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WE IGHT MINIMIZATION OF AN ELASTIC PLATE 

W ITH A UNILATERAL INNER OBSTACLE 

BY A MIXED F INITE E L E M E N T METHOD 

IVAN HLAVACEK, Praha 

(Received June 1, 1993) 

Summary. Unilateral deflection problem of a clamped plate above a rigid inner obstacle 
is considered. The variable thickness of the plate is to be optimized to reach minimal weight 
under some constraints for maximal stresses. Since the constraints are expressed in terms 
of the bending moments only, Herrmann-IIellan finite element scheme is employed. The 
existence of an optimal thickness is proved and some convergence analysis for approximate 
penalized optimal design problem is presented. 

Keywords: weight minimization, penalty method, unilateral plate bending, mixed finite 
elements 

AMS classification: 65N30, 65K10, 49A29, 73K10 

INTRODUCTION 

The weight minimization problem for elastic plates is usually constrained by a pre­
scribed upper bound for some stress invariant. This constraint can be equivalently 
expressed in terms of bending moments. Therefore a mixed variational formulation 
seems to be suitable, which enables to compute moments and deflection function 
simultaneously. It is the task of the present paper to employ results of the recent pa­
per [4], where the Herrmann-Hellan-Johnson finite element model has been extended 
to variational inequalities of the fourth order. Piecewise linear and piecewise constant 
functions over triangulations are used for approximations of deflections and bend­
ing moments, respectively. For the set of admissible thickness functions we choose 
Lipschitz continuous functions and approximate them by affine triangular finite ele­
ments. Section 1 contains basic assumptions and formulation of the optimal design 
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problem. We prove the existence of at least one optimal solution in Section 2, using 
the concept of a penalized optimal design problem to remove the statical constraints. 

Here the crucial role is played by Proposition 2.1 on the continuous depen*. ncc of 
the deflection function on the design variable. In Section 3 we define a finite element 
discretization of the penalized optimal design problem and prove its solvability. Main 
result of Section 4 is, that any sequence of approximate solutions, with mesh size 
decreasing to zero, contains a subsequence, converging to a solution of the penalized 
optimal design problem. Having a sequence of the latter solutions with the penaliza­
tion parameter tending to zero, any limit point is proved to coincide with a solution 
of the original weight minimization problem. 

1. ASSUMPTIONS AND DEFINITIONS 

Throughout the paper we shall consider clamped elastic nonhomogeneous and 
anisotropic plates, the middle plane of which occupies a given bounded domain fi C 
R2 with polygonal boundary 3ft. 

Let the bending moments q^ be linked with the second derivatives of the deflection 
by the following relation 

(1) <lij = e3C?jkmw'km, hi = 1,2, 

where e denotes the thickness of the plate, w>km = d2w/dxkdxm, the coefficients 
C?-fcm £ L°°(il) and repeated indices imply summation within the range 1, 2. We 
assume that 

C° = C° = C° 
^ijkm ^jikm ^ kmij 

and 

CijkmTijTkm ^ cQTijTij 

holds for all symmetric matrices r almost everywhere in Q, with some positive con­

stant Co. 
The thickness e will be sought in the following set of admissible functions 

Uad = {e 6 CW>l((l) | emin ^ e(x) ^ emax , | J ^ | < Cu i = 1,2}, 

where C^il(il) denotes the set of Lipschitz functions, enijn, em a x and ct- are given 

positive parameters. 

It is not difficult to verify that Uad is a compact subset of C(ft), making use of 

the Arzela theorem (cf. [5]). 
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Let us introduce the functional space 

Z = IV0
1,p(fi) with some p G (2, oo). 

