
Applications of Mathematics

Petr Vaněk
Fast multigrid solver

Applications of Mathematics, Vol. 40 (1995), No. 1, 1–20

Persistent URL: http://dml.cz/dmlcz/134274

Terms of use:
© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134274
http://dml.cz

40 (1995) APPLICATIONS OF MATHEMATICS No. 1, 1-20

FAST MULTIGRID SOLVER

PETR VANĚK, Plzeň

(Received February 5, 1993)

Summary. In this paper a black-box solver based on combining the unknowns aggrega
tion with smoothing is suggested. Convergence is improved by overcorrection. Numerical
experiments demonstrate the efficiency.

Keywords: Algebraic multigrid method, smoothing, unknowns aggregation, black-box
solver

A MS classification: 65F10

1. INTRODUCTION

The usual iterative methods for solving systems of linear algebraic equations—for
example the damped Jacobi method or the Gauss-Seidel method—eliminate some
types of errors very effectively and some of them very slowly. As a rule oscillating
errors are effectively eliminated therefore we speak about the so called smoothing
effect. A multilevel method is based on a combination of a smoothing iteration with
the so called correction on a coarse level. Components of an error which are not
effectively removable by smoothing are tried to be represented in a space the dimen
sion of which is smaller than the dimension of the original system. The standard
correction on a coarse level is an orthogonal projection of the error along components
of the error represented in the space with the smaller dimension.

The aim of this paper is to describe the construction of coarse spaces based on
combining the unknowns aggregation with smoothing. The advantage of unknowns
aggregation is that it can be easily done using a graph algorithm without explicit
knowledge of the geometry of a grid. However, piecewise constant coarse spaces
(generated by unknowns aggregation) contain high energy functions and therefore
the multigrid algorithm based on unknowns aggregation is not too efficient. In order
to improve convergence properties we will suppress the energy of coarse space func
tions using a smoother. Numerical experiments (see Section 7) have shown that the

convergence factor of the suggested algorithm is approximately 10-20 times smaller
than that one of a black-box solver suggested by Ruge and Stiiben in [8], Chap. 4,
p. 108. The presented algorithm is based on tricks described in [2], [3], [4]. Ac
celeration by overcorrection was suggested by Blaheta [1]. A modification of this
technique used in this paper was analyzed in [2]. The algorithm (generation of a
disjoint covering of a set of degrees of freedom) is a modification of the algorithm 2.2
in [3]. The presented modification enables to solve systems of PDEs and respects
the coupling of degrees of freedom. Improvement of transfer operators by smoothing
was suggested and analyzed in [4].

Let us consider a system of linear algebraic equations

(1.1) An = / ,

A is a positive definite matrix of order n, / € Rn a given right-hand side. Further
let

(1.2) p: Rm -» Rn, m<n

be an injective operator. This operator will be called a prolongation (for technical
details see Section 5). The smoothing iterative method is supposed to be of the form

(1.3) S(x) = Mx + Nf,

x G Rn, M, N are nonsingular square matrices satisfying the consistence condition

(1.4) I = M + NA.

Let us note that (1.4) implies

(1.5) S(x) = x,

where x = A~l f. An error of the vector x G Rn will be defined as

(1.6) e(x) = x — x.

Components of the error which are not effectively removable by smoothing, i.e.

(1.7) M e « e

will be called smooth components. We try to represent these smooth components in
Rm using the prolongation operator. The error e 6 Rn can be represented in Rm if
there is a v G Rm such that

(1.8) e = pv.

2

In the ideal case the range of p always contains all smooth components of an arbitrary
error e € Rn. In practice this requirement seems to be too strong. Usually we will
be satisfied with the fulfilment of a weaker condition

(1.9) Mpvttpv.

The construction of the prolongation operator contained in this paper follows the
scheme:

1. An auxiliary prolongation operator

(1.10) p: Rm -> Rn

will be constructed by the unknowns aggregation technique. This process is little
time-consuming but the properties of the operator p are very bad from the point of
view of the condition (1.9).

2. A prolongation operator p will be constructed by the formula

(1.11) p = Mp.

The range of p is expected to contain vectors with smooth components mostly be
cause non-smooth vectors from Im(p) are suppressed by the smoothing operator M.

