
Applications of Mathematics

Ioan Rosca; Mircea Sofonea
Error estimates of an iterative method for a quasistatic elastic-visco-plastic
problem

Applications of Mathematics, Vol. 39 (1994), No. 6, 401–414

Persistent URL: http://dml.cz/dmlcz/134268

Terms of use:
© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134268
http://dml.cz


39 (1994) APPLICATIONS OF MATHEMATICS No. 6, 401-414 

ERROR ESTIMATES OF AN ITERATIVE METHOD 

FOR A QUASISTATIC ELASTIC-VISCO-PLASTIC PROBLEM 

lOAN ROSCA, Bucharest, MlRCEA SOFONEA, Clermont-Ferrand 

(Received February 26, 1993) 

Summary. This paper deals with an initial and boundary value problem describing the 
quasistatic evolution of rate-type viscoplastic materials. Using a fixed point property, an 
iterative method in the study of this problem is proposed. A concrete algorithm as well as 
some numerical results in the one-dimensional case are also presented. 

Keywords: rate-type models, viscoelasticity, viscoplasticity, fixed point, iterative method, 
error estimates, finite element method 

1. INTRODUCTION 

In this paper we present a numerical method for a nonlinear evolution problem 
in the study of viscoplastic rate-type models. Only the case of small deformations 
and small rotations is considered hence in this case the Cauchy stress tensor and the 
two Piola-KirchhofF stress tensors coincide. With these assumptions the constitutive 
equation considered here is of the form 

(1.1) & = £i + F(a,e) 

in which a is the stress tensor, e is the small strain tensor and £, F are given 
constitutive functions (in (1.1) and everywhere in this paper the dot above a quantity 
represents the derivative with respect to the time variable of that quantity). 

Such type of equations generalizes some classical models used in viscoelasticity 
and viscoplasticity and is used for describing the behaviour of real materials like 
rubbers, metals, rocks and so on. Various results, mechanical interpretations as well 
as concrete examples concerning constitutive laws of the form (1.1) may be found 
for instance in the papers of Geiringer and Preudenthal [1], Cristescu and Suliciu [2], 
Suliciu [3]. 
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In the paper of Ionescu and Sofonea [4], a quasistatic initial and boundary value 
problem for this type of materials is considered. Results concerning existence, stabil­
ity, asymptotic and large time behaviour of the solution are obtained. The main idea 
used in this paper in order to obtain existence and uniqueness of the solution is the 
equivalence between the mechanical problem and an ordinary differential equation 
in a product Hilbert space followed by classical Cauchy-Lipschitz arguments. This 
idea was used also in Ionescu [5] where a numerical approach to the problem based 
on a Euler method is presented. 

A new demonstration of the existence result of [4] was given in the paper of Djabi 
and Sofonea [6]. This demonstration is based only on classical existence results of 
linear elasticity followed by a fixed point technique. 

The purpose of this paper is to continue the ideas of [6] and to present an iterative 
method in the study of the quasistatic problem of [4]. So, in Section 2 the necessary 
notation is introduced and some preliminary results are recalled; in Section 3 the 
mechanical problem is stated and, for the convenience of the reader, some results 
and techniques from Djabi and Sofonea [6] that will be useful in this work, are 
briefly presented; in Section 4 we present a semi-discretisation method and give an 
estimate of the error (Theorem 4.1); a final algorithm for the numerical approach of 
the solution is presented in Section 5 and finally some numerical results are discussed 
in Section 6. 

2. NOTATION AND PRELIMINARIES 

Let fi be a bounded domain in RN (N = 1,2,3) with a Lipschitz boundary dQ, = V 
(see for instance Necas and Hlavacek [7] p. 17). Let Vi be an open subset of T such 
that measTi > 0. Let .V2 = T — Vi; we denote by v the outward unit normal vector 
on T and by SN the set of second order symmetric tensors on RN. Let " • " denote 
the inner product on the spaces R^ and SN and let | • | stand for the Euclidean 
norms on these spaces. The following notation is also used: 

H = [L2(ft)]N, Hi = [Hl(Sl)]N, Hr = [H*(r)]", 

U = [L2(fi)]fxN, Ux = {a e H I Diva G H} 

where Diver is the divergence of the vector-valued function a. The spaces H, Hi, 
Hr, U and H\ are real Hilbert spaces endowed with the canonical inner products 
denoted by (-,•)#, {;-)Hl> (v>j*r, (v>w and ( - , ) K l , respectively. The norms on 
these spaces will be denoted by | • \H, | • \HI, | • |//r, | • \n and (•, -)Ui. 