Let a loading functional / G Z' and a function tp G C(Q) be given, describing a lower 
unilateral obstacle. We assume that 

(Al) max (p(x) + £em a x < 0. 
x£dQ 

For any given e G Uad we define the solution w(e) of the state problem as follows: 

(2) w(e) = argmin I - / e3C^jkmv,ijvlkril - (f,Ev) L 
i'GKc I ^ Jf2 J 

where 
IC = {^GVV 0

2 ' 2 (n) | I 0 i ;^ (D+ie} , 

Io and E is the embedding of 1VQ2, (ft) into L°°(17) and Z, respectively. 

It is well-known that a unique w(e) exists for any e G Uad- Since we intend to use 
a non-standard (mixed) variational approach for numerical approximate solutions, 
some additional regularity of w(e) will be required. Namely, we assume that 

(A2) there exists a triangulation ThQ of the domain fi, such that each triangle T G Th{) 

has two sides parallel with the coordinate axes, and for all T G Thu 

(i) 9 | r € P i ( T ) , 
(ii) Cfjkm\T e P0(T), 
(where Pn(T) is the set of polynomials of the degree at most ?i), 
(iii) w(e)\r G VV3'2(F), ViVjCfjkmw(e)>km is continuous at each interelement 
edge (v{ are components of the unit normal to the edge) and 

£ IKe)HUT^C 
Ten, 

holds for all e G Uad with some constant C independent of e. 
Let a specific weight 7 G L°°(£l) be given, 7 > 0. Thus the weight of the plate is 

(3) j(e) = / 7eda;. 

Moreover, the following constraints will be considered (cf. e.g. [6]): 

(4) il)K (e, q(e)) ^ 0, K = 1,2,... , K, K < +00, 

where 

v 'A ' ( e ' '? ( e ) ) =^£--^LK
 e~%(e)+i^e)+(v)2^e)]**-<$, 
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A/^ C ft are given subdomains, od, r given positive constants and q(e) is the bending 

moment tensor, derived by the relations (1) from the solution w(e) of (2). 

Let us introduce the set of statically admissible design variables 

A 

I 
/< = ! 

£ad = {e € Uad | Y, [ipK{e,q(e))}+ = o} 

and assume 

(A3) £ad ± 0. 
Our main task is to solve the Optimal Design Problem 

(5) e0 = argmini/(e). 
ee£„<i 

2. EXISTENCE OF AN OPTIMAL SOLUTION 

We shall remove the constraints (4) by means of a penalty method. To this end 

we introduce a penalized cost functional 

jĄe,q(e)) = j(e) + є~l ү Џк{e,q(e))} +, є>0, 
K 

E 
A = l 

and a penalized optimal design problem 

(6) e£ = argmin J£ (e, q(e)). 
e£Un(l 

In the following we shall prove the solvability of the problem (G). The crucial role 

is played by the continuity of the mapping e •-> w(e) of Uad into WQ,2(Q). 

Proposition 2.1. Let en -> e in C(ft) as n —> oo, en G Uad. Then 

w(en)->w(e) inW^2(Q). 

P r o o f . 1° For any v G Ke there exists a sequence 

(7) {vn}, such that vn G LV0
2,2(r7), vn G IvtM for ?i sufficiently great and 

vn —> v in IV0
2' (-1), as /i -> oo. 
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Indeed, let us define 

u) = v - (<p + -ej 

so that UJ G C(fi), UJ ^ 0 in H, and 

In = g (*" - e) - u; = - e n - v + y? G C(fi), 

Gn = {x G il | i]n(x) > - c*} , 

where 

c* = max </?(x) + -em ax < 0 
xedQ 2 

by assumption (Al) . 

There exists an open set G C G C fi such that 

(8) GnCG Vn. 

To see this, we realize that 

Vn = <P+ ~en ^ c* 

on the boundary dft. The continuity of 7lu and the constraints \den/dx{\ ^ C\ imply 
that 

ÜGr.ccíî 
n = l 

and (8) follows. 

Obviously, there exists a function V; € C°°(ft) such that ip(x) = 1 for x G C7 and 
ip(x) = 0, dip(x)/dv = 0 for a; 6 9Q, 0 < ^(x) ^ 1 for x G ft. 

