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SHAPE OPTIMIZATION BY MEANS OF THE PENALTY METHOD 

WITH EXTRAPOLATION 

IVAN HLAVACEK, Praha 

(Received February 1, 1994) 

Summary. A model shape optimal design in R is solved by means of the penalty method 
with extrapolation, which enables to obtain high order approximations of both the state 
function and the boundary flux, thus offering a reliable gradient for the sensitivity analysis. 
Convergence of the proposed method is proved for certain subsequences of approximate 
solutions. 
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INTRODUCTION 

In optimal shape design, one usually requires the gradient of the cost functional 
with respect to design variables. The latter gradient can be frequently expressed by a 
boundary integral involving the boundary flux of the state function. Thus one needs 
an efficient and reliable method to compute both the solution of elliptic problems 
and its boundary flux. Such a method has been proposed for Dirichlet boundary 
value problems by J.T. King in 1974 [11] and developed by King and S.M. Serbin 
in [12], [13]. They called it penalty method with extrapolation. The author of the 
present paper extended the method to some axisymmetric 3-D problems in [8]. 

The aim of the present paper is to apply the penalty method with extrapolation 
to the sensitivity analysis for optimal shape design problems. We consider a simple 
model state problem, i.e., a Poisson equation in a bounded two-dimensional domain 
with a homogeneous Dirichlet boundary condition and two frequent cost functionals. 
In Section 1 the method of penalty and some error estimates given by BabuSka in 
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[1] are extended to non-smooth domains with convex corners. We recall the main 

results of King and Serbin [11], [12], [13] on the penalty method with extrapolation 

in Section 2. 

Basic definitions and relations of a model shape optimal design problem are dis­

played in Section 3 together with some sensitivity analysis. Then an application of 

the penalty method with extrapolation is proposed. In Section 4 we present some 

theoretical analysis of the method. We discuss the existence of a solution to the 

approximate optimization problems and prove the main convergence theorem. We 

show that having a sequence of solutions of the approximate optimization problem, 

then a subsequence exists, which converges to a solution of the original optimal shape 

problem. 

1. T H E PENALTY METHOD FOR PLANE DOMAINS WITH CONVEX CORNERS 

The purpose of this section is to derive a priori error estimates for the penalty 

method applied to bounded two-dimensional domains with a piecewise smooth 

boundary. Thus we extend some results of BabuSka [1], who assumed that the 

boundary is of class C°°, to a class of domains with corners. 

Henceforth we assume that 

(Al) the domain fi C R2 is bounded, with Lipschitz-continuous boundary 3fl = T, 

which consists of a finite number of smooth arcs V,-, j = 1,..., JV, of class W2y°°. 

In corner points, their tangents generate interior angles uij G (0,K]. 

We employ the standard notation for Sobolev spaces Wk,2(Q,) = Hk(fl), where 

k^ 0 (k need not be integer), with the norms || • \\k,n', H°(il) = L2(H). 

On the boundary T we define norms || • ||S)r in spaces Hs(r), s ^ 0 (cf. [15], §5.2, 

p. 94 and (1.8) below). We denote 

/ fgdx = (/,#), / fgds = (/,#), 
Jfi JdQ 

and the seminorm 

дu дu .2 V"̂  ( <Ju óu\ 

i = i 

Finally, we introduce the summation convention, i.e., any repeated index implies 

summation within the range 1,2, unless another sum is indicated. 

We shall need the following lemma which follows from a result of Kadlec [10]. 
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Lemma 1.1. Let the boundary dfi, fulfil the assumption (Al), let u be the weak 

solution of the problem 

u = 0 on dil, 

where f G L2(Q), a{j G C W ^ f i ) , a i 2 = a2i and a ^ t , ^ Co|*|2 Vt G R2, Vz G H. 

Then u G #2(f i ) and 

Nkn < C||/||0fn 

with C independent of f. 

Lemma 1.2. Let fi be a bounded domain with Lipschitz-continuous boundary F 

and let e G (0, \}. Then the trace mapping, which is defined for u G C(Q), has a 

unique continuous extension as an operator from #1 /2+ e(fi) onto H£(F). 

The proof follows immediately from Theorem 1.5.1.2 in the book [5], for e = 

5 - 1/2, p = 2 , k = 0, ^ = 0. 

In what follows, we denote 

du __ du 

the boundary flux, where Vj are components of the unit outward normal to dQ = I \ 

Lemma 1.3. Let the boundary dfi, satisfy the assumption (Al) and let w G 
# 2 (H)n# 0

1 ( f t ) . Then 

and 

дvл 
1/2,Г 

P r o o f . First let us consider a small neighbourhood of a corner O (see Fig. 1). 
In general, we have 

dw __ dw 1 __ dw 1 

dv 8VA VA • v' 8VA VA • v 
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where VA • v = aijViVj. 

Choosing a new coordinate system £, 77 in the directions of normals at the corner 
O, we easily obtain that 

dw _ dw cos(i/1^) dw _ dw cos^r]) 
d£ dv\ v\ • vl ' drj dv\ v\ • vl 

dw _ dw cos(i/2£) dw _ dw cos(v2rj) 
d£ "" dv\ v\-v2 ' ar7 " di/2 1/2 . „2 

Let us define the two following constants 

onГi, 

on Г2. 

a = sin 2

 7[(i/i • i/) | 0 - (í/2. • i / % cosi], 

0 = sin"2
 7 [ ( ^ • ÍV2)|O - {v\ • ^)\o cos7], 

Then 

дu\ Qdw 0 d w _ \ ^ {^W M ^ O + T^r cos^ 1 T?)) on r l t 

a ^ + ^ ~ l l ^ ( \ - > c o s ( « / 2 0 + ^ c o S ( ^ ) ) o n r 2 ) 

so that on Ti U T2 — O we may write 

dw f dw ndw\ 
(1.3) öw _ / ow dw\ 

dvл \ d£ d )Á dvA V d£ dr) 

where the function z is defined as follows 

[ j i > c o S ( ^ ) + -^ - f c o s y r/)]_1 
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We can determine the value z(0) in such a way, that the function z will be continuous 

at the point O and there exists a neighbourhood B0 of 0 , such that z G C^tl(Fi U 

r 2 n .Bo) . 
Let us denote y = z~l, for the time being. If Y\ is the graph of a function 

£(t), then £ G JV2'°° by assumption (Al) and c o s ^ f ) = (1 + £'2)~1 / 2 , cos(i/1r/) = 

cos(7 - (vlCl), v\ • i/1 = aijv\v] G C(0),1([°>&)), for some 6 > 0. Consequently, 

t/ € C(°7'1(ri H .Boi), where Boi is a sufficiently small neighbourhood of the corner 

0 . Moreover, 
a 13 

lim y(t) = ---j — + -7-j -rr- cos 7 = 1. 