2. STANDARD TWO-LEVEL METHOD

Let (•, -)i and (•, -)2 denote the usual scalar products in Rn and Rm, respectively,
^ d II' Hi = (*> *)i > II * lb = (*» *)2 t-ne corresponding euclidean norm. Let us define
the energetic scalar product by

(2-1) (v) i = (A v) i

and the corresponding energy norm by

(2-2) | - | i = (v)J / 2 .

A multilevel algorithm consists of a correction on a coarse level and of smoothing
(see Introduction). Let x G Rn be an approximation of the solution x = A~lf of the
problem (1.1). The correction on a coarse level consists in subtracting pv, v € Rn

fulfils the minimalization condition

(2.3) | e (x) - p v | i = min |e(a;) — jnu|i.
u;GRm

The orthogonal projection theorem implies that e(x) — pv is the .A-orthogonal pro
jection of e(x) into Im(p), i.e.

(2.4) (e(x) - pv,pw)i = 0 for all w 6 Rm.

Now we can easily define the algorithm of the correction on a coarse level. The
restriction operator

(2.5) r: Rn -+ Rm

will be the adjoint operator to p with respect to the scalar products, i.e.

(2.6) (rx,y)2 = (x,jyy)i x € Rn,t/ G Rm.

Let us mention that matrix representations of r, p will be mutually transposed.
Using (2.1) and (2.6) we get the equivalent form of (2.4)

(2.7) (rA(e(x) -pv),w)2 = 0 for all w € Rm.

It is clear that (2.7) is valid if and only if

(2.8) r Ae(x) = rApv.

It is easy to see that

(2.9) Ae(x) = Ax — /.

Setting

(2.10) A2 = rAp,

(2.8) becomes the system of m linear algebraic equations in m variables

(2.11) A2v = r(Ax-f).

The correction on the coarse level can therefore follow this algorithm:

(2.12a) d : = A r - / , d € Rn,

(2.12b) d2:=rd, d2 G Rm,

(2.12c) v:=A2Xd2, t /ERm ,

(2.12d) x:=x-pvy xeRn.

A two-level algorithm contains usually two smoothing steps. The first (so called pre-
smoothing) is applied before and the second (so called post-smoothing) is applied
after the correction on the coarse level. Smoothing steps represent several (mostly
2-5) iterations of the smoothing iterative method (1.3). The complete algorithm of
a two-level method can be, for example:

1. Setup phase

• generation of the operator p (in dependence on A).
• calculation of A2 = rAp

2. Iterative phase: (x{ denotes the i-th iteration, x° being chosen arbitrarily)

(2.13a) x := 5(l/l)(x*) (i/i times iterating (1.3)), x G Rn,

(2.13b) d:=Ax-f d € R n ,

(2.13c) d2:=rd d2 G Rm,

(2.13d) v := A^ld2 v G Rm,

(2.13e) x:=x-pv x G Rn,

(2.13f) x*+1 := S^(x) x'+1 G Rn.

The only step which has not yet been precisely defined is the generation of the
operator p. This step will be described in detail later.

3. STANDARD MULTI-LEVEL METHOD

Generalization of a two-level method to a multi-level one is very natural. We do not
solve the system A2v = d2 exactly as in (2.13d), but approximately by the recursive
application of the two-level method. In the setup phase we generate matrices A/,
/ = 2, . . . ,&, with decreasing order n*. Generation is stopped when the order of
the matrix is sufficiently small for the effective direct solution of the corresponding
system of linear algebraic equations.

Let c denote the maximal order of a matrix on "the coarsest level". Then the
setup phase consists of the following steps:

(З.la) setting Лi = Л, / := 1,

(3.1b) pi is generated depending on A/,

(3.1c) -A/+i := riAipi,

(3.1d) Z : = / + ! ,
if щ > c then

go to (3.1b)

else k := í.