Let us set 

i>n = *I + g ' ' 6 " " 6 ' ' 0 ' 0 0 ^ " 

Then vn G W%a(Q) and 

||v ~ Vnll-2 = -j\\en - e||o,oo||^||2 -> 0 as n -> oo. 

We can show that there exists no > 0 such that 

(9) n > n0 => vn ^ <p + - e n in H = > ^n e A%M . 

Indeed, let 
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(i) x G G. Then 

vn = v + -\\en - e||0,oo ^v+ -(en - e) ^ ip + -en. 

(ii) Let x eQ-G. Then 

(10) vn^ ip + -e + <jj + -\en - e|(D. 

Since x £ G, x fi Gn Vn and ?7n -̂  | c* , so that 

- ( e n - e ) - o ; ^ - c , 

- 2 C * ^ + (* ~ ^ < ^ + 2l e n ~ e l ^ ' 

Inserting into (10), we obtain 

vn^y+ -e + Z, 

where 

The function Z is continuous and attains a positive minimum in the compact set 

n-G, 
m = Z(x0) = min Z > 0. 

Q-G 

Indeed, let i>(x0) = 0. Then x0 E <9ft and 

Z(a;o) = cj(aj0) = -(^(-ro) + ^(x0)) ^ - c* > 0. 

If ip(x0) > 0, then 

Z(x0)^--c"^(x0)>0. 

There exists no(m) such that 

n > n0(m) => - | | e n - e||0,oo ^ m. 

Then j x 

Z ( . T ) > £( : r 0 ) ^ - | | e n - e||0|oo > ^n(x) - e(x)) 

so that 
vn(x) > (D(x) + -en(x), n > n0(m), 

380 



and (9) is verified. The proof of (7) is completed. 

2° Denoting 

A(e;u,v) = / e3C?jkmU'ijVikmdx, 

we may introduce the variational inequality for w(e) G Ke 

(11) A(e;w(e),v-w(e)) ^ {f,Ev - Ew(e)) Vv G K€, 

which is equivalent to the state problem (2). 

For brevity, we shall write wn = w(en). Inserting the sequence {vn} from (7) into 
the variational inequality for en , we obtain 

(12) A(en;wn,vn - wn) ^ ( / ,Ev n - Ewn), n>n0. 

Recall that 

A(e;v,v) > C0\\v\\2 Ve G Uad, Vv G W2^(il) 

with the constant Co, independent of e, v. Consequently, we may write 

C0IKH2 < A(en;wn,vn) + (f,Evn - Ewn) 

^C(|Kll2lK||2-r-||/||z'(IK||2 + IKI|2)) 

<c(IKI|2 + i) 

and 

\\wn\\2^C Vn. 

There exists w G JVo'2(ft) and a subsequence {wk} C {wn}, such that 

wk —- w (weakly in WQ'2(Q)), as k -> 00. 

Since 

wk^ip+ -ek in H 

and the embedding W2'2(Q) C^ C(H) is compact, we may pass to the limit with 
k —> 00 to obtain that 

w ^ ip + - e in 0, 

i.e., iv G Ke. 

We shall verify that w satisfies the variational inequality (11). Let us consider an 
arbitrary v G Ke. 
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The functional ^t i-> A(rj;u,u) is weakly lower semicontinuous on WQ'2(SI) for any 

i] £ Uad- Consequently, 

liminf A(e;wk,Wk) ^ A(e;w,iu), 
k—>oo 

since e G £/«<*. Moreover, we have 

(13) \A(ek;wk,wk) - A(e;wk,wk)\ ^ C\\e3
k - e3 | |0 ,oo|K||i -> °> 

so that 

(14) liminf A(ek; ^Vk, wk) 
k—• o o 

= liminf \A(e;wk,tuk) + [A(ek;iUk,wk) - A(e;wk,wk)]j 

^ liminf A(e;wk,wk) ^ A(e;w;,iv). 

