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RANDOM n-ARY SEQUENCE AND MAPPING 

UNIFORMLY DISTRIBUTED 

NGUYEN VAN HO and NGUYEN T H I HOA, Hanoi 

(Received April 28, 1993) 

Summary. Visek [3] and Culpin [1] investigated infinite binary sequence X = (Xi, X2? • • •) 
with X{ taking values 0 or 1 at random. They investigated also real mappings H(X) which 
have the uniform distribution on [0; 1] (notation ^ ( 0 ; 1)). 

The problem for n-ary sequences is dealt with in this paper. 

Keywords: Random n-ary sequences, uniform distribution 

A MS classification: 60G99, 60F99 

1. INTRODUCTION 

Let X = (Xi, K2 . . .) be an infinite sequence of random variables taking values in 

(1) K = {0; 1; 2 ; . . . ; K) for a given K € N = {1; 2 ; . . . } , 

X is called a n-ary sequence. 

If X i ; X 2 ; . . . are independently identically distributed (i.i.d.), i.e. 

K 

(2) P(Xi = j)=Pjzo, \/jeK, 5 > ; = i, v * e N -
i=o 
n 

P(Xh =h,...,Xin = j») = JJpj., Vn€N,i.€2L ti -*... --1„ G N, 
s= l 

the sequence is called multinomial. Denote 

(3) & = {x = (xux3,...),XieK,i€N}. 

33 



An order relation ^ in SC and the distribution function (d.f.) F(x) of X according 
to a law P will be defined. Conditions under which F(X) is uniformly distributed 
will be studied. The results are given in Part 2, first for n-ary sequences, then for 
multinomial sequences and for Markov chains. For K = 1 these results reduce to 
those of Culpin in a more precise form: in Theorem 3 of Culpin [1] it suffices to 
require F(x) to be increasing instead of strictly increasing and P to be continuous 
instead of positive continuous. For X being a real random variable this result is 
well-known, see e.g. [4], p. 34. 

2. RESULTS 

Let x = (xi,X2,...) and y = (yi,y2,.. ) E SC. Denote 

x = y iff Xi = y», Vz E N, 

x~y iff-n E N: xi = y i , . . . - r n - i = y n _ i , xn = yn- 1, 

xn+\ = £n+2 = ... = K, yn+i = yn+2 = . . . = 0, 

or equivalently, x ~ y iff x, y are of the form 

(4) x = ( x i , . . . , x n _ i , y n - l,K), where K = (K,K,...), 

y = ( x i , . . . , r r n _ i , y n , 0 ) , where O = (0,0,...). 

Define an order relation -$ in SC as follows: 

(5) x = y <<=[> either x = y or x ~ y 

x < y <=> x^y and xi = y i , . . . ,-rn-i = y n - i , xn < yn for some n E N. 

It is easy to see that the ordering ^ is linear, the set of pairs x ~ y is denumerable 

and SC is the continuum. 

Lemma 1. Let x,y E SC, x < y. There exist z' = (z\,... ,zr,0) and z" = 
(zi,... zT, K) E SC for some r E N such that 

x^z' <z" < y. 

P r o o f . Since x = (x\,x2,...) < y = (yi,y2, • • •), there is n E N such that 

(i) either xi = yu... ,xn-i = y n_i , xn ^ yn - 2, 

(ii) or zi = y i , . . . , z n _i = y n_i , x n = yn - 1 and for some meN, 

xn+i = ... = xn+m-i = K, yn+i = ... = y n + m - i = 0 

and xn+m ^ K - 1 or yn+m ^ 1. 
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In case (i) one can choose r = n and 

z1 = ( x i , . . . , x n _ i , x n + 1,0), 

z" = (xi , . . . , x n _ i , x n + 1,-RT). 

In case (ii), if x n + m ^ K — 1, one can put r = n + m, and 

z' = (xi,...,xn,K,...,K,0), 

m 

z" = ( x i , . . . , x n , i f , . . . , # , . r ? ) = (x i ,x 2 , . . . ,x n , i ; . : ) , 

or if yn+m ^ 1, one puts r = n + m and 

z' = ( x i , . . . , x n _ i , x n + l , 0 , . . . , 0 , 0 ) = ( x i , . . . , x n _ i , x n + l , 0 ) , 
v v ' 

m 

z" = ( x i , . . . , x n _ i , x n + l , 0 , . . . , 0 , X ) . 