Let us denote by Hl the space Rn', Z = 1,2, . . . , A;. Let vx resp. v2 be the number of
the pre-smoothing (resp. post-smoothing) iterations. The iterative phase [x{ -> x*+1)
of the standard multi-level method can be written as

(3.2a) Z := l , / i := f,Xl := **, fuxx G H\
(3.2b) f i :=S (l / l) (x i) , £<GH<,
(3.2c) df^Atxt-fu dteHl,
(3.2d) fi+i:=rtdh / i + i E i / i + 1 ,
(3.2e) if / + 1 = k then

x / + i := (A i + i) - 7 , + i , xw G H/+1

else
-c/+i := 0,
Z:=Z + 1,
for k = 1,..., 7 do (3.2b-3.2g),
Z : = Z - 1 .

(3.2f) 1/ := x\ - p/.r/+i, x, G Hl

(3.2g) x , := 5 /^ (5 ,) , xiGff1

(3.2h) xi+1:=xi.

7 G f̂J in (3.2e) determines how many iterations of the multi-level method are used
to solve the problem on the "coarse level". Usually we choose 7 = 1 or 7 = 2.

R e m a r k 3.1. In the case 7 = 1 we speak about a V-cycle, in the case 7 = 2
about a TV-cycle. For more detailed information about terminology see [1].

4. ACCELERATION OF MULTI-LEVEL METHOD

In this section we will describe one technique with help of which the acceleration
of the convergence of the multi-level method can be achieved. This technique is a
slight modification of a technique suggested by Blaheta [1] and analyzed in [2]. The
idea will be explained using the two-level algorithm, generalization to the multi-level
case is trivial. Let us consider the algorithm (2.13). Roughly speaking the step
(2.13e) will be replaced by the step x := x — ipv, i G R is chosen to minimize the
ratio |e(:r*+ 1) | i / |e(x) | i . It is easy to see that this requirement is equivalent to the
condition

(4.1) \MU2[e{x) - ipv]fi ^ \MU2[e(x) - tpv)\i for every t G R.

From (4.2) we can deduce

. (MV2e(x),Mu*pv),

6

If MV2pv = 0, an arbitrary t G R fulfils the condition (4.2). For an arbitrary x G Rn

we have

(4.3) Mvзe(x) = e(S("=)(x)),

(4-4) Ae(x) = Ax — f.

Using (4.2)-(4.4) we get

(4.5)
ţ (Ax-

(Av
7,вh
,v)i

where

(4.6) v = M"3pv,

(4-7) x = S("2)(x).

Now we can write down the algorithm of a modified two-level method.

(4.8a) І p S W f i ') , x£ Rn,
(4.8b) d := Ax — f, d є R n ,
(4.8c) dъ := rd, á_ Є R m ,

(4.8d) v := (Л з) " 1 ^ , V Є R m ,

(4.8e) v := MU2pv, ve Rn,
(4.8f) if v =

(4-8g)

(4.8Һ)

(4-8І)

0 then xi+l := x,
x := S^2Ҳx),
. _ {Ax- f,v)

{Av,v)i
x*"1"1 := x — tv,

else continue (4.8g)-(4.8i)
xe Rn,

ì

x i+1 Є Rn.

R e m a r k 4.1. Setting i = 1 in (4.8h) the algorithm (4.8) is equivalent to the
algorithm (2.13). The condition (4.1) guarantees that the algorithm (4.8) reduces
the error not worse than (2.13) supposing the input of xx is the same.

5. CONSTRUCTION OF TRANSFER OPERATORS

In this section we will describe the construction of transfer operators r, p. Matrix
representations of these operators are mutually transposed it is therefore sufficient
to describe the construction of the prolongation operator p. As was mentioned in
Introduction the generation of p will pass two phases:

1. generation of p: Rm -> Rn using the unknowns aggregation technique
2. "smoothing" p := Mp.

The idea of the unknowns aggregation is following: We will form a disjoint cov
ering of the index set {1 , . . . ,n} , i.e. the system of index sets {Ci}1^Ll satisfying two
conditions:

(5.1) CinCj=$ f o r i ^ j ,
m

(5.2) U o i = {l,...,n}.
i= l

The number m is unknown in advance. Then the operator p: Rm -» Rn is defined
by

(5.3) (px)i = Xj, i£Cj,xeRm.

