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Summary. In this note we show that, for an arbitrary orthomodular lattice L, when /i is 
a faithful, finite-valued outer measure on L, then the Kalmbach measurable elements of L 
form a Boolean subalgebra of the centre of L. 
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1. INTRODUCTION 

In non-commutative measure theory, which is being developed because of the 
desire to investigate the mathematical foundations of quantum mechanics, see [1], 
[3], [6] and [7], one replaces the notion of a Boolean algebra by the notion of an 
orthomodular lattice. 

In [5] Kalmbach considers outer measures defined on an orthomodular lattice L 
and extends the Caratheodory notion of measurability to this general setting. She 
proves that when L is a dimension lattice then the Kalmbach measurable elements 
form a Boolean algebra. 

In this note we show that, for an arbitrary orthomodular lattice L, when /i is a 
faithful, finite-valued outer measure on L, then the Kalmbach measurable elements 
of L form a Boolean subalgebra of the centre of L. Throughout this note L will be an 
orthomodular lattice. Our standard references for orthomodular lattices are [2], [4]. 

We shall define a function /x: L -> [0, +oo) to be a finitely additive outer measure 
if the following conditions are satisfied: 

(i) M(0) = 0, 
(ii) n(p V q) ^ /x(p) + fi(q) whenever p _L q, 

(iii) if p ^ q then p(p) < p(q). 

445 



In [5] a stronger condition than (ii) is imposed. The outer measures defined in 
[5] axe clearly finitely additive outer measures. The converse is false, in general. If 
p(p) = 0 implies p = 0 then p is said to be faithful. If p(p) < +oo for all p, then p 
is said to be finite valued. 

2. KALMBACH MEASURABLE SETS 

Let p be an outer measure on L. Then, see [5], / £ L is said to be Kalmbach 

measurable (with respect to p) if 

(*) p(x) = p(x A (x' V / ) ) + p(x A (x' V / ' ) ) 

for each x in L. 
More generally, whenever p is a function from L to an abelian group G, we may 

define / G L to be Kalmbach measurable if (*) holds for each x in L. The reader 

whose primary interest is in real valued measures may interpret G as the additive 

group of reals. 

Theorem. Let L be an orthomodular lattice and let G be an abelian group. Let 
p be a G-valued function on L such that p(a) = 0 precisely when a = 0. Then the 
Kalmbach measurable elements of L form a Boolean subalgebra, B> of the centre of 
L. Furthermore the restriction of p to B is additive. 

P r o o f . Let / be a Kalmbach measurable element and let e be an element of L. 

We put 

e0 = (e' V / ' ) A (e' V / ) A e 

and we observe that 

e 0 V / ' = ( e A / ) v ( e A / ' ) V e ' v / ' = l , 

e'0 V / = (e A / ) V (e A / ' ) V e' V / = 1. 

Prom the Kalmbach measurability of / it follows that 

p(e0) = p(e0 A (e'0 V / ' ) ) + p(e0 A (e'0 V / ) ) = p(e0) + /x(e0). 

Then p(eo) = 0 and hence eo = 0. 
We now write the upper commutator of e and / : 

(e' V / ' ) A (e' V / ) A (e V / ) A (e V / ' ) = 

(((e' V / ' ) A (e' V / ) A e) V ((e' V / ' ) A (e' V / ) A / ) ) A 

(((e' V / ' ) A (e' V / ) A e) V ((e' V / ' ) A (e' V / ) A / ' ) ) = 

( e ' V / ' ) A ( e ' V / ) A / A / ' = 0. 
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Thus e and / commute and we have proved that every Kalmbach measurable element 

is in the centre of L. It follows that an element p of L is Kalmbach measurable if 

(i) p is central, 

(ii) /JL(X) = fji(x A p) + fi(x A p') for every x in L. 

Suppose / and g are both Kalmbach measurable. Then / V g is central and x, / 

and g are mutually commutative. The equality 

»(x A ( / V g)) + //(re A ( / V g)') = »(x) 

can be proved as in classical measure theory. • 

Corollary. Let Lbean orthomodular lattice. Let \i: L -> [0, +00) be a faithful fi­

nite additive outer measure. Then the elements ofL which are Kalmbach measurable 

with respect to /J, form a Boolean sublattice of the centre of L. 
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