D 

Definition 1. A mapping F of X into [0; 1] is called unique, increasing or 
continuous iff the following condition (i), (ii) or (iii) is satisfied, respectively: 

(6) (i) x ~ y = » F(x) = F(y), 

(ii) x ^ y = • F(x) ^ F(y), 

(iii) F ( x i , x 2 , . . . , x n , y n +i ,y n + 2 , . . . ) -> F(x x , x 2 , . . . ) as n -> oo. 

R e m a r k 1. If F is increasing, then F is continuous iff for every x = (xi, 
x2,...)eX 

(7) F(xi,. . . ,x n , J? ) and F ( x i , . . . , x n , 0 ) -> F(x) as n -> oo, 

or equivalently, F ( x i , . . . , xn , K) — F ( x i , . . . , x n , O) -> 0 as n —> oo. 

Definition 2. F is said to have "Property D" iff it is unique, increasing, con­
tinuous and F(0) = 0, F(K) = 1. 

Theorem 1. Let F be a mapping of X into [0; 1].* F has "Property D" iff it is 
of the form 

oo xn— 1 

(8) F(x) = ^2 ] T / n (x i , . . . , x n _i , -7 ) , x = (x i ,x 2 , . . . ) G X, 
n = l j=0 
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- 1 
where we use the convention £ aj = 0, and the fn 's defined on IC1 satisfy 

j=0 

(9) (i) fn > 0, 
K 

(") ^2fn(xi,->.,Xn-iJ) = / n-i(xi, . . .,x n_i), where f0 = 1, 
i=o 

(iii) / n (xi, . . . , xn) -» 0 as n -> oo. 

Tie /n5 are uniquely determined from F by 

(10) / n (_ i , . . . , xn) = F(_i , . . . , xn, K) - F(xx,..., xn, O). 

Proof . Let F have "Property D". Defining fn by (10), one has 

N xn-l 

_C _L_ fn(Xli"">Xn-liJ) 
n = l i = 0 

N xn-l 

= X^ _C {F(xi> • •. ,a?n-i, j,_i) - F(xi, . . . ,xn_i, j ,0) } 
n = l j = 0 

IV x n - l 
= ] T Y, {-^(xi,...,xn_i,j + l , 0 ) - F ( x i , . . . , x n _ i , j , 0 ) } 

n = l j=0 

= ^2 {^^1»• • • * Xn> ° ) " ^^1' • • •' ̂ *1 ' ° ) ł 
n = l 

= F ( X I , . . . , X J V , 0 ) - F ( O ) = F(xi,...,x/v,0) -* F(x) as N -r oo. 

This proves (8). Conditions (9) (i) and (iii) follow from (10), (6) and (7). One gets 
(9) (ii) by direct calculation: 

K K 

5^/n(xi,. . . ,xn_i, j) = ^T{F(xi,... ,xn_i, j,K) - F(xi, . . . ,xn_i,i,0)} 
j=o i=o 

= F(xi , . . . ,x n _i,^) -F(xi , . . . ,x n _i, l f ,0) 
K-i 

+ ^2 iF(xi> • • • ,xn-uJ,K) - F(xi, . . . ,xn_i,j,0)} 
j=0 

= F(xi, . . . ,xn_i,i?) - F(xi, . . . ,xn_i,i<:,0) 
K-i 

+ ] T {F(xi,... ,xn_i, j + 1,6) - F(xi, . . . ,xn_i,j,O)} 
j=0 

= F(xu... ,xn_i,i?) - F(xi, . . . ,xn_i,0) 

= / n - l ( X l , . . . , X n _ i ) . 
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Suppose now that F is of the form (8) with fn satisfying (9). The conventions 
- l _ __ 
£ aj = 0 and f0 = 1 imply F{0) = 0 and F{K) = 1. 
o 

Let x ~ y, i.e. x, y are of the form (4). Then F{y)-F{x) = / n ( x i , . . . ,xn) + i4-f?, 
where 

OO 2 / a - l — 1 

- 4 = ^ 51 / s (y i , - . - , 2 / s - i , j ) = 0, since ] T = 0, 
s = n + l j = 0 0 

and 

oo x« —1 

B= 5_ ]C /s(-ri,...,xs_i,j) 
s = n + l j = 0 

oo A: 