Conditions (5.1), (5.2) easily show that for every index i G { ! , . . . ,n} there exists
the only index j G { 1 , . . . , m} such that i G Cj. Verbally the definition of p: x -r y
can be expressed in the following way: the j-th component of the vector x G Rm will
be mapped onto all components of the vector y G Rn indices of which are in Cj. It
is easy to see that p is injective. Unknowns will be called aggregated if their indices
are in the same Cj. As the aggregated unknowns are represented in Rm by one
unknown it is suitable to aggregate the unknowns with "close affinity". Therefore
only the unknowns modelling the same physical quantities and being "strongly bound
by a single equation" will be aggregated. Let U € N, i = 1 ,2 , . . . ,n , denote the
physical interpretation of the z-th variable (for example, 1 denotes temperature, 2
compression). Let 0 G (0,1). We define a neighbourhood of the z-th variable

(5.4) N{ = {j: (\aij\ ^ 0 max \aik\) A (tj = U)} U {i}.
K = l , . . . , n
k?i

We suppose that for each Cj, j = 1 , . . . , m there exists i G { 1 , 2 . . . , n } such that

(5.5) Cj C Ni for some i G {1 ,2 , . . . , n}.

The algorithm for the generation of the system {Cj}: (The result is the disjoint
covering {Cj} and the number m = |{C7,-}|.)

R:={l,2,...,n},j:=0,

for i := 1,2,.. . ,n

itNiCR then

j := j + \,Cj := Ni,R — R\Cj,tj := U,

for i := 1,2, . . . , n

if i G R then

j :=j + l,Cj :=NiDR,R:=R\Cj,tj := U,

m := j .

(5-6)

The sequence {ij}J=1 defines the physical interpretation of the variables on a "coarse

level". The first loop of the algorithm (5.5) generally does not establish the covering.

This is the goal of the second loop. The system of index sets {Cj}™=1 generated by

the algorithm (5.6) satisfies (5.1), (5.2) and (5.5). Now we are able to construct the

operator p. (5.3) implies that the auxiliary operator p can be represented by an

n x m matrix with elements

f 1 for i e Cj
(5.7) pij = < , i = 1,2,...,n, j = l , 2 , . . . , m .

[0 for z g Cj

The iterative operator of the damped Jacobi method represented by a matrix

(5.8) M = 1- uD^A, u e (0,1),

where D is the diagonal part of A will be used as the smoothing operator. The

advantage of the choice (5.8) is evident: The elements mij of M can be very easily

expressed by

jl-w

y -wdij/au

, - - for г = j
(5.9) Шij = { , . , . > ѓ,j = l , 2 , . . . , n .

for г т-= J •

Now we define

(5.10) p = Mp.

In some cases it is suitable to use the "simplification" of M to define p. If we use

the "simplification" M8 described below instead of M the increase of the number of

nonzero elements in the rows of At during the <:etup phase (3.1) will be substantially

slower. Let 0 ' € (0,1). Let us define a matrix Ms = {ms
ij}

7-;-=1 by

{ mij, i f | a y | ^ 6 ' max \aik\,

j-i,...,»

0 elsewhere.

Analogously we define

(5.12) p = M8p.

Practice has shown the good choice of the parametres 0 , 0 ; in (5.4) and (5.11) for
the level / ^ 1 is

(5.13) = ' = 0.1 • (0.3) 1-1

6. CONVERGENCE OF THE TWO-LEVEL METHOD

This section will deal with convergence of the algorithms (2.13) and (4.8) for the
transfer operators defined in the previous sections. Let us define subspaces of Rn

(6.1) T = Ker(rA),

(6.2) T = Ker(rA),

(6.3) S = lm(p),

(6.4) 5 = Im(p).

Let X be a subspace of Rn. Let X- denote the _4-orthogonal complement of X, i.e.

(6.5) X- = {x e Rn: (x, y)x = 0 for every y e x}.

The next lemma follows easily from the above definitions.

Lemma 6.1.

(6.6) f = S±,

(6.7) T = S^.

Further the iterative method (1.3) is supposed to be given by

(6.8) S(x) = (I- LJD~1A)X + (jjD~lf, UJ e (0,1).