A similar analysis is true on T2 n .#02 and we have again 

. 1 І m »(*> = Л,2 Q,/2M„ C O S T + 7^2 t->0_ W-f2)|o (4^2)lo 
= 1. 

Thus setting z(0) = 1, we obtain z G C ' 0 ' ' 1 ^ UT 2 nB0), where 5 0 is a sufficiently 

small neighbourhood of the point 0 . 

It is easy to verify that 

(1.4) ueH^il), ceo(0),1(I) => uCe/í1/2(/) 

and 

(1-5) IKIIl/2,/ < o(C)IMIl/2,/ 

holds for any bounded interval I = [a, b]. 

Since the traces of both dw/d£ and dw/dr) belong to H1/2(T), their linear com­

bination (adw/dZ + 0dw/drj)r G H1/2^). Applying (1.4), (1.5) to (1.3) and the 

Trace theorem, we arrive at 

(ì.б) 

(1.7) 

I^G/í^^u^nBo), dvA 

Әw 
дvA £,riur2nBo 

< C 
дw nдw 

a +Ы ł.г 
< C|k||a,n. 

Let us recall the definition of the norm in H1/2(T) (see [15—§5.2, p. 94]). There 

exists a finite covering of the boundary T by open sets .£?,-, z = 1 , . . . . m and 

(1.8) 
дw 

дvл 

_(fi__.i \" 
i/2,r \^"dv>A\i/2,AiJ ' 
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where A* are projections of V 0 B{. Let the sets B{ be chosen for all corners in 

accordance with (1.6). For the remaining Bi, which cover the interiors of the arcs .Tj, 

the assumptions Tj G W2>°° and aij G C^'1 imply that the components of v°A are 

Lipschitz continuous on Tj n B{. Consequently, 

1^1 €tfV2(Ai) 
dvA Ir.nBi 

follows from (1.4). 

Combining (1.8) with the estimates on A», we obtain (1.2). • 

We introduce the second assumption 

(A2) for any h G (0,1] there exists a finite dimensional subspace Vh C ffl (ft) such 

that: 

for any u G ff£(H), I = 1,2, there exists Vh G Vh such that 

e-s\\ | | t i-« f c | |-,n<o/. ť-|Hki. 

holds for all s G [0,1]. 

L e m m a 1.4. Suppose the assumptions (Al), (A2) are fulfilled and let w G 
H2((i)nH%(n). 

Then there exists gh G Vh such that 

II" " 9h\\ln + lh-' \hl~l^-A + 9kfoj < C(7,e)fta-||«»||^ 

holds for any positive 7, e with C(7,e) independent ofh, w. 

P r o o f , (see [1], where dtt G C°°). Lemma 1.3 yields that J^- G ff 1 / 2 (T) and 

9uj 
Әi/л 1/2.Г 

<o | |tl»||2,n. 

There exists a function V G ffx(fi) (see [15—Thm. 5.7, p. 103]) such that the trace 
dw 

duA 

dw 

V\r = ft. and 

(1.9) l|V|h,n < C дvA 
1/2.Г 

<C|ИІ2,П. 

By assumption (A2) and (1.9) there exists a function <j>h G Vh such that 

(1.10) ||V - VfcH.,1. < Ctf-WVhsi < C^-Htulla,!. 
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holds for all s E [0,1]. 
From Lemma 1.2 and (1.10) we obtain 

(1.11) \\V - ^ | | o , r < \\V - ^ | U 0 , r ^ C(e0)\\V - ^ | | i / 2 +e-0 ,o 

^C (£ 0 ) / l 1 / 2 - 5 0 |k l |2 ,n . 

By (A2) and Lemma 1.2 we deduce that there exists a £h € Vh such that 

(1.12) 

(1.13) 

||t«-i!^i,n šofclMkn, 

l l&lkr = Uh ~ w||o.r < o(eo)||ffc - Hli/3+-o,n 

^C(£o)ft3/2-£0lk||2,í.. 

If we set 

9h = ţh- h-y Vл» 

then 

lk-5/ l | |
2,n + 7li_1 , __- дw i2 

hl ә^+9h 
o,г 

= Ww-b + Vh-r-i-hi-Hv-vhnln 

\fij-1 ( j ^ -v)+ /17-1 (v - <ph)+a + 7Л' - 1 

o,г 
< C[\\w - aili,« + ft27-2||^ - fhWlu + li27-2||^||2,fi + 7li-1||ailo:,r 

+ hf-l\\V - fhWlr] < C(7,£o)ft2-2eolhlli,fi 

follows from the estimates (1.12), (1.10), (1.9), (1.13) and (1.11). • 

Definition 1 .1 . Let us denote 

a(u,v) = (aij—,—). 

We say that 1* (̂7) E Vh is an approximation of the solution by the penalty method, if 

(1.14) o K f ) ) , ^ ) / ! ' 1 (uh{l),v) = (/,v) Vv G V^. 

It is readily seen that for any 7 > 0 there exists a unique solution of (1.14). In fact, 

the bilinear form 

Ay(u, v) = a(w, v) + 71&"1 (u, v) 

is symmetric, continuous and positive definite on Vh x Vh, since 

(1.14') A M ^ c ( 7 ) N | 2 , n 

holds for all v G H1(17) due to the Friedrichs inequality. 
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Now everything is ready to prove the main 

Theorem 1.1. Suppose the assumptions (Al), (A2), / € L2(Q,). Let u0 be the 

(weak) solution of the Dirichlet problem (1.1) and let Uhilf) be the approximation 

by the penalty method. 