We also consider the closed subspace of Hi defined by 

V = {u e Hi | yu = 0 on Ti} 
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where 7: Hi -* Hr is the trace map. Let E be the subspace of Hr defined by 

E = 7(V) = U e B r U = Oonr1}. 

We denote by V the strong dual of V, by | • |v the restriction of | • \HX to V and by 

(*>')v'xv t l i e duality between V and V. 
The deformation operator e: Hi-^H defined by 

e(u) = | ( V u + V*ti) 

is a linear and continuous operator. Moreover, since meas Ti > 0, Korn's inequality 
holds: 

(2.1) \e(v)\H>C\v\Hl ioiaaveV 

where C is a strictly positive constant which depends only on ft and Ti (everywhere 
in this paper C will represent strictly positive generic constants that depend on ft, 
.Ti, £, F and do not depend on time or on input data). 

Let Hf = [H~2(T)] be the strong dual of the space Hr and let (•,•)#/ xHr 

denote the duality between Hf and Hp. If r G Hi there exists an element 7„r G Hf 
such that 

(2.2) (I»T,1V)HTXHT = (T>£(V))H + ( D i v r ^ ) / / f o r a 1 1 v £ H^ 

By r H r 2
 w e s n a 1 1 understand the element of E' (the strong dual of E), that is the 

restriction of 7^r to E, and (•, -)E>xE will denote the duality between E' and E. 
Let us now denote by V the following subspace of Hi: 

V = { r G Hi I Divr = 0 in ft, ri/ = 0 on T2}. 

As it follows from Necas and Hlavacek [7] p. 105, e(V) is the orthogonal comple­
ment of V in U, hence 

(2.3) (r, e(v))n = 0 for all v G V, r G V. 

In the sequel, for every real Hilbert space X we denote by | • |x the norm on X 
and, for T > 0 and j G {0,1}, C J(0,T,K) will denote the spaces defined as follows: 

C°(0,T,X) = {z: [0,T] -> X \ z is continuous}, 

Cx(0,T,X) = {z: [0,T] -» X I the derivative i of z exists and z G C°(0,T,K)} . 
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In a similar way the spaces C°(R+,K) and C1(R+,X), where R+ = [0, +00), can 
be defined. 

Finally, let us recall that Cj(0,T,X) are real Banach spaces endowed with the 
norms 

(2.4) .*|o,r,jr= max. |z(ť) | x 

(2-5) \Z\I,T,X = \Z\O,T,X + \Ž\O,T,X-

3. PROBLEM STATEMENT. A N EXISTENCE AND UNIQUENESS RESULT 

Let us consider the mixed problem 

(3.1) 0 = £e(u) + F(<7,e(u)) in ft x (0,T) 

(3.2) Diva + 6 = 0 i n f t x ( 0 , T ) 

(3.3) u = f o n r ! x ( 0 , T ) 

(3.4) ov = g on T2 x (0, T) 

(3.5) u(0) = u0, o(0) =o0 in ft 

in which T > 0 is a time interval and the unknowns are the displacement function u: 

ft x [0,T] -> RN and the stress function o: ft x [0,T] -r 5/v. This problem models 

the quasistatic evolution of a continuous body that occupies the domain ft in its 

present configuration, subjected to given body forces, to an imposed displacement 

on Ti and to given surface tractions applied to the part T2 of its boundary. (3.1) 

represents the constitutive equation in which £ is a fourth order tensor and F is a 

given function, (3.2) is the Cauchy equilibrium equation, (3.3)-(3.4) represent the 

boundary conditions and finally (3.5) represents the initial conditions. 