It is not difficult to see this iterative method fulfils (1.4) and therefore

(6.9) S(x) = i,

where x = A~lf. Let us note the iteration operator J - uD~lA of this method was
used to construct the transfer operators (see (5.8)). Our dealing with the convergence
will be restricted to the case of the prolongation operator defined by (1.11), i.e. the
case of the "simplified" matrix M8 defined by (5.11) will not be taken into account.
Further we will suppose that M is nonsingular. As p is injective, p = Mp is injective
as well and A<i = rAp is positive definite. Now we will analyze the convergence of
the algorithm (2.13).

Lemma 6.2. The following equalities are valid:

(6.10a) e(x) = M^e(x{),

(6.10b) d=Ae(x),

(6.10c) v = (rAp)'1rAe(x),

(6.10d) e(x) = [I- p(rAp)~lrA]e(x),

(6.10e) e(x{+1) = MU2e(x).

10

P r o o f is trivial. D

Lemma 6 .3 . Let us set

(6.11) Qs = p{rAp)'xrA,

(6.12) QT = I- p{rAp)~xrA.

Then

(6.13) Im(Qs) = S,

(6.14) Im(Qr) = T

(6.15) QS + QT = I,

(6.16) Ker(Q5) = T,

(6.17) Ker(QT) = S,

i.e. Qs is an A-orthogonal projection of Rn into S and QT is an A-orthogonal
projection of Rn into T.

P r o o f is evident. D

Lemma 6 .4 . M is a selfadjoint operator with respect to the scalar product {•,)i.

P r o o f .

(Mx,y)i = (AMx,y) i

= {A{I-wD-1A)x,y)i

= {{A-uAD-1A)x,y)1

= {{I-uAD-l)Ax,y)1

= {MTAx,y)1

= {Ax,My)1 = {x,My)u x,y € Rn.

D

Let Xi,X% be subspaces of Rn. Let us consider an operator B: Xi —> X2 and let
us define an operator norm

(6.18) \B\Xl^x2= sup I g j l l .
x€Xi \ {0} | £ | l

Lemma 6.5. The following estimate is valid for the algorithm (2.13):

(6-19) ' I I M I I 1 1 < lMUlIr-Rn •|M"2|T-Rn •
11

P r o o f . It is easy to see that

(6.20) e(xi+1) = Mv*QTMVle(xi).

Hence we must estimate the operator norm |M"2QrM"J |R»_>R» . As Im(Qr) = T,

(6.21) | M ^ Q T A f ^ I R . - . R . ^ IQrAf ^ I R . - . R - « M " 2 | T ^ R » •

Using Lemma lemma 6.3 we get

I Q T M " 1 * ! 2 = (QTM^X&TM^X)!

= (QTMVlx,MVlx)l

= (MV1QTM'/Ix,x)i

^lMVlQTM^xh-Mi
^ | M ^ | T - > R » J Q T M " ^ | 1 . | X | | 1)

which implies

(6.22) I Q T M ^ I ^ I M - l r ^ - M l i

and hence

(6.23) I Q T M " ' |Rn^R„ < | M " | T - + R » .

Substituting (6.23) into (6.21) we get

(6.24) | A f " - Q T A f " J R . - * - < |Af "»|T->R- • |M"2|T->R» •

D

Lemma 6.6. For M the following inequalities are valid:

(6.25) | M | T ^ R » < | M | T ^ R „ ,
2
f->R" * (6.26) | M 2 | T ^ R - < | M | 2

P r o o f . For every x £ T we have due to (6.2)

(6.27) 0 = rAx = rM7'Ax = rAMx,

r denotes the adjoint operator to p, therefore by (6.1)

(6.28) Mx e f.

12

As

(6.29) | M i | 2 = (M i , M Z) I = (M2x,x^ < | M 2 x | i • | : r | i ,

(aiM | M 2 x | 1 \Mx\x
(6-30) JMW * TUT
is fulfilled for x G T \ {0}. Using (6.28), (6.30) we get (6.25). It is clear that

(6.31) ! M 2 i T _ R n ^ IMflT->Rn • « M l t ^ R n

is valid. (6.26) is the consequence of (6.25) and (6.31). D
Lemma 6.7. Let v\ = v2 = 2. Then for the algorithm (2.13) the estimate

(6-32) liSir *|M| -̂
holds.

P r o o f is the immediate consequence of Lemmas 6.5 and Lemma 6.6. D

R e m a r k 6.L If V\ ^ 2, v2 ^ 2 and Q(M) ^ 1, the estimate (6.32) is valid as
well.