= _L/ { 2_!/»(a :i>---»a ;»-i»i) - fs(xi,...,xa-i,K)j, 
s = n + l j = 0 

since for s ^ n + 1, a:s = if, 
oo 

= __, ifs-l(Xl>-">Xs-l) - fs{xl,--">Xs-l,K)} 
s = n + l 

= JnV-^1, • • • , -^nj« 

This implies that F{y) - F{x) = 0, i.e. F is unique. Let x ^ y, x ^ y. Then 
xi = 2/ i , . . . ,xn_i = yn_i, xn ^ yn - 1 for some n G N, and 

2 / n - l 

F{y) - F(_) = ^ / - (a* , . . . , x n - i , j) + -4 - £?, where 
j = I n 

oo y . - l 

-4 = ___ _ ^ / s ( y i , - . . , y s - i , j ) ^ o 
s = n + l j = 0 

oo xa — 1 

B= __] ] _ . /a(xi, . . . ,a?, .-i , i) 
s = n + l j = 0 

oo i f 

^ 5_ _^/^(Xl»"-»X*-l»i) =/n(-Cl,...,-Cn). 
s = n + l j = 0 

Thus 
1 / n - l 

F(y) - F{X) > £ _ /n(^l» • • « ,*n-l , j) - /n(*l, • • - , *») ^ 0, 
i = « n 

i.e. F is increasing. 
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For x Є X, n Є fҸ one has 

F ( x ь . . . ,x n , J ľ ) - F ( x ь . . . , x n , Õ ) = 
oo K-l 

= Xľ Y^ fs(xi1...1xПìK,...ìKJ) 
s=n+1 j=0 ^ -

J s—n—1 
OO 

= ^ {fa-l(Xl,'--,Xn,K,...,K)-fa(Xi,...,XnjK,...,K)} 
s=n+i '—^ -r ' s—v—' 

s—n—1 s—n 
= In\Xi, . . . , X n j . 

This proves (10), and the continuity of F follows by (9) (iii). • 

Corollary 1. Let F have "Property D". F is strictly increasing iff 

/ n ( x i , . . . , x n ) > 0 , VnGN, VxG X. 

P r o o f . It follows from Lemma 1 and (10). • 

Theorem 2. F has "Property D" iff F is an increasing mapping of X onto [0; 1]. 

P r o o f . Let F be an increasing mapping of X onto [0; 1]. Clearly, F(0) = O, 

F(K) = 1. 

Suppose there exist x,y G X such that x ~ y and F(x) < F(y). There must be 

a z G X: F(x) < F(z) < F(y). Then x < z -̂  y and z ^ x, z =̂  y, which implies, 

by the definition (4), that z ** x, 2 oo y. Thus x < z < y. Hence x < y. This 

contradiction proves the uniqueness of F. It remains to verify the continuity of F. 

For x = (xi,X2,...) G X, let us denote 

x'(m) = ( x i , . . . , x m , 0 ) , x'(m) = ( x i , . . . , x m , K ) , meN. 

Then x'(m) ^ x ^ x'('m) and F(x' (m)) ^ F(x) ^ F(x'(m)). Since x'(m) (x'('m)) is 

increasing (decreasing) with m, there exist a' and a" G [0; 1], such that 

F(x'{m)) S a'<. F(x) and F(x'(m)) \ a" > F(x). 

If a' < F(x) there would be y € .£* such that a' < F(y) < F(x). Thus, 3/ < x. 

Therefore j/i = 1 1 , . . . , y n - i = £n-i> J/n < ^n for some n e N. Hence, for m ^ n, 

V < x'(m) a n d 

F(y) < F(x| r a )) < a', i.e. F(y) < o'. 
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This contradiction yields that a! = F(x). In the same way, a" = F(x). This 
implies (7). 