In the study of the problem (3.1)-(3.5), we consider the following assumptions: 

( £: ft x SN -> SN is a symmetric and positively definited tensor, i.e. 

(3.6) 
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(a) £ijkh € L°°(ft) for all i, j,fc,/i = 1,JV 

(b) £0 • T = o • £T VCT,T e SN, a.e. inft 

(c) there exists a > 0 such that £0 • o ^ a\o\2 

for all o E 5JV, a.e. in ft 



(3.7) 

(3.8) 

(3.9) 

(3.10) 

F: ft x SN x SN -> SN and 

(a) there exists L > 0 such that 

|F(x,(7i,ei)-F(a:,a2,e2)| < £ ( k i -<72| + |£i - e 2 | ) 

for all ai,a2,ei,e2 G 5 N , a.e. in ft 

(b) x -> F^rr, <J, e) is a measurable function with respect to 

the Lebesgue measure on ft, for all a, e G S/v 

1(c) x -> F(x,0,0) eH 

bec^o^H), feC\o,T,HT), gec^o^E') 
no G Hi, a0 G Wi 

Divcr0 + 6(0) = 0 in ft, u0 = /(0) on Tu <ro" = p(0) on T2. 

In the paper of Ionescu and Sofonea [4] it is proved that, under the assump­
tions (3.6)-(3.10), problem (3.1)-(3.5) has a unique solution u G C1(0,T,.ffi), a G 
Cx(0,T,Hi). Moreover, as results from the paper of Djabi and Sofonea [6], the ex­
istence of this solution can be obtained in the following way: let rj G C°(0,T,H) be 
an arbitrary function and let zv G Cx(0,T,H) be the function defined by 

(3.11) 

where 

zv(t) = / V( 
Jo 

5) ds -f- z0 for all t Є [0, T] 

(3.12) z0 = a0 - £e(u0). 

Let also uv G C1 (0, T,Hi),av G C1 (0, T, H\) be the solution of the elastic problem 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

av = £є(uv) + zv in ӣ x (0, T) 

Div<тv + ř> = 0 i n í ì x ( 0 , T ) 

ií,, = / onГiX (0, T) 

(7„i/ = g o n Г 2 x ( 0 , T ) . 

and let A: C°(0,T,H) -> C°(0,T,?^) be the operator defined by 

(3.17) Ari(t) = F(ar)(t),s(url(t))) for all * G [0,T]. 

Denoting by Ap the powers of the operator A (p G N), for p large enough Ap is 

a contraction in C°(0,T,H), hence A has a unique fixed point 77* G C°(0,T,H). It 

results that *v G C1(0,T l.ffi)1 ov G C ^ T - W i ) is a solution of (3.1)-(3.5). 
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R e m a r k 3.1. Similar fixed point techniques in the study of elastic-inelastic 
materials with internal state variable were also used by Kratochvil and Ne£as [8], 
John [9] and Laborde [10], [11]. 

R e m a r k 3.2. Problem (3.1)-(3.5) may also be considered in the case of the 

infinite time interval (0,+oo) instead of (0,T). In this case, if (3.6), (3.7), (3.9), 

(3.10) are fulfilled and 

bGC1(R+,H), / G C ^ R + ^ r ) , gGC1(R+,E/) 

then problem (3.1)-(3.5) has a unique solution (u,a) having the regularity u G 

C^R+jHi), a G C1(R+,?^i) (for the proof of this result see Ionescu and Sofonea [4]). 

4 . A NUMERICAL APPROACH 

As follows from the previous section, the existence and uniqueness of the solution 

for the problem (ЗA)-(3.5) may obtained in two steps: the study of the elastic 

problem (З.lЗ)-(З.lб) defined for every rj Є C°(0,T,7í) and the fixed point property 

of the operator Л defined by (3.17). So, in order to obtain a numerical approximation 

of the solution for the problem (3.1)-(3.5), we start by presenting an approximation 

in the space of the elastic problem (З.lЗ)-(З.lб). 