The operator norm lM|-f,_^Rn can be estimated using Brandt's technique with
help of Cea's trick known from the theory of the finite element method. The following
well-known lemma is proved e.g. in [1], Theorem 6.4.

Lemma 6.8. Let D be positive definite, let C > 0 be such that for every e G Rn

there is a v € Rm such that

(6.33) C H D ^ e - p t O H i ^ l e l ! .

Then

(6.34) | M » ^ R „ Zl-Cufi-VQiD-WAD-1'2)].

Another estimate can be found in [3], Lemma 7.4.
(6.32) is valid also for the modified algorithm (4.8)—see Remark 4.L

Theo rem 1. Let v\ ^ 2, v2 ^ 2, Q(M) ^ 1, let D be positive definite. Further let
C > 0 fulfil the condition (6.34). Then for the rate of convergence of the algorithms
(2.13) and (4.8) we have

(6-35) llSt * I1" Cuj[2 ~ ^D~1/2AD-1/2X }2-
P r o o f follows immediately from Lemmas 6.7, 6.8 and Remarks 4.1 and 6.L

D

13

Now we will analyze the convergence of the algorithm (4.8). Remark 4.1 guaran
tees that every estimate of the rate of convergence of the algorithm (2.13) given by
| e (a : f + 1) | i / l e (x l ') | i < S, 0 -̂ S < 1, holds for the algorithm (4.8) as well. Our aim
is to get the estimate which shows that (4.8) converges faster. The results below are
the generalization of the results published in [2].

Lemma 6.9. For the algorithm (4.8) we have

(6.36) | e (: r < + 1) | i = min IM^M^etf) - tpv]U,

where

v = (A2)~1rAe(x), x = S"1 (a,*).

P r o o f is trivial. D

Lemma 6.10. Let us set

(6.37) e = e(x) - pv.

Then

(6.38) | e (x t + 1) | i = m i n | M I / 2 (e - ^ p i ;) | i
Ś€R

holds for the algorithm (4.8).

P r o o f follows using the relation e(x) = MUle(xx) and Lemma 6.9 for t = f + 1 .

•

R e m a r k 6.2. It is not difficult to see that

(6.39) e = QTMUle(x{)

and therefore

(6.40) e G T.

Lemma 6.2 implies that MU2QTMUI is the iteration operator of the algorithm (2.13),
therefore MU2e is the error of the result of the algorithm (2.13) supposing that the
same iteration xx is on the input of both algorithms (2.13) and (4.8).

14

Definition 6.1. Let e(x) G Rn \ (S U T). Let us define

(6.42) W = " M " , | I '
ЏҺ '

JM^pvh
|pv|!

|M"*e(x)|i

(6.43) qs =

(6.44) r = . ,.,. ,
|e(x)|i

(6.45) gr = |M" 2 |T^ R ",
(6.46) qs = |M ,/3|s-,R«.

Remark 6.3. e = QTe(x), pv = Qae(x). As e(x) £ S, e is different from
zero, analogously e(x) £ T and therefore pv ^ 0. Further 0 0 R" \ (S U T), and
hence e(x) ^ 0. The numbers A;, qT and qs are therefore well-defined. The following
inequalities are evident:

(6.47) qT < qT,

(6-48) qs < fo,

(6.49) 0 < Jfc < 1.

Lemma 6.11. Let e(x) G Rn \ (5 U T). Then

(6.50) |e(x i+1)|? <_

< w-Q^n^ {i - [r2^;:fey
)]2}ie^)if

holds for the algorithm (4.8)

Proof . It is not difficult to prove that the right-hand side of (6.38) is minimal
for

rfisn e (M^M^pv^
(6 5 1) * = | M ^ | ? •

Using (6.38) and (6.51) we get

(6.52) | e (. «) | f = I M - Q . M M x O l i - ^ ' ^ f ^

15

Further

\M<*pv\\=q%\pvl\

= яMQse(x)\ì = я2sШ-Qт)e(x)l\

= «K|e(г)l.-|Qгe(г)|?)

-qsV- \e(x)\\ ' l {) h

=qs(i-Mt\>{ml

= qs(l-k*)\e(x)\\.