Then u0 € H2 (il) and the following estimates hold 

(1.15) 

(1.16) 

(1.17) 

• 1 - e i I K - tift(7)lli,ft ^ C(-y,e)h- ~\\j\\0jn 

lkh(7)l lo,r^C(7,s)/i | |/ | | 0 , ň , 

| ^ + 7 f t " V ( 7 ) ^ C ( 7 , e ) / i 1 / 2 - e / 2 | | / | | o , ň , ovA o,r 

where e > 0 is arbitrary. 

P r o o f . (Cf. [1] for the case 9J1 G C°°). It is easy to verify that 

F(v)=a(v,v)-2(f,v)+1h-1\\v\\lr 

is the potential associated with the penalty method (1.14). Let us introduce another 
functional for v € H1(fi), namely 

R(v) = a(u0 — v,u0—v)+ 7/1 - 1 ^ӘUQ 12 
Л7 0 — + v дvA o,г 

By virtue of Lemma 1.1, UQ belongs to H2(Q) and Lemma 1.3 implies that duo/dvA £ 

H1/2(fi); thus the definition is senseful. 

Since 

(1.18) 

we may write 

a(u0,v) = (f,v) + / -fyf-,v\ , 

R(v) = a(v,v) - 2(f,v) + 7/rЧMIoд, + h^1 

= F(v)+K(u0), 

Әгxp_ 

дvA o,г 
+ a(u0,u0) 

where 

K(u0) = a(u0,u0) + /17 X дu0 

дvA o,г 
is independent of v. 

Consequently, we have 

(1.19) 
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Lemma 1.4 yields the existence of a function gh G Vh such that 

Rig^^CWuo-ghWlu+ih-1 

<c(7,£)/i
2-£IKIII,n 

, -iдuo 2 

hl ә^+9h 
o,г 

holds for any e > 0. 

From Lemma 1 it follows that 

Huolkn < C| |/ | | 0 f n. 

Making use of (1.19), we may write 

(1.20) R(uh) ^ R(gh) < C(7,e)/i2-£| 

Next we have 

||2 

llo,fì. 

(1.21) 

(1-22) 

a(u0 - uhìu0 - uh) ^ R(uh), 

, -iдu0 h-ү l-т—+uh дvA o,г 
^ 7 _ 1 / i % ) . 

Using the triangle inequality, (1.22) and Lemma 1.3, we obtain 

\du0\ 
(1.23) IM7)lkг ^ uh + h-y - — 

ovA o,г 
+ hy - 1 

ӘvA o,г 

< [ ( 7 - 1 Л) 1 / 2 С 1 ! 2 (7 ,£) !г 1 - е / 2 +СА 7 - 1 ]Н/Нол 

^С1(7,е)Л| |/ | |о,о. 

Combining (1.20), (1.21), (1.23) and the Friedrichs inequality, we arrive at 

C| |u 0 - uh\\ltQ ^ \u0 - uh\ltQ + \\u0 - uh\\ltT 

< G(nrlC)fc2"-||/||gt0 + C7?(^fe)fc2||/||gi0 < CaC^c)^ 

On the basis of (1.22) and (1.20) we deduce 

2-ЄЦ/Ц2 
0.ÍÎ-

^ 0 , , _ i , _ i 
- — +7/1 uh\\ =7/1 
dvA llo,r 

дu{ 7 h-— +uh\\ 
dvA Alo.r 

^ ( 7 ^ 1 ) 1 / 2 C 3 ( 7 ^ ) / i 1 - 5 / 2 | | / | | o , n = C ( 7 ^ ) / i 1 / 2 - e / 2 | | / | | o , n . 
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2 . PENALTY METHOD AND EXTRAPOLATION 

The rate of convergence 0{hl~£) of the penalty method can be increased by means 
of an extrapolation, i.e., by a suitable linear combination of several approximations 
u>h{li) with different 7*, as was shown by J.T. King in [11]. To this end, however, a 
higher regularity of the solution UQ is required together with C°°-smoothness of the 
boundary dfi,. 

We define the A;-th extrapolate as follows 

k 

(2.1) u^ = Y,*iUh{li), * £ 1 , 
i=0 

where 

0 < 7 o < . . . < 7*, 

and the coefficients a» satisfy the linear system 

k 

(2.2) I > = 1' 
i=0 

k 

Y^aWi3 = 0 ' j = 1,...,*. 
i=0 

As the determinant of (2.2) is a Vandermonde, the system has a unique solution. 
If the assumptions of Theorem 1.1 are fulfilled, then 

(2.3) lk f c ) -«olli.n < C(7o,...,7fc)l*1"£ll/llo,« 

holds with arbitrary e > 0. 

To see this, we write 

\\u^] - u 0 | | i , n ^>2a>i{uh{l/i) -u0) 
i=0 

fe 

^ 5^|ať|||iifc(7i) -i*o||i,n 

ì.n 

i=0 

end employ the estimates (1.15). 

Consequently, the extrapolates converge at least as the approximations by penalty 
method. 
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In what follows, we assume that the boundary dft is of class C°° and the solution 
no E ffs(ft), where s ^ 3. We present results of J.T. King and M. Serbin. For the 
proofs we refer to their papers [11], [12]. 

Consider the elliptic operator 

(2-4) A t t 3 - £ ( ° « J | ) ' 
where 

(2.5) a i i = a i i G C 0 0 ( ( i ) . 

Let k be an integer, 1 -̂  k -̂  s — 2. We define w\ the solution of the following 
problem 

r\ 

(2.6) Awx = 0 in ft, wx = --^- on T, 
dvA 

for 2 ^ j ^ k let Wj be the solution of 

r\ 

(2.7) Aivj = 0 in ft, tuj = — ^ l on T. 

We have (cf. [14]) 

(2.8) KH.-i,n^C7||iio|Uln. 

In the paper [11] the following assumption is introduced. 