Let us suppose in the sequel that (З.б)-(З.Ю) hold. Let rj Є CҶO^T,?^) and let 
zv Є CҶ0,T,7í) be defined by (3.11), (3.12). Using (3.8) we obtain that there exists 

ü Є CҶ0,T,Яi) such that 

(4.1) й = / o n Г i x(0 ,T) . 

Let a: V x V -> R and lv: [0,T] -+ V be defined by 

(4.2) a(щ v) = (£є(u),є(v))n 

í Џт,(*),v)vxv = < ьW»v)я + (9(t)nv)E>xE 

\ - (£e (вtø) ,Ф)>7, - Ыt),Є<V))н 

for аilщvЄV аndte [0,T]. 

Using (3.6)-(3.8) we get that a i s a bilinear symmetric and coercive form on V, 

lv Є CҶ0,T, V ) and, by a standard argument, it results that uv Є CҶ0,T,Яi), 
av Є CҶ0,T,?ť) is a solution of the elastic problem (З.lЗ)-(ЗAб) if and only if 

(4.4) 
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uv = uv + ӣ 

ӣv Є V, a(ӣVìv) = (Iтцv^y.^y for all v Є V 

av = £є(uv) + zv 



for all *G [0,T]. 

Let now Vh be a closed subspace included in V. We consider the following problem: 

find uh: [0, T] -> Hx, ah: [0, T] -• U such that 

Г«n = «í+U 
(4.5) 

- 7 / - 1 7 • ~ 

u£ G VJi, a(uh,v) = (lr,,Vh)v,xV for all vh G 14 

U$ =£*(**) + *,. 

for a lHG [0,T]. 

Using a standard argument we obtain that (4.5) has a unique solution uh G 

C^O-T.jr i) , ah G C^O.T.W). Moreover, if ( < , < ) and ( < , < ) axe the so­

lutions of (4.5) for 77 = 771 and 77 = r/2, there exists C > 0 which depends only on fi, 

Ti and £ such that 

(4.6) |<(t) - < ( 0 1 * + |<(*) - < W|w ^ Cl^(0 - zV2(t)\n 
for all* G [0,T] 

(4.7) | < - < | i | T f H l + | < - < | i | T f W ^ C\zVl - ^ IjfT,K 

for all j = 0,1. 

Let us denote by (uV)av) the solution of (4.4) and let Sh(j,T) be the quantities 

defined by 

(4.8) S£(0 ,T)= sup ( in f \u v ( t ) - vh\v) 
t€[0,T] vfc€Vk 

(4.9) S£ (1 ,T )= sup ( inf \uv(t) - vh\v) + sup ( inf \tv(t) - vh\v). 
tG[o,T] v/.evh te[o,T] vhevh 

The distance between the couples (uh,ah) and (1^,0^) is given by the following 

result: 

Lemma 4.1. There exists C which depends only on 17, Vi and £ such that 

(4.10) \uh - uv\jiTiHl + \ah - av\jtTtH ^ CSh(j,T) for all j = 0,1. 

P r o o f . Using classical results for elliptic variational inequalities (see for in­

stance Ciarlet [12] p. 186), from (4.4) and (4.5) we get 

(4.11) \uh(t) - uv(t)\Hl ^ Cx inf \uv(t) - vh\v for all t G [0,T] 
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where Ci > 0 depends only on fi, Ti and £. In a similar way, taking the derivative 
with respect to the time variable in (4.4) and (4.5) we obtain 

(4.12) \u*(t) - Urj(t)\Hl ^ d inf K(*) - vh\v for all t e [0,T]. 
vheVh 

Using now the notation (4.8), (4.9), the inequalities (4.11), (4.12) imply 

(4.13) \uh
v - U-4T,*. < CiS£0\ T) for j = 0,1. 

Moreover, from (4.4), (4.5) we obtain 

(4.14) |** - a^j^n < C 2 | ^ - U^T,* for all j = 0,1 

where C2 depends only on £ and, using (4.13), we conclude that 

(4.15) |<-£ - av\JtTtH < oiC25^(i, T) for all j = 0,1. 