We have proved

(6.53) \M»*pv\\ = qs(l-k2)\e(x)\\.

Using this inequality we have

(6.54) | M " 2 e (x) | 2 = (M" 2 (e +pv),MU2(e + pv))l

= \MU2e\\ + 2(MU2e,M,/2pv)l + |M" 2 pt ; | 2

= <#|f | 2 + 2(M"-e\ M"*pvh + g | (l - k2)\e(x)\\

= qlk2\e(x)\\ + 2(Mv*e,MV2pv)i

+ ^ (l - f c 2) | e (i) | 2 .

(6.54) and (6.44) yield

(6.55) (M " * f , M ^ p v) , = \{r2- qTk
2 - <?£(1 - fc2)] • \e(x)\l

Substituting (6.55) and (6.53) into (6.52) we get

(6.56) | e (x i + 1) | 2 = | M ^ Q T M t " e (x i) | 2

. Htf-
-|e(5)|?.

[г 2 -g 2 fc 2 - g | (l - fc 2)] 2

4îl(l-fc2)
Remark 6.2 and Definition 6.1 yield

(6.57) |Afk -gT -W 1e(.c') | i =«r* | e (x) | i

and

(6.58) \M^QTM^e(xi)\l < I M ^ Q T M ^ I R - - * - |e(x*)|i .

Prom (6.57) and (6.58) the inequality

(6.59) 9r*|e(.r)|i ^ J M ^ Q T M " 1 |Rn_>Rn |e(_.')|i

follows. We get (6.50) using (6.56), (6.57) and (6.59)

16

Definition 6.2. For every r G (0,1) let us define

A[r)-\xeH ,x?x, l M v i e { x) h > r l

R e m a r k 6.4. If f < Q(M), then .4(f) ?- 0. If x = x{ then ^ ^ ^ A ^ 1 =

r from (6.44).

Lemma 6.12. Let f G (0,1) such that

(6.60) g T < f, qs < f.

Then for every x% G -4(f)

(6-61) . l l n . a < ИM^QтM^ Я2

R„^R„
| _ _ _ _ _ ţ _ 2

[f 2 -#fc 2 -g 2 (l - fc 2)ľ í l - inf
l fcє(o.i) 4g | (l- fc 2)g 2 fc 2 /

holds for the algorithm (4.8).

R e m a r k 6.5. The assumption xl G -4(f) means that the error of the approx

imation xx after pre-smoothing (i.e. MUle(x1)) is smooth. Lemma 6,12 states that

the nearer to 1 f is (i.e. x% smoother) the more effective the iteration is. Smoothness

of MUle(xl) can be improved by increasing the number of pre-smoothing steps v\.

P r o o f . (6.60) implies e(x) G R n \ (5 u T) and (6.61) is therefore the consequence

of Lemma 6.11 taking into account that qT < qT and qs < qs, r ^ f (see Remark 6.4).

•
R e m a r k 6.6. As MU2QTMUI is the iteration operator of the algorithm

(2.13),

I M - Q T M * ! ^ = S U P

I ! ^ 1) ' 1 .

Mx)Ii
Using Lemma 6.5 and (6.61) we get

r*+-M?
IT->Rn

(6.62) ' l l ^ l ' ^ » M , / 1 « ^ R " • « M " i '

L _ i n f [r-2-#fc2-g-j(l-fc2)]2l
I 1 *6(o.i) 4g|(1 - *-)#*- J"

Theorem 2. Let z/i ^ 2, v2 ^ 2, #(M) < 1. Let us set

(6.63) < Z T - I M | t ^ R n .

17

Let r e (0,1) be such that qfa < r, qs < r. Then for every x{ G A(f) the estimate

W£lM<#h- inf [r2-#fc2-g|(i-fc2)3%
|e(V)l2 **V A) 44|(1 - *»)# J

is vaiid for the algorithm (4.8).

P r o o f , Using Lemma 6.6 and the assumption i! i , i /2>2we get

| M " l | T - > R n < $, ,

<?T = | M ^ | T - > R - ^tfT.

Now the statement follows immediately from Lemma 6.12. •

R e m a r k 6.7. fa = lA-fl^^n can be estimated using Lemma 6.8, i.e. under
the assumptions D is positive definite and (6.33) we have

& < 1 - Cu[2 - LjQ(D-iAD'i)].