We derive easily that 

л-2,2/ (15) lim A(ek;wk,g) = A(e;w,g) V5 £ W0^(ft), 
Ac—>oo 

using the decomposition 

.A(efc; 1^,(7) - A(e;iy,(7) = [ A f e * ^ * , ^ - A(e;wk,g)] + A(e;wk -w,g) 

and the weak convergence of {wk}. 

Making use of (7), we obtain 

(16) \A(ek;wk,vk - v)\ ^ C||wfc||2|K -v\\2 -+ 0 as k -> oo. 

Combining (15) and (16), we arrive at 

(17) lA^fcjw*,^) - A(e;w,v)\ 

^ |A(eA-;^/c,^ — v)| + |-A(ejb; Wife,v) - A(e;w,v)\ -> 0. 

The weak convergence of {wk} and (7) yield that 

(18) (f,E(vk-Wk))-*(f,E(v-w)). 

From the inequality (12) we deduce that 

(19) A(ek;wk,wk) + (f,E(vk - wk)) ^ A(ek;wk,vk). 
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Passing to the liminf on both sides and using (14), (18), (17), we obtain 

A(e; w, w) + (f, E(v - w)) -$ A(e; w, v). 

Consequently, w satisfies the inequality (11). Since the solution iv(e) of (11) is 
unique, w = w(e) follows and the whole sequence {wn} converges to w(e) weakly in 

3° It remains to verify the strong convergence. First we prove that 

(20) lim A(en;wn,wn) = a(e;w,w). 
71—>00 

In fact, we obtain from (19), (17) and (18) 

(21) limsup A(en; wn, wn) ^ A(e; iv, v) + (/, E(w - v)) 
n—>oo 

for any v G Ke. Inserting v :=>iu, (21) and (14) imply 

A(e;w,w) -̂  liminf A (en; wn,wn) ^ limsup A (en;wn,wn) 

^ A(e;w,w), 

so that (20) follows. 

Combining (13) and (20), we arrive at 

(22) lim A(e; wn,wn) = A(e; w, w). 

If WQ'~(SI) is equipped with the scalar product A(e;u, v) = (u, V)A, then (22) implies 
that the associated norms ||iun|U tend t o II^IU- Since the norms ||. |U and ||. ||2 are 
equivalent, we are led to the strong convergence \\wn — iv||2 -> 0. • 

Corollary 2.1. Let en -» e in C(Q) as n -> oo, en G Uaa. Then 

q(en)->q{e) m[L2(Q)]4. 

P r o o f . Wc may write 

lktj(en) - qij(e)\\o,Q ^ \\(el - e3)C?jkmw(en)>krn\\0& 

+ \\e3Cfjkm(tv(en)-w(e))lkJo^ 

= I\n 4- I2n. 

Proposition 2.1 yields that both Iin and I2n tends to zero, as n -> oo. D 
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Lemma 2.1. Let en -> e in C(fi) as n —> oo, en G Uad- Then for any Iv = 

[^K(en,g(en))]+ -> [^(e,g(e))] . 

Proof. Since 
| a + - 6 + K | a - b | , 

we may write 

|[V>E(en,tf(en))] - [^/c(e,cl(e))] + | 

^ |^A-(en,g(e„)) - ipi<{e,q(e))\ 

*^kL l«'(A(«J +*(-) + (T)'A«-») 
- e"4 (g?!(e) + </22(e) + ( ^ ) V 2 ( c ) ) | dx 

^ C / K4(g?1(en)-ff?1(e) + . . . )+(e-?-e- 4 ) te? 1 (e) + ...)|dx 

^ Ce-fn | y |(7n(en) + qn(e)|. \qn(en) - <ln(e)| dx + .. . J 

+ C(e). ||e"4 - e-4||0>oo -> 0 as n -> co, 

making use of Corollary 2.1. • 

Proposition 2.2. The penalized optimal design problem (6) iias a solution for 
any e > 0. 