The inequality (4.10) is now a consequence of (4.13), (4.15). • 

We now study the discrete version of the fixed point property of the operator A 
defined by (3.17). As in the continuous case, let us now define an operator A^: 
C°(0,T,U) -> C°(0,T,H) by the equality 

(4.16) Ahrj(t) = F(a[](t),e(u$(t))) for all r) G C°(0,T,H) and t € [0,T]. 

Let 771,772 e C°(0,T,H); using (3.7), (4.6) and (3.11) we obtain 

(4.17) \Ahm(t) - Ahrn(t)\n ^CL f \m(s) - m(s)\nds for all t e [0,T] 
Jo 

and, by recurrence, denoting by Av
h the powers of the operator A^, we get 

(CLT)P 

(4.18) |A 7̂7i - A^ 2 | 0 ,T ,K ^ j— \m - mlo^n for all p G IM. 

The inequality (4.18) shows that for p large enough the operator A£ is a contraction 
in C°(0,T,H), hence the operator A^ has a unique fixed point rjl € C°(0,T,7i). 

Now let rj* be the fixed point of the operator A defined by (3.17); as results from 
Section 3, the solution (t-y, o y ) of the elastic problem (3A3)-(3.16) for rj = rj* is 
the solution of the viscoplastic problem (3.1)-(3.5), i.e. 

(4.19) uv* = u, o y = a. 
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For this reason we are interested in examining the distance between the couples 

(»ítí»ffJtí )«-"*(«--•.*--•)• 

Lemma 4.2. Let C and C be the constants of (4.6) and (4.10) and K = CLT. 
Then 

(4 20) { ' " ^ ~ """ lj'T'Hl + ' " * ~ *"' li'T,H 

\ < C(T + j)LCeKSh. (0, T) + CSh. (j, T) for j = 0,1. 

Proof. Since r,*h = Ahr,*h and r,* = Ar,*, using (3.17), (4.16), (4.17) and (3.7) 
we obtain 

K(t) - r,*(t)\n < \Ahr,*h(t) - AhV*(t)\n + |Afcrf(t) - Ar,*(t)|w 

< CL f \r,*h(s) - r,*(s)\u ds + L(\uh. (t) 
Jo 

-ur,.(t)\Hl+\ah.(t)-vr(t)\-H) 

foralltefO.T]. 
If we apply (4.10) for r, = rf and j = 0, this inequality becomes 

K(«) - V*(t)\n < LCSh.(0,T) + CL f \r,*h(s) - V*(s)\n ds for all t € [0,T] 
Jo 

and, using a Gronwall-type inequality, we get 

(4.21) \r,*h(t) - r,*(t)\n < LCeKSh.(0,T) for all t G [0,T). 

Let us also remark that from (3.11) we obtain 

\ZH ~ W li,T,w < (T + iWh - *7*IO,T,W for all j = 0,1, 

hence by (4.21) it results that 

(4.22) \zK -z„.|ifr,7£ < (T + j)LCeKS*.%T) for all j = 0,1. 

Using now (4.7) for 771 = 77JJ and 772 =77* we obtain 

(4.23) \uh. - uh. \j,T,Hl + \ah
h - ah. \j,T,n < C\zvi - zr \},T,H for all j = 0,1 

and using again (4.10) for r, = r,* we conclude 

(4.24) \uh. - i v |iiTiHl + \ah. - <v |iiTiW < CSh. (j, T) for all j = 0,1. 

The inequality (4.20) is now a consequence of (4.22)-(4.24). • 
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We now consider the iterative part of the method. Let r/o be an arbitrary element 
of C°(0 ,r ,70 and let (r)n) C C°(0,T,«) be the sequence defined by 

(4.25) til = r)0, r£+ 1 = AhT)n for all n G N. 

Let (ujjn,(7^n) be the solution of (4.5) for r) = rjh and recall that (ujj«., a£„) is 
the solution of (4.5) for r? = r)h. The distance between the couples (ujjn,cri.) and 

K r ^ ) is given by 

Lemma 4.3. Let C be the strictly positive constant defined in (4.6) and let 
K = CUT. Then 

(4 26) ÍKi-Щwг+Mk-ĄҺ.ҷ 
\ ^C(T + з)eк^\\ыtk>-Пo\o,т,ҡ for allj = 0,1 aлdnЄ N. 