The operator norm qs is estimated in [2] for a model example.

R e m a r k 6.8. If the assumptions qfa < f, qs < r, x{ £ X(f) are not fulfilled
the rate of convergence can be estimated via Theorem 1.

R e m a r k 6.9. Due to Theorem 2 it is desirable for f E (0,1) to be as large
as possible. This aim can be reached by choosing v\ sufficiently large. Practice has
shown the optimal value of v\ is approximately 4-8, that is about twice the number
of smoothing iterations recommended for the algorithms of the type (2.13).

7. NUMERICAL EXPERIMENTS

In this section results of experiments carried out using the algorithm (4.8) are
contained. The algorithm was tested on the following boundary value problem dis-
cretized by the finite differences method on the regular square qrid:

9 (, ^du\ d2u . _ ,„ „x /rx HN

-rA£{x'y)di)~W2=f onft=(°'1)x(°-1)'
u = 0 on dft.

Experiments were carried out for the following two cases:

(7.1) £(£,y) = const,
(7.2) e(x,y) = l00x+y~l.
18

Assigned parameters of the method:

1/1 = = 7

^2 = = 2

U -= 0.63 (see (5.8))

= = 0.1 (see (5.4))

7 = = 2 (see (3.2e))

n = = 2500

Notation in the table:

[Ti -] time of one iteration (in the iterative phase)

[TP -] time of the setup phase divided by U

[Cg -] the so called geometrical complexity i.e. the total number of equations

over all levels divided by the number of equations of the finest level

[Ca -] the so called algebraic complexity, i.e. the total number of nonzero co

efficients over all levels divided by the number of nonzero coefficients of the finest

level.

problem є n r
p

C9 Ca Q

(7.1)

10~
4

37 1.8 1.57 1.93 4.19 ю-
3

(7.1)

10"
3

25 2.1 1.50 1.84 4.12 ю-
3

(7.1)

10"
2

40 1.3 1.52 2.08 3.82 ю-
3

(7.1)
ю-

1 26 2.0 1.43 1.76 4.00 ю-
3

(7.1) 1 34 2.2 1.41 2.16 7.00 ю-3 (7.1)

10 27 1.6 1.43 1.75 4.04 ю-
3

(7.1)

100 40 1.2 1.52 2.11 3.87 ІO"
3

(7.1)

1000 25 1.7 1.50 1.84 3.93 ю-
3

(7.1)

10000 33 1.2 1.57 1.93 4.09 ю-
3

(7.2) 34 1.1 1.55 1.92 3.32 10"
3

References

[1] R. Blaheta: Iterative Methods foг Numerical Solving of the Boundary Value Problems
of Elasticity. Thesis, Ostгava, 1989. (In Czech.)

[2] S. Míka, P. Van k: Modification of the Two-level Algorithm with Overcorгection. Appl.
Math. 57(1992), no. 1.

[3] 5. Míka, P. Van k: The Acceleгation of Two-level Algorithm by Aggгegation in Smooth-
ing Process. Appl. Math. 57(1992), no. 5.

[4] P. Vaněk: Acceleгation of a Two-level Algorithm by Smoothing Transfer Operatoгs.
Appl. Math. 57(1992), no. 4..

[5] W. Hackbusch: Multi-Grid Methods and Applications. Spгinger-Veгlag, 1985.
[6] J. Mandel: Adaptive Iterative Solvers in Finite Elements. To appear.

19

[7] O. Axelsson, V.A. Barker: Finite Element Solution of Boundaгy Value Pгoblems. Aca-
demic Press, 1984.

[8] S.F. McCormick: Multi-Grid Methods. SIAM (1987).
[9] P. Leitl: private communication. Nynice, 1993.

[10] J. Mandel: Balancing Domain Decomposition. Communications in Numerical Methods
in Engineeгing 9 (1993).

Author's address: Petr Vaněk, Dept. of Math., ZČU, Americká 42, 306 14 Plzeň, Czech
Republic, e-mail: pvanekФkma.zcu.cz.

20

		webmaster@dml.cz
	2020-07-02T08:42:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