Proof . Since the functionals j(e) and [ipK (e, (l(e))] are continuous in Uad and 
Uad is compact in C(Q), there exists a minimizer e£ of J£{e,q(e)) in Uaa-. D 

Theorem 2.1. Assume that £fta- ?- 0. Let {s}, e —> 0+, be a sequence and {ee} 
a sequence of solutions of the penalized optimal design problems (6), {q{e£)} the 
sequence of corresponding moment fields. 

Then there exist a subsequence {£} C {e} and an element e0 G £ad such that 

(23) Ci -J> e0 in C(H), 

(24) q{ei)->q(e0) in [L2(Q)]4, 

where e0 is a solution of the optimal design problem (5). 

Proof. Since Uart- is compact in C(H), there exists a subsequence {e^} C {e£} 
such that (23) holds with e0 G Uad- Corollary 2.1 then implies (24). Let us show 
that e0 is a solution of (5). 
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It follows from the definition that 

K K 

(25) j(ei) + drl ]T &K(«*.?te))] + < i(e) + (ST1 £ ty*M<0)] + 

tf=i K=i 

holds for any e £ Uatf. 
Taking now an element e £ £ad, we obtain 

ej(e*) + J2 [^(e.-,g(e f))]+ ^ fj(e), 
K 

0 < 5 3 [ ^ ( e e , « ( e f ) ) ] + ^ f j ( e ) . 

Passing to the limit with £ -» 0 and using Lemma 2.1, we arrive at 

£[Meo,4(eo))]+=0, 
K 

so that eo G £ad follows. Then (25) implies 

j(es) ^ j(ei) + (i)~l JjT [</>/,(ei,q(ei))]
+ ^ j(e) Ve E £ad. 

K 

Passing to the limit with e —> 0 and using (23), we deduce that 

J(eo) ^ i(e) Ve € £ad. 

Corollary 2.2. If £ad 7-= 0 then there exists at least one solution of the optimal 
design problem (5). 

P roo f follows immediately from Proposition 2.2 and Theorem 2.1. • 
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3. APPROXIMATE OPTIMAL DESIGN PROBLEM 

Since the constraints are expressed in terms of the bending moments q, it seems 

to be suitable to employ a mixed finite element model in which both the deflections 

and moments are computed simultaneously. We shall use the so-called Herrmann-

Hellan finite element scheme with piecewise linear approximations for deflections and 

piecewise constant for bending moments. An extension of this approach to the inner 

obstacle problem has been developed in [4] on the basis of some results of Brezzi and 

Raviart [1], Comodi [2] and Glowinski, Lions and Tremolieres [3]. 

We consider a regular family of triangulations {Th}, h —r 0+, refining the original 

triangulation 7/l{) (see (A2) in Sec 1) and such that each triangle has two sides 

parallel with the coordinate axes. We shall need the space of tensor-valued functions 

S = {(tf-j)-,j=i,2 I Qij € L2(ft), i,j = 1,2, qi2 = q2l}. 

Let us introduce the following spaces of finite elements 

zh = {zh e C(.l) | zh\T e Pi(T) VT e Th, zh = o on on} 

Qh = {qheS\qhij\TePo(T) VTeTh, 

(JhijViVj are continuous at each interelcmcnt edge}, 

Wh(eh) = {[zh,qh] E Zh x Qh | a(eh;qh,ph) -f b(ph,zh) = 0 Vph G Qh} 

where 

o(e;q,p)= / e *Bijkmqijpkmdx, B = (C°) l, 
JQ 

KP,*)= T] ( / Pijjz,idx- / pijUitjdz/dtds), 
TaT, \ J T JdT J TЄT,, 

(t is the unit tangential vector to OT). 