P r o o f . We start by estimating the distance between r)h and r)h; we remark that 

for every m,n EN, m ̂  n, (4.25) and (4.18) yield 

K - Clo.r.7. < K - ^+1|o,r,K + • • • + lA^-"-1^ - Ar-n-1<+1|o.T.K 
/ K ism—n—l v 

This inequality implies 

M-rih\o,T,H<eK\rR-T,?-1\o,T,H 

and, passing to the limit when m -» +oo, since r7™ -* r;̂  in C°(0, T, W) (consequence 

of (4.25) and (4.18)), we get 

\vn-r)*h\oiTtH^eK\r1

n-r)n^\oiT^ 

By (4.25) we get r)n = A^rjo, r)h+
l = A£+1r70, hence using again (4.18) the last 

inequality leeds to 

Kn 

(4.27) \rjn - r)*h\otT,n ^ eK— \Khr)o - ffclo.T.w. 
n! 

Let us denote by zvn and zv* the elements defined by (3.11) for r) = r)h and r) = r)h. 

We have 

(4.28) \Zr)l - ^jlj.r.w ^ (r+-j)|f|J - f7fc|o,T,w for all j = 0,1 and n G N 

and using (4.7) we get 

(4.29) |<» - < * I^T.H, + k ^ - < li.r.w ^ C|^n - zvt | i |TfW 

for all j = 0,1 and nGl^l. 
The estimate (4.26) now follows from (4.27)-(4.29). D 
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In order to come to a conclusion we use (4.19), (4.20), (4.26) and obtain the 
following estimate of the difference between the solution (u, a) of the viscoplastic 
problem (3.1)-(3.5) and the solution (u^n,a^n) of the approximate problem (4.5) for 

n = nt-

Theorem 4 .1 . There exist C, C which depend only on fi, Ti and £ such that 

(4 30) / |U* " Ulj,TMl + '*« " alj™ ^ C{T + j)LdeKS** ( ° ' T ) 

\ +CSZ4J,T) + C(T + j)eK^\Ahrio-Tlo\o,TiH 

for all j = 0,1, n G M where K = CUT. 

5. T H E FINAL ALGORITHM 

In this section we propose a numerical algorithm which can be directly run on 
a computer, in order to approximate the solution (u, o) of the viscoplastic problem 
(3.1)-(3.5). This algorithm is based on the approximation of the unknowns in space 
and time. As results from Section 4, the approximation in space is realized by 
considering a closed subspace Vh of V and replacing problem (3.1)-(3.5) by the 
following sequence of linear problems: 

Find u\: [0, T] -> Hi, er£: [0, T\-+U such that 

(5-1) 
< = 4 + й 
«5* Є Vh, а«,vh) = {lh,vh)v,xV for all vh Є Vh 

l <rî = £Фî) + Ą 

for all t G [0,T], where Z£: [0,T] -> V is the functional defined by (4.3) for 77 = 77̂ , 
i.e. 

,_ oN f (lh(t),v)v>xv = (b(t),v)H + (g(t)nv)E,xE 

(5.2) 
í ( (t),v)v'xv = Ш>v)и + Ш,lv)Ely 

\-(Єє(й(t)),є(v))н-(zЦ(t),є(v))u 

(5.3) zl(ť) = / ГÌІ(S)ås + z0 for all t Є [0,T], 
Jo 

for all u,v G V and t G [0,T]. In (5.2) we have 

r* 

/o 

77JJ is recursively defined by the equalities 

(5.4) Vk(t)=^Vh-
1(t) = F«~1(t),e(ur1(t))) forallt-e[0,T]andneN 
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and n£ = 770 is an arbitrary element of the space C°(0,T, H). 

In practice Vh is a finite dimensional subspace of V (constructed for instance by 
the finite element method), hence (5.1) is in fact a linear algebraic system. 