(A3) Let r ^ 2 be an integer. For any h E (0,1) there exists a finite dimensional 
subspace VJ[" C ff1(ft) such that for any u E ffs(ft), 2 -̂  5 ^ r, there exists a 
constant C, independent of h and u, and Vh E VJJ" such that 

(2.9) \\u - vh\\o,n + h\\u - vh\\hQ ^ C/ia||ii||afn. 

For examples of such subspaces we refer the reader to the finite element method [3]. 
The following estimate can be established [11—Theorem 3.1], 

Theorem 2 .1 . Suppose u0 E ffs(ft), r ^ 5 ^ 3, is the solution of the Dirichlet 
problem 

(2.10) Au = f in ft, 

u = 0 on T; 
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Let Uh(l) be the approximation of the solution by the penalty method (i.e., the 

solution of (1.14)) and let us assume (A3). 

Then if k is any positive integer k -̂  s — 2, we have 

(2.11) Uh(l) -UQ- ^ ( 7 1h)jwj 

J = I i,n 
^C(7)/ifc+1|KIU,п. 

Corollary 2.1. If the assumptions of Theorem 2.1 are fulfilled, then 

(2.12) \\u{k) -tiolkn ^c(7o,...,7fe)li f c + 1 |KIU. 

P r o o f . On the basis of the formulas (2.1), (2.2) and (2.11) we obtain 

Y^ m [uh(li) - u0 - Y l73hjWj J 
t = 0 ^ j=l ' 

k 

<£MC(7i)lifc+1|Klkn, 

li"*? - -o||i,n = 

i=0 

so that (2.12) follows. D 

R e m a r k 2.1. In [1] BabuSka derived and King in [11] generalized some error 

estimates for the penalty method, where h~l in (1.14) was replaced by a more general 

h~a, a ^ 1. Not even for the best choice of the parameter <r, however, the error 

bound is quasioptimal [11]. 

The penalty method with extrapolation brings a remedy—it yields a quasioptimal 

error estimate. Indeed, if s = r = k + 2, (2.12) yields that 

(2.13) l k Г " 2 ) - « o | | i , n < C l г г - 1 | | « o l k ň . 

Thus using finite elements with quadratic polynomials on the reference triangle ac­
cording to Zlamal [16], for k = 1 and r = s = 3 we obtain 

(2.14) l k 1 ) - u o | | 1 , n < C l г 2 | | « o l k « . 

R e m a r k 2.2. From Theorem 2.1 and (2.9) we can conclude that the dominant 
k 

term in the error expansion of the penalty method is the term £ (l~xhywj. 
i=i 
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In the paper [12], King and Serbin proposed also an approximation of the bound­

ary flux on the basis of the penalty method with extrapolation. To illustrate the 

motivation, let us recall that (1.18), i.e. 

\Q~>V) = a ( w o ,v ) -(f,v) 

holds for all v G H1^) and from the definition (1.14) 

a(uh(l),v) - (f,v) = -7f t" 1 (uh(j),v) Vv G Vh. 

Comparing these relations, the authors of [12] define 

(2.15) ei0) = - 7 ^- 1 « f c (7 ) 

as the 0-th approximation of the boundary flux. 

The fc-th approximation of the boundary flux for k ^ 1 is defined by 

(2.16) 
i=0 

where the coefficients ao , . . . , a* are determined by the system (2.2) and Uh(l%) is 

evaluated at the boundary. 

If dfl is of class C°°, UQ G HS(Q), the coefficients of the operator A belong to 

C°°(fi), the subspaces V£ satisfy (A3), and k equals at most 5 - 2 , then the following 

error estimate holds (see [12—(2.6)]): 

(2.17) 
дu \P--e[k) „ <C(70,...,7^fc+1/2|M|s,n. \duA o,г 

If moreover UQ G H5(fi), where s ^ fc + 3, then even better estimate can be proven 

(see [12—(2.8)]) 

(2.18) 
дup 
дvл — e ,W 

o,г 
^Ć(7o, . . . ,7 Ä )/ i f c + 1 Ыkп. 

R e m a r k 2.3. For the 0-th approximation (i.e., for penalty method without 

extrapolation) we easily deduce that 

дup (0) 
дvi - e ì 

o,г 
^ C(7)Л||tю||з.n, 
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provided u0 G if3 (ft). 

In fact, making use of the definition (2.15) and Theorem 2.1 for k = 1 we obtain 

дuy 

'A 

0 _ J0) 

дv h 
= \\-w1+-yh 1u/l(7)l|o,r 

o,r 

^ W 1 | K ( 7 ) -i/o - 7 " 1 ^ i | | i , f i < C{-y)h\\uoh#. 

Supposing UQ G H2(Q) only, we have the error bound 0(h1/2 * / 2 ) , as follows from 

(1.17). 

Finally, let us present several practical features of the penalty method with extra­

polation. 

1. The approximants are not required to satisfy any boundary conditions. 

2. Matrices of the linear system, which is equivalent to the penalty method (1.14), 

have the form A + 7I?, where A and B are symmetric, independent of the 

parameter 7 and A + 7L? is positive definite for any 7 > 0. Consequently, the 

same basis for V£ is used in the determination of any extrapolate. 

3. The linear system resulting from the penalty method (1.14) has condition num­

ber of order 0(h~2), i.e., the same as that for Galerkin method. The boundary 

weight 7/i_ 1 appears to be optimal in this sense, in comparison with *yh~a. 

An important practical problem remains to be solved, namely, how to choose the 

parameters 7^. In the paper [13], the authors present a series of computational 

experiments with a simple model problem on a square domain, with cubic splines 

and errors in __2(ft)-norm. Their research resulted in the following conclusions. 

In the penalty method the error is minimal for a sufficiently great 7opt = 7(h)• 

Penalty method with extrapolation displays similar features. The error increases 

always when some optimal values of 7* are exceeded. 

The authors recommend therefore the penalty method with extrapolation for 

"moderately large" parameters (e.g., 10, 100, 1000) instead of the search for an 

optimal 7 in the penalty method. The determination of suitable values of 7 may 

easily be bested computationally by a standard procedure given in [4—p. 313]. 