Suppose now that F has "Property D". By Theorem 1, F is of the form (8) 
with fn satisfying (9). For a given t G [0; 1] we will determine two sequences x = 

(xi,.r2, . . .) € «5T and (i>o,itT, v2, • • •) such that 

t = vo ^ vi ^ v2 ^ . . . , 

0 < vn ^ / n ( - r i , . . . , x n ) , Vn€ N, 

in the following way: 

vo = t, 
i - l i 

xi =max | f : t € /£, J^/iC;) < vo = * < J^ / iO ' )} . 
i=o i=o 

X l — 1 

vi = v 0 - J ^ /i(j), 
3=0 

i - l i 

xn = m a x | z : i G £ , ^ / n ( r r i , . . . , x n _ i , j ) ^ vn_i ^ ^ / n ( r r i , . . . , x n _ i , j ) | , 
i=o i=o 

x n - l 

vn = vn-i- *%2 fn(xi,...,xn-i,j) 
j=o 

Xn X n — 1 

^ 2J /n(^ l , - - - ,^n- l , j ) - 2 J fn(?i,...}Xn-uJ) = /n(-^l, . • • , Xn). 
i=o i=0 

Then 

N 

t = Vo = vN -f ^ ( f n - i - vn) 
n = l 

-V x n - l 

= V-V + ^ _C / n ( ^ l » - - . ^ n - l , j ) , -VGN, 
n = l j=0 

where VN ^ //v(^i, • • •,#n) -r 0 as N -> oo. Therefore 

oo xn—1 
t=z^2^2 fn(XU...<,Xn-l,j) =F(X). 

n=l j=0 

This proves that F is a mapping of 2£ onto [0; 1], • 
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Law and distribution function of X. 

Let X = (Ki,K2> • • •) be an infinite n-ary sequence with Ki taking values in K_, 
i eN. Let P be a probability law of X. A law P of X is given iff there is a system 
& of probabilities P(Xh = x{l,...,Xim = xim), Vm G N, Vix ?- . . . # i m G N, 
Vx = (xi, x<i,...) G X, satisfying the well-known consistency conditions which imply 
(9) (i)-(ii) with fn defined by 

(11) / n ( z i , . . . , Z n ) = P(Xi =Xi,...,Xn =xn). 

Conversely, from a family of P(X\ = x\,... ,Xn = xn), Vn G N, Vx G «3T satisfying 

(9) (i)-(ii) one can get the system &> satisfying the consistency conditions by putting, 

for 2*1 # . . . 7̂  *'m € N, 

P(Xix =xil,...,Xim = xim) = Y^ P(Xi =Xi,...,Xn = xn), 
x i i > - - M * i n _ m e K 

where n = max( i i , . . . , i m ) , {ju.-.jn-m} = { l , . . . , n } \ { i i , . . . , i m } , i.e. a law P 
of X is given. 

Definition 3. A law P of K is said to be continuous iff 

P(X = x)= lim P(XX =x1,...,Xn=xn)=0, 
n—>oo 

i.e. iff the / n ' s defined by (11) satisfy (9) (iii). 

Since the / n ' s satisfy (9) (i)-(ii) as mentioned above, Definition 3 is equivalent to 

Definition 3*. P is continuous iff the / n ' s defined from (11) satisfy (9) (i)-(iii). 

Definition 4. The mapping F: X -> [0; 1] defined from 

(12) F(x) = P(X <x), xeX 

is called the distribution function of X according to the law P, (abbr.: d.f. of K|P). 

R e m a r k 2. For the case of a continuous P, 

(13) F(x) = P(X <x) = P(X ^ x). 

Definition 5. A law P of X is called positive iff the system 8? is positive, i.e. 

(14) P(Xh =xil,...,Xim =xim)>0, VmeN, V i i ^ . . . ^ i m G N , Vx G X. 

Theorem 3. Let F: X -> [0; 1]. 
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(i) F has "Property D" iff F is d.f. of X according to a continuous law P. F and 

P are determined uniquely from each other: 

oo x n —1 

(15)F(X) = J2 ._, P&! = Xi,...,Xn-i = Xn-iJ), x = (xux2,...)& X, 
n=l j=0 

(16) P(X1 =Xl,...,Xn = xn) = F(x) - F(x), 

where 

X_ = yX-\, . . . , Xn, \J), 

x = (x1,... ,xn,K), n eN, x € 3£. 

(ii) Moreover, for F and P as in part (i), F is strictly increasing iff P is positive. 