Let us now consider M eN and let k = T/M be the time step. The approximation 
in space and time must enable us to compute the elements un(mk), ah(mk) for every 
n G f̂J and m = 0, M. For this reason let us denote by Ph(n, m) the set defined by 

(5.5) Ph(n,m) = {nn(mk),zn(mk),ul(mk),an(mk)} 

for all n G N and m = 0, M and let us split the computing of Ph(n,m) into the 
following steps: 

(a) Computing the set Ph(n,0). 
For every n£ = 770 G C°(0,T,7i) we get zn(0) = z0 by (5.3) for every neN, hence 

by (5.1), (5.2) and (5.4) we obtain tx£(0), an(0) and nn(0) for all n G N. 

(b) Computing the set P*(0,m). 

Since nh is given, the values nh(mk) are known for all m = 0,M. The elements 

zh(mk) can be obtained using the trapezoidal rule for approximating (5.3): 

(5.6) z°h(0) = *o, z°h(mk) = z°h((m - l)k) + £ [n°h(mk) + n°h((m - 1)*)] 

for all m = 1,M, and finally uh(mk), ah(mk) are determined from (5.1), (5.2) and 

(5.6) for all m = OJA. 

(c) Computing the set Ph(n + l ,m) . 
Let us suppose that the sets Ph(n + l ,m - 1), Ph(n,m) are known for a given 

n eM and m G N, 1 ^ m ^ M. Using (5.4) we get 

7£+1(mA;) = F(an(mk),e(un
h(mk))) 

and using again the trapezoidal rule, from (5.3) we obtain 

z^1 (mk) = z^1 ((m - 1)*) + £ [r?^1 (mfc) + nn+1 ((m - l)fc)]. 

Finally, <+ 1(mfc), <+ 1(mfc) can be obtained by (51), (5.2). 

Using now the steps (a), (b), (c) we compute the set Ph(n,m) for all n G N and 
m = 0, M; in this way the approximate solution uh(t), ah(t) is computed for all 
t = mk, m = 0, M. 
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6. NUMERICAL RESULTS 

Let us consider a viscoelastic problem of the form (3.1)-(3.5) defined on the infinite 

time interval (0, +00) in the following context: 

n = (0,1), ri = {o}, r2 = {i}, b(x,t) = o, /(*) = o, 9(t) = 15, u0(x) = 2x2, 
aQ(x) = 15 V.r G (0,1) and t > 0, £ = 20, F(a,e) = -10(a - G(e)), 

G(є) = { 

10є 

-Ъє -F 30 

L ш - зo 

for є ^ 2 

for 2 < є < 4 

for є ^ 4 

V<7,e G R. Let (u,a) be the solution of this problem (see Remark 3.2) and let 

e = e(u). We have a(x,t) = 15 Vx £ [0,1], t > 0 and, after some computation, we 

get 

(б.i) lim є(x,ť) 
t—•-j-oo 

1.5 i f 0 ^ x < 0 . 7 5 

3 if z = 0.75 

U . 5 if 0 . 7 5 < д ľ < l . 

In order to illustrate the algorithm (5.1) let Vh C Ho (^) be the finite element space 
constructed with a polynomial function of degree 1, Q being divided into 100 finite 
elements. The initial value considered for r?o is 770 = 0 and the number of iterations 
made was n = 10 (the numerical experiments show that for n ^ 10 the numerical 
solution stabilizes). The time step chosen was k = 0.05. The computed solution 
£:(u£) obtained by using the algorithm (5.1) for different moments t are plotted in 

Fig. 6.1. The results obtained agree with the behaviour of the exact solution given 

by (6.1). 

a) 

У 

4.54 

3.04 

1.5 

0.0 
0.00 0.25 0.50 

ь) 
0.75 1.00 
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У 

4.5-

У 

í 
4.5H 

3.0- 3.04 

1 .5- 1.5-

0.0 • . 1 . 1 . 1 . 1 • - 0.0 • . 1 . 1 . 1 . 1 > -
0.00 0.25 0.50 0.75 1.00 X 0.00 0.25 0.50 0.75 1.00 X 

c) d) 

Fig. 6.1. The computed strain field e(u%(x, t)) for different values of t: 
a) t = 0;b) t = 0.5; c) t = 1; d) t = 1.5. 
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