3 . APPLICATION OF THE PENALTY METHOD WITH EXTRAPOLATION TO SHAPE 

OPTIMIZATION PROBLEMS 

In shape optimal design, one of the most important question is to find the gradient 
of the cost functional with respect to design variables, i.e., the so called sensitivity 
analysis. We shall show that the penalty method with extrapolation can be useful 
in the computation of the above mentioned gradient. 
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First, let us recall the definition of a model shape optimal design problem. Let us 

consider a class of domains 

(3.1) il(v) = {(x,y) G R2 | 0 < x < v(y), 0 < y < 1}, 

where v G Uad and 

(3.2) Uad = {ve C ^ Q O , ! ] ) , vm[n ^ v(y) ^ vm&Xl \dv/dy\^d a.e.} 

with given positive constants vmm, vmax , C\. Assume that vmm > vmaiX/2. 

Let us have the following state problem 

(3.3) Au = f in Sl(v), 

u = 0 on dtt(v), 

where A is an elliptic operator (2.4) with constant coefficients and / G L2(Cls), 

n* = (0,6) x (o,i), s G (vm&x,2vmin). 
We introduce the two following cost functional 

(3.4) Ji(v) = / (uo(v)-u) dx, 
JQ(V) 

(3.5) J2(v)= [ fu0(v)dx, 
Jn(v) 

where u0(v) denotes the (unique) solution of the problem (3.3) and u G C(Q,s) is 
given. 

It is well known from the sensitivity analysis [7], [9], that the Gateaux differentials, 
i.e. 

J[(v,v) = lim (Ji(v + tv) - Ji(v))/t 

are 

f}*\ in M f1 (duo(v)dz(v) _2\ 
(3.6) Ji(»,«) = yo ( dv duA +"2)vdy, 

(3.7) J ^ = / 0 - a - — g ^ - « d » . 

Here z(v) is the solution of an adjoint problem 

(3.8) As = 2(u0(v) - u) in O(v), 

z = 0 on 9fi(v) 
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and all the functions in the integrals (3.6), (3.7) are evaluated on the variable part 

T0(v) of the boundary, i.e., on the graph of the function v. 

Thus we are interested in an efficient method for computation of both the solution 

u0(v) in Cl(v) and of the derivatives 8U0(V)/8VA, 8Z(V)/8VA, du0(v)/dv on T0(v). 

As we have seen in Section 2, the penalty method with extrapolation can be suitable, 

since it gives approximations of u0 and du0/dvA (and 8Z/8VA) of a higher order of 

accuracy. 

Note that having 8U0/8VA, we easily obtain 8u0/8v, since 

/ o n \ du0 t ^-\8u0 

0.9) -to=<fiu>><»i) ^-A 

In fact, due to the boundary condition u = 0 and introducing a new vector bi = aijVj, 

we may write at each regular point of T0(v) 

8u0 8u0 8u0 8u0 8u0 8u0 

^A
=aiiU^i

=bi^l = {bv)^ + {bt)^ = {biVi)^-
Inserting 

biVi =aijViVj, 

we arrive at (3.9). 

It remains to choose the subspaces V£(v) oi Hl(p,(v)), satisfying the assumption 

(A3). To this aim we choose restrictions to Q,(v) of standard piecewise polynomial 

finite elements over a uniform partition Th of the rectangular domain tts. 

Let us introduce a finite-dimensional restriction of the set Uad by means of the 

Bezier curves 

(3-12) F(a)(y) = y£ai/3r(y), 

where 

- . , î ( n ) ' 
i=0 

A(n)(») = ( " ) » ' ( ! - » ) n - ť ; 

F is the mapping R n + 1 -> C([0,1]). 
Defining 

(3.13) U<n> = {ae R n + 1 | vmin ^a{^ v m a x , i = 0 , 1 , . . . , n, 

| a f + i - a i | ^Ci/n, i = 0 , 1 , . . . ,n - 1}, 

we obtain that (cf. [9]) 
a e U^ => F(a) G Uad. 
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Thus choosing a fixed n, instead of Uad we shall deal with the set 

U<$ = F(U^). 

We shall solve the optimization problems 

(3.14) a ( i ) = argmin Ji(F(a)), i = 1,2. 
aGf/(n) 

Let the family of partitions {7h}, h -> 0, be regular. Consider the subspaces 
V^r(F(a)), described above over the partitions Th and denote 

uh(a) =i4* )(a;7o,...,7A;) 

the solution by penalty method with extrapolation. Setting r = p+l and k = r — 2 = 
p — 1, we may expect the best approximation, as follows from (2.13). 

Let us define the functional 

(3.15) J\h(a) = ji (a, uh(a)) = / (uh(a) - uf dx, 
Jfla 

J2h(ot) = J2(a,Uh(a)) = / fuh(a)dx 
Jua 

and the following approximate optimization problems 

(3.16) a™ = argmin Jih(a), (i = 1,2). 
aeuw 

Let us denote (cf. (2.16)) 

eh(a) =e^}(a;7o,...,7A:) 

and let e\(a) be an analogous approximation, where Uh(~fi) are replaced by 2h(7i)» 
corresponding to the right-hand side / = 2uh(<x) — 2u, cf. (3.8). 

The formulas (3.6), (3.7) indicate that we can take the following integrals for the 
differentials of Jih 

VJlh(a) • a = J[h(a,a) = J [(aijuiuj)-
1eh(a)ez

h(a) +t22 |x = F ( a )]F(d)d2/, 

VJ2h(a).a = J'2h(a,a)= [ [(aijViVj)-
l(eh(a))2F(a)]dy. 

Jo 
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4. SOME ANALYSIS OF THE OPTIMIZATION PROBLEMS 

We are going to show that the approximate optimization problems (3.16) have at 
least one solution for any fixed h. 

Lemma 4.1. Let am -> a in Rn+1, am G U^n\ and let the uniform partition % 
of the rectangle fls be fixed, h ^ 7/cn. 

If 

Gp = n ( F ( a ) - l / p ) , p = 2 , 3 , . . . . 

and u°h(am) is the approximation by penalty method (i.e., solution of (1.14) with a 

fixed parameter y), then 

u°h(<Xm)\Gp -> uh(<*)\Gp in Hl(Gp), asm-* 00 

holds for all p> po(a). 