P r o o f , (i) Let P be a continuous law of X. Since 

oo xn — 1 

{X <X}C^ £ { X l =ZU---,Xn-l =Xn-UXn=j}C{X^x}9 
n = l j=0 

with the convention J]o~1{-} = ^ » o n e 6 e t s 0-&) by virtue of (13), i.e. F is of the 
form (8) with fn defined from (11) satisfying (9). Thus, F has "Property D" by 
Theorem 1. 

Let now F have "Property D". By Theorem 1, F is of the form (8) with fn 

satisfying (9) and (10). Defining a family of P(X1 = x1,...,Xn = xn) by (11) which 
yields a system & and then a continuous law P, one gets (15) and (16) from (8) and 
(10), respectively. F is the d.f. of X\P by the first part of the proof. 

(ii) This is a consequence of Corollary 1. D 

Corollary 2. Let P be a continuous law of X = (X1,X2,...). Then 

(17) P{K i =x1,...,Xn=xn} = P{x^X ^x} 

with x, x defined in Theorem 3. 

P r o o f . Let F denote the d.f. of X \P. It is easily seen that 

(18) {Xi =x1,...,Xn = xn} = {Xi =x1,...,Xn = xn, 0^ Xn+i ^K, iG N} 

C{x^X ^x}. 

Thus, 
P{K i =x1,...,Xn= xn} ^ P{x ^ X < x} = F(x) - F(x) 

by (13). This fact and (16) prove (17). D 
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Theorem 4. Let F be an increasing mapping of X into [0; 1]. Let P be a con­
tinuous law ofX = (Ki, X2, • • •)• Then F(X)S£CJl/(0; 1) under P iff F(x) is the d.f 
ofX\P. 

P r o o f . Let F be the d.f. of X\P, where P is continuous. By Theorems 2 and 
3, F has "Property D" and maps X onto [0; 1]. Then 

V* e [0; 1], F~x(t) = {x; xe X, F(x) = t} # 0. 

Denote xl = supF - 1(£) , where the supremum is taken according to the ordering -̂  
defined in (5). Since F has "Property D" and P is continuous, one obtains 

{F(X) ^ t} = {X ^ x1}, 

P{F(X) ^t} = P{X ^ x1} = P{X < x1} = F(xl) = t, 

which shows that F(X)3?<2f(0] 1) under P. 
Conversely, let F(K)j£f <^(0; 1) under the continuous law P. Let A be the Lebesgue 

measure on (R,^) . One has 

A{[0; 1] \ F(X)} = 1 - A{F(.T)} = 1 - P{F(X) e F(X)} = 1 - 1 = 0. 

Thus F(X) is everywhere dense in [0; 1]. Therefore, 

F(O) = infF(.T) = 0, 

F(K) = sup F(X) = 1. 

Hence OeF(X), leF(X). 
For t e (0; 1) there exist {an} and {bn} C F(X) such that 

a1 < d2 < . . . , liman = t, 

h > &2 > • • • > \imbn = t. 

Then there exist {xn} and {yn} C X such that 

xl < x2 < . . . F(xn) = an, Vn G N, 

yl>y2>.. F(yn) = bn, Vn G N. 

Denote x = sup{xn}, y = inf{yn}. Hence x, y e X, F(x) = F(y) = t, i.e. t e F(X). 
This proves that F maps X onto [0; 1]. By Theorems 2 and 3, F has "Property D" 
and it is a d.f. of X according to a continuous law, say Q, which is determined from 

(19) Q(X1 =xu...JXn=xn) = F(x) - F(x). 
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It remains to prove that Q = P, or equivalently, to show that 

(20) Q(X1=xlt...,Xn=xn) = P(X1 =xu...,Xn = xn), V n e N , Vx G X. 

From (18) and {x ^ X ^ x} C {F(x) ^ F(X) ^ F(x)} one gets P(X1 = 
x1,...,Xn = xn) ^ F(x) - F(x)y since F(X)Sf<&(0; 1) under P. Thus, by (19), 

(21) P(XX =xu...,Xn = xn)^ Q(XX =xu...,Xn = xn). 

On the other hand, 

{X < x} C {F(X) ^ F(x)} and {X > x} C {F(X) > F(x)} 

imply 

P(X <x)^ F(x) and P(X >x)^l- F(x) 

or P(X ^x)^ F(x), 

which yields 

P(X ^ x) - P(X <x)^ F(x) - F(x), 

or, by Corollary 2 and (19), 

(22) P(X1 =xu...,Xn = xn)2Q(X1=xu...tXn = xn). 

