U'CiU in formula (2.1), where C\ = 

In — £ l l / , <T2 = 1, ve = n — 1. The symbol 1 is a column vector with ones, In denotes 
the n x n identity, / / is a row vector. 
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