S k e t c h of t h e t h e Proof . Henceforth, we denote Q, = tt(F(a)), Qm = 
il((F(am)), u = uh(a), um = uh(am). Using the extension 

(4.1) u(x,y)=u(2F(a)(y)-x,y) 

from Hl($l) onto Hl(ils) and Lemma 4.2 below, we derive that 

(4-2) I M k i u ^ C Vm. 

For any fixed p we can choose a subsequence {ump}, converging to a solution 
Up € Hl(Gp) weakly in ff1(Gp). We consider the sequence {um p} , {ump+1},... and 

choose the diagonal subsequence {umD} = {un}. We can define u £ Hx(il), by 
means of the restriction 

U\GP=UP-

Then 

(4.3) uD\Gp -> cj|Gp in Hl(Gp), as D -> 00. 

for all p great enough. Note that 

dimV^(Gp)=dimV^(n) 

for all p > p0(a), where 

(4.4) [PoO*)]"1 = min{dist(ra, A), A <£ Ta, A £ grid points of %}. 
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Consequently, u> e V£($l). 
Next we can show that u coincides with the solution 11° (a). To this end, we 

consider the definition of um for the diagonal subsequence wn and pass to the limit 
with D —•> oo. After some tedious calculations, based on (4.3) and the convergence 

F(am)->F(a) in C1 ([0,1]), 

we deduce that LJ satisfies the equation (1.14). From the uniqueness of its solution 
we conclude that the whole sequence {um} tends to u in Hl(Gp) for p > po(a). • 

Theorem 4.1, For any h -̂  cu"
17o, there exists at least one solution of the ap­

proximate optimization problem (3.16), i G {1,2}. 

Proo f . By definition (2.1) of Uh(a) and Lemma 4.1, we can see that the asser­
tion of Lemma 4.1 holds also for the sequence Uh(am). Henceforth, let {am} be a 
minimizing sequence of Jih(P), i.e., 

(4.5) lim Jih(am) = inf Jih(P). 
m->oo t36t/(n) 

Since U^ is compact, there exists a subsequence, denoted again by { a m } , such that 

(4.6) a m -> a in Rn+1, a G t/ (n). 

For brevity, we denote u := Uh(a), um = Uh(am), Q := Q(F(a)), Qm = H(F(am)) . 
Let i = l. For any p > po(a) and m > m0(p) we have 

(4.7) Jih(am) > I (um- u)2 dx. 
JGP 

From Lemma 4.1 it follows that 

U™\GP-*U\GP ™Hl(Gp). 

Passing to the limit with m —> oo and then with p —> oo, we obtain 

(4.8) lim Jih(am) = inf Jlh(P) ^ / (u - f/)2 dx = Jih(a). 

Consequently, a is a solution of the problem (3.16). 
Let z = 2. For m > mo(p) we may write 

\J2h(am) - J2h(a)l = \(f,um)Qm - (f,um)Gp\ 

+ \(f,um)Gp - ( / ,u)G p | + \(f,u)Gp - ( / ,u)o| 

= / i + / 2 + / 3 , 
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Ii ^ l|um||o>nm||/||o,nm-Gp -> 0, as p -•> oo, m > m0(p), m -> oo, since the um are 
bounded by virtue of (4.1) and meas (Qm - Gp) ^ ( l / p + \\F(am) - F(a)\\OQ) -•> 0; 
I2 ->• 0 by virtue of Lemma 4.1; I3 ^ |Hlo,n||/||o,ft--Gp -> 0, as p -> oo. 

Consequently, we have 

(4.9) lim J2h(otm) = J2/i(a) 
m—•oo 

so that a is a solution of the problem (3.16). • 

Let us recall the extension u E Hl(Sl&) of any function u E II1(!na) by the relation 

u(x,y) =u(2F(a)(y) -x,y) on ft* - f t a . 

Lemma 4.2. There exists a constant C3 > 0, independent of a e U^ and h, 
such that 

(4.10) a(a;u,u) + 7ft-1 ( t i - t i )^ ^ C3||fl||?^ ^ C3 |Hli,«a 

holds for allu e II1(na) and ft -̂  7/co. 

P r o o f . We have 

(4.11) a(a;n,ix) + 7ft"1||ii|lS,ana ^ CoH?f0tt +7fc"1 |Hg f 8na 

> min(cb,7^"1)(hlitna + IHIcUa,)-

Since |F"(a)| < Ci, we have 

(4-12) M ? , n f < ( 3 + 4C?)M; ina 

so that 

(4.13) N I U < C||u||?f0a V t i e f f^O, ) , 

holds with C independent of a E U^n\ 
Let rmin C dQa be the straight line segment on the line x = 0. Then we have by 

(4.12) 

(4.14) ooNI?,n.<Ní,ní + NIŽ,rmin 
12 , 11.-112 ^ / » / L . I 2 , II..II2 < oMi,n„ + ||fi|lS,aa. < C-dtil?^ + N|g,anj-

Combining (4.11), (4.14), we arrive at (4.10). 
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Proposition 4 .1. Let ah -•> a in Rn+1, ah G U(n), h -•> 0+. Let u°h(ah) be 
the extension of the approximation u%(ah) by the penalty method on the domain 
Q(F(ah)), constructed according to (4.1) on fts- Then 

fi°(a*)lna "" MF(a)) (weakly) in H1^), as h -> 0+, 

where Qa = Cl(F(a)) and uo(F(a)) is the solution of the Dirichlet problem (3.3) on 
the domain fta. 

Proo f . Lemma 4.2, (1.14) and (4.13) yield that 

(4.15) llf iS^OIlLn^CCs^ll/l loA. 

For brevity, let us denote Clh := Cl(F(ah)), tt := ft(F(a)) = tQa, u^ := n^a^), 
u:=i io(F(a)) . 

Then a subsequence {u^} and u G H1^) exist such that 

(4.16) u^-^u in Hl(Sls) weakly, as h-+ 0. 