The desired result (20) is obtained from (21) and (22). D 

Corollary 3. Let P be a continuous law ofX = (X1, X2- • • •) • The only decreasing 
mapping G: X -•> [0; 1] such that G(X)S£^(0\ 1) under P is determined from 

oo K K 

(23) G(x) = J2 £ P(Xi=xu...,Xn^=xn.uj), £ = 0 . 
n= l j=x n + l K+l 

P r o o f . Let F be the d.f. of X\P. By Theorem 4, F is the only increasing 
mapping such that F(X)S£W(0\ 1) under P. Thus 1 - F(x) is the only decreasing 
mapping such that 1 - F(X)Jf<&(0; 1) under P. By Theorem 3 F(x) is of the form 
(15). Thus 1 - F(x) is defined by (23). D 
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R e m a r k 3. Consider 

oo 

(24) M ( * ) = £ ( t f T T p x = (xi,X2,...)€*. 

M is of the form (8) with 

/ n ( x i , . . . , x n ) = / g + 1 w >°> n G N , xG ^T, 

satisfying (9). Thus M has "Property D". Moreover, it is strictly increasing by 

Corollary 1. Also, M(X)JfW(0\ 1) only under P such that 

P(X1 = a ? i , . . . , X n = xn) = / n ( x i , . . . , x n ) = (K,1)n > 0 , nG N, z G <2T, 

i.e. X = (K i ,X2. . . •) is an i.i.d. sequence with 

(25) P(Xi=j) = j ^ , jeK, i € N . 

APPLICATION TO n-ARY SEQUENCES 

Corollary 4. Let X = (Ki ,K2, • • •) be an independent sequence such that 

(26) P(Xi = j ) = Pij > 0, j G £ , J ] p y = 1, i G N. 

Moreover, let 

(27) 3a G (0; 1), 3N G N such that 

0 < py ^ 1 - a, Vj eK,Vi> N. 

Then 

(i) the d.f. of X\P is determined from 

(28) F(x) = £ ( f n J £ Pni}, 
n = l ^ M = l / j=0 ** 

0 - 1 

x G f , where J J = 1, ^ = 0; 
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(u)F(X)i f«r(0; l ) under P; 
(iii) the additional assumption pij > 0, Vi G N, Vj G K, ensures the positivity of 

P as well as the strict increasing of F. 

P r o o f . Note that 

n 

P(Xi =xu...,Xn=xn) = Y[piXi, neN, xe& 
t = l 

and the /n 's defined by (11) satisfy (9). D 

R e m a r k 4. For X being an i.i.d. sequence, i.e., p^ = pj, Vi G N, Wj G K_, the 
condition (27) is replaced by 

(27*) 0 < P i < l , jGK. 

APPLICATION TO MARKOV CHAINS 

Corollary 5. Let X = (Ki,X2> • • •) be a Markov chain with a finite state space 

E = {Eo,Ei,.. .,EK} which is identically denoted by K_= { 0 , 1 , . . . ,K}. Let TC0 = 
{Po>Pi>... ,pk) be the initial probabilities and let TZ = (pij), i,j G K_ be the matrix 

of transition probabilities: pi ^ 0, po + • • • + PK = 1- Pij ^ 0, YIJ^K P*j = 1> * € £L-

Suppose that 

(29) 0 ^ Pij < 1, ie K, j G K. 

Then 

(i) the distribution function of X is determined by 
OO r , n —2 v X n - 1 v 

(30) F(x) = £ { [Pxi II **-•*<+- ) E ^n-i,i [, 
n = l ^ t= l ' j=0 ' 

- 1 0 - 1 

x G *", where JJ = 1, JJ = 1, ] T = 0; 
1 1 0 

( i i ) F ( X ) J ^ ( 0 ; l ) ; 
(iii) moreover, if 0 < p» < 1, 0 < P tj < 1, i,-; G 2£, the law P is positive and F is 

strictly increasing. 

P r o o f . Since P(XX = xly... ,Xn = xn) = pXl • pXuX2.. . P x n . l f X n , n G N, 
x G £̂", and the /n 's defined from (11) satisfy (9) provided (29) holds. D 
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