Let us show that u\Q coincides with the solution of the Dirichlet problem on ft. 
Consider a w G HQ(Q). In what follows, we drop the hats over h. Let Ew G #0(^,5) 
be the extension of w by zero in fts — ft. There exists a sequence wK1 K —•> 0, such 
that wK G Co°(fi), suppiiJK C ft and 

(4.17) I K - ti/||i,n -> 0, as K -> 0. 

Consider the Lagrange interpolate izhEwK G V^fij) of EwK over the triangulation 
Th(ah). Let AC be fixed, for a time being. We can insert nhEwK into (1.14) to obtain 

(4.18) a(ah; uh, nhEwK) = (/, izhEwK)Qh, 

since izhEwK = T^W,- = 0 on T(F(ah)) holds for ft small enough (i.e., if h < 
dist(supp wK,T(F(ah))). 

We shall pass to the limit with h -> 0. We introduce the functions vm = F(a) -
1/m, m = 2 ,3 , . . . , and the domains 

Gm = {(x,y) I 0 < x < vm, 0 < 1/ < 1}. 

Then 

GmCfi^ for/i<fti(m) 
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and we may write 

(4.19) \a(ah;uh,KhEwK) - a(vm;u,wK)\ 

= \a(vm;uh,wK) + a(vm;uh,nhwK -wK) 

+ a(ah - vm;uh,KhEwK) - a(vm;u,wK)\ 

^ \a(vm;uh - u,wK)\ + \a(vm;uh,nhwK -wK)\ 

+ \a(ah -vm;uh,KhEwK)\ = Ix +I2+I3, 

where 
a(ah - vm; •, •) = a(ah, •, •) - a(vm; •, •). 

Consider a positive e. Prom (4.16) we conclude that 

(4.20) Ji < e/6 if h< /ii(£,ra). 

To estimate I2, we employ the assumption (A3) (2,9) on tQ :̂ 

(4.21) \\nhEwK - EwK\\lyQs < Chr-l\\EwK\\r^6, (r ^ 2). 

Using (4.21) and (4.15), we obtain 

(4.22) J2 < C\\uh\\liGm\\TihwK - wK\\hGm ^ Ch'^WEwJ^ < e/6 

for h <h2. It remains to estimate J3. First, we assume that 

hhEwK\\hT^C\\EwK\\r}T 

holds for all elements T E Th. (This estimate is true for most finite element 
subspaces—see [3]). 

Denote by Gj^ the smallest union of triangles T G Th(ah) such that Qh-Gm C Gm. 

Obviously, we have 

(4.23) measG^ < 1/m + 2h+ \\F(ah) - F(a)\\OQ 

where || • ||oo denotes the C([0, l])-norm. Consequently, 

\\nhEwK\\lQh_Gm ^ \\nhEwK\\lGm < C | | ^ J | 2 G m . 

Using again (4.15), we may write 

(4.24) J3 ^ C||tifc||iinJ|iCfc.Bu;lc||i,nh-Gm ^ C||£wJ|r,Gm. 
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Combining (4.19), (4.20), (4.22) and (4.24), we arrive at the following estimate 

\a(ah; uh, nhEwK) - a(vm; u, wK)\ ^ e/3 + C||EtiJK||r>Gm 

for h < hz(e,m). 
Then we obtain 

\a(ah;uh,nhEwK) - a(a;u, wK)\ 

^ e/3 + C\\EwK\\rA +C||ti| |i,n|K||i,n_Gm. 

Consequently, using also (4.23), we conclude that 

(4.25) lim a(ah;uh,izhEwK) = a(a;u,wK). 
/ i-»0 

Next, we may write 

\(f,nhEwK)Qh ~(f,wK)Q\ 

^ \(f,nhEwK - EwK)Qh\ + \(f,EwK)Qh - (f,wK)Q\ 

^ c i l / lkn ,^ - 1 ! !^^ ! !^ + / | / | |S^ |dx -• 0. 
JA(fih,ft) 

Consequently, 

(4.26) lim (/, izhEwK)Qh = (/, wK)Q. 
a—>0 

Making use of (4.25) and (4.26) in (4.18), we are led to the relation 

a(a;u,wK) = (f,wK)Q. 

Passing to the limit with K —•> 0 and using (4.17), we obtain 

(4.27) a(a;u,w) = (f,w)Q. 

It remains to verify that u\u e HQ(Q). We start with (1.14), which implies that 

a(ah;uh,uh) +-yh-l\\uh\\ltdQh = (f,uh)Qh. 

Using (4.15), we have 

fc"1Tl|ufc||gfanfc ^ ||/||o,n, • IMo.n, + C||fi*||?,n, <$ C, 
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so that 

(4.28) Kllo,M f c < C 7 - 1 * •+ 0, as h -> 0. 

We may write 

(4.29) |||u fc||8>f l0fc - | | « | |2 i a o | d / u2

hds - f ulds + / (ul -u2)ds 
I Janh Jan Jan 

= Mi + M2. 

Since the trace operator ff^ft) -> L2(dfi) is compact, the convergence (4.16) 

implies that 

(4.30) \\uh - ti|kan -> ° as /i -> 0. 

Consequently, 

(4.31) M 2 ^ ||fifc - ullo.andl^Ho.an + IMkan) -+ 0. 

Let us denote by I\ and T the graph of F(ah) and F(a), respectively, 

Uh\Fh = Uh(Th), uh\r = Uh(T), vh = F(ah), v = F(a). 

Then we may write 

(4.32) Mi ^ J j\l(Th)(l + (v'h)2)1/2dy - j\l(T)(l + (v'?)1/2 dy 

I rMo) rv/.(i) I 
+ / u\dx + I u\ dx = Mn + M12 + M i 3 ; 

I Jv(0) Jv(l) I 

(4.33) M ц < / |G|dy, 
Jo 

where 

(4.34) 

The estimate 

lol^ň2
h(r,)|(i + K ) 2 ) 1 / 2 - ( i + K) 2 ) 1 / 2 | 

+ |u2
h(rh) - &ftp)\(i + K) 2) 1 / 2

 = G1+G2. 

(4.35) / ' Gl dy < \\uh\\ldSlh • 11(1 + K ) 2 ) 1 / 2 - (1 + K ) 2 ) 1 / 2 L -• 0 
Jo 
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follows from (4.28) and the convergence F(ah) -> F(a) in Cl (see Remark 4.1). 
We have 

(4.36) f G2dy^(l + C^WU^H) - fifc(r)||0 • (||fifc(rfc)||0 + K(r)| |o). 
Jo 

On the other hand 

fVh(y) \ 2 

v(y) 

pi / rVh(y) \ 
(4.37) \\uh(rh) - uh(T)\\2 = / dy / duh/dxdx 

JO V-Ml/ ) / 
/•l I r»h(y) 

^ / dy||t;fc-v||oo / (duh/dx)2dx 
Jo I Jt/(y) 

^K-^| |ccKl l i A -^o. 

follows from (4.15) and the uniform convergence vh -> v. 
By the trace theorem 

(4.38) WMVWl = f {UK{T))2 dy < \\uh\\l>dil ^ C|K||2,n < C||ufc||?,„, ^ C2. 
JO 

Prom (4.37) and (4.38) we deduce 

(4.39) IMI\) | | 0 ^ ||fifc(r)||0 + ||ti*(I\) - ufc(r)||o ^ C + 1 

for h < ho. 

Using (4.37), (4.38) and (4.39) in (4.36), we obtain 

(4.40) / G2 dy -> 0. 
Jo 

Consequently, 

(4.41) Mn -> 0 as h -> 0 

follows from (4.33), (4.34), (4.35) and (4.40). 

Employing the particular property of the extension, and (4.28), we arrive at 

(4.42) M12 + Mi3 ^ / u\ ds -> 0. 

Prom (4.32), (4.41) and (4.42) we obtain that 

(4.43) Mi -> 0. 
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Then (4.29), (4.31) and (4.43) imply 

Kllo,0Ofc -> IMIo-am 

so that 

IMkan = 0 

follows from (4.28). Consequently, u\Q e Ho(ft) and due to the condition (4.27), u\Q 

coincides with the solution of the Dirichlet problem on n. 
Since (4.16) implies that 

fifcln^«lo i n i ? 1 ( n ) 

and the weak limit is unique, the whole sequence {iifi|n} tends to u\Q weakly in 

HHn). a 

Corollary 4.1. Let ah -> a in Rn+1, ah € U(n), h -> 0+. Let uh(ah) be 

extensions of the approximate solutions by penalty method with extrapolation, n a = 
n(F(a)). 

Then 

(4.44) u h K ) L a -> tio(F(a)) (weakly) in H\na). 

P r o o f . By definition, we have 

k 

uh(ah) = ^aiU°h(ah,7i). 
i=0 

Using Proposition 4.1 and (2.2), we obtain (4.4). • 

Proposition 4.2. Let ah -> a in Rn+1, ah G U(n), h -> 0+. Then 

(4.45) ji(ah)uh(ah)) -> ji(a,u0(F(a))), i = 1,2. 

where uo(F(a)) is the solution of the Dirichlet problem on the domain n ( F ( a ) ) . 

P r o o f . Case i = 1. Corollary 4.1 and the Rellich's theorem yield that 

(4.46) uh(ah)\Qa ^ u0(F(a)) in L2(Qa). 
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Denoting n a = n, ft(F(ah)) = Slh, uh(ah) = uh, u0(F(a)) = u, we have 

(4.47) / (uh - u)2 dx - I (u- u)2 dx 
Jn Jn 

by virtue of (4.46). It is readily seen that 

(4.48) [ (uh-u)2dx = [ + [ - f 
Jnh Jn Jnh-n Jn-nh 

Let us estimate the last two terms as follows (cf. (4.9)) 

^ \\uh - ti||ofn||fifc + u - 2fi||0,n -> 0, 

(4.49) 

since 

/ - / U / (uh-u)2dx 
Jnh-n Jn-nh I JA(nh,n) 

^ (measA(n f c jn))1 / 2 | | f i f c-fi | | i4 ( n j ) -+0 

llfifc - t*IU«(n,) < C\\uh - u||i,n, < C 

follows from the embedding theorem and (4.15). Combining (4.47), (4.48) and (4.49), 
we arrive at (4.45) for i = 1. 

Case i = 2. We have 

/ fuh dx - / / u d i U / fuh dx - fuh dx + / f(uh - u) dx 
Jnh Jn I I Jnh Jn I I Jn 

^ / \fuh\ dx + ||/||0,n • ||fifc - u||0|n -> 0 
JA(nh,n) 

since 
/ |/fifc|da; ^ ||/||ofA(nh,n)l|fifc||ofn, -+ 0, 

JA(nh,n) 
as follows from (4.15), and (4.46) can be employed. • 

Theorem 4.2. Let {af t} , h -> 0, i = 1,2, be a sequence of solutions of the 

approximate optimization problem (3.16)t. Then there exists a subsequence {or? } , 

h -¥ 0, such that 

(4.50) 

aлd 

(4.51) 

a [ ° - 4 a « i i iR n + 1 

h 

fi&(atř>)lníí» ~* M - V ) ) (weakly) in H1^) 
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holds for the extensions uh of the solutions uh(a^') by penalty method with extra­

polation; a ( t ) is a solution of the optimization problem (3.14)*, fti = ft(F(a(t))). 

Any cluster point of {a^ } has the same properties, i.e., it coincides with a solution 

of (3.14)-. and (4.51) holds. 

P r o o f . Since U(n) is compact in Rn+1, a subsequence {ad } C {a£ l)} exists, 

such that (4.50) holds and a ( i ) G U(n). Let a G U(n) be given. By definition, we 

have 

ji(a{:\uh(a^)) ^ ji(a,uh(a)) Vft. 

Passing to the limit with h -> 0 and using Proposition 4.2 on both sides, we obtain 

j . ( a « tioWaW))) ^ j<(a,tio(F(a))). 

Consequently, a ( t ) is a solution of the problem (3.14)*. The convergence (4.51) follows 

from Proposition 4.1 and the rest of the theorem is obvious. • 
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