Let us consider the problem 

(26) [zh(eh),qh(eh)] = argmin \-za(eh\qh,qh) - (f,Zh) \ 
[zn,nn]eKn(eh)

 L 2 J 

where 

Kh(eh) = {[zh,qh] € Wh(eh) \ zh(P) > <p(P) + leh(P) MP G E°} 

and YPh is the set of all vertices of Th inside H. 
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By [4, Theorem 2.1], (26) has a unique solution for any eh G Uad. Let us re­

call the following result ([4, Theorem 2.2). There exists a unique saddle point 

{[zh(ch),qh(eh)},\h} on Wh(eh) x R™" of 

Ch(eh', [s/i,<Z/i],A/l) = ~a(eh;qh,qh) - (f,zh) + {\h,ip+ -eh - Zh} , 

where 

(^Ыh = \ £ л(P)\h(P)UP) 

and A(P) denotes the sum of the areas of the triangles in Thj which admit P as 

common vertex, mh is the number of vertices in T,°h and R™'1 is the subset of non-

negative coordinates in Rm / l. 

The first component [zh(eh),qh(eh)\ coincides with the solution of the prob­

lem (26). 

R e m a r k 3.1. The saddle point can be computed iteratively by means of an 

algorithm of Uzawa's type. Its convergence has been proved in [4, Theorem 2.3]. 

Instead of Uad we introduce an approximate set 

UZd = {eheUad\eh\TeP1(T) VTeTh} 

and the approximate optimal design problem 

R 

( 2 7 ) e\ = argmin \j(eh) + e~l Y] [^i<(eh,qh(eh))]l, 
cneu>(;d

 l

 K=l

 J 

where qh(eh) is the component of the saddle point mentioned above. 

We shall prove the solvability of the problem (27). To this end we first establish 

the following lemma. 

L e m m a 3.1. Let Th be fixed and let eh G U^d, n = 1, 2, ..., 

eh —> eh in C(H), as n -> oo. 

Then 

qh(eh) -> qh(eh) in S. 

P r o o f . 1° We shall drop out some subscripts h in what follows. Let us recall 

that {[if (e), q(e)], X(e)} is the (unique) saddle point of Ch(e) on Wh(e) x U™h, if and 
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only if the following three conditions are fulfilled: 

(28) b(q(e),z) + (f,z) + (\(e),z)h = 0 Vz € Zh, 

(29) a(e;cj(e),p)+i>(p,z(e)) = 0 Vp6Q A , 

(30) ( A - A ( e ) , 9 + i e - z ( e ) \ ^ 0 VAeR+" . 

Analogous conditions hold for the saddle point {[i(en),cj(en)], A(en)} of £;.(en) 
on Wh(e

n) x R + \ Subtracting, we obtain 

(31) b(q(en) - q(e),z) + (A(en) - A ^ . z ^ = 0 Vz G Zh, 

(32) o (e n ; c7 (e n ) , p ) - a (e ; c j ( e ) ,p )+6(p ,z (e n ) - z (e ) )=0 VpeQh. 

Let us substitute z := z(en) - z(e) in (31) and p := q(en) - cj(e) = A n in (32). Thus 
we get 

6(An iz(en) - z(e)) + (A(en) - A(e),z(en) - z(e))h = 0, 

a(en ; cj(en), An) - a(e;c7(e), An) + 6(An>z(en) - 2(e)) = 0, 

so that 

(33) o(e; c?(e), A n ) - a(en; q(en), An) + (A(en) - A(e), z(en) - 2(e))h = 0. 

Let us substitute A := A(en) in (30) and A := A(e) in the counterpart of (30). 
Thus we arrive at the inequalities, the addition of which yields 

(A(e) - A(en), \(en - e) + 2(e) - z(en))^ ^ 0 

and therefore we have 

(34) (A(en) - A(e), z(en) - z(e)>fc ^ (A(en) - A(e), \(en - e)) fc. 

Substituting (34) into (33), we obtain 

(35) o(e n ; cj(en), An) - o(e; q(e), An) ^ l- (\(en) - A(e),en - e)h . 

2° Next let us show that a constant C > 0 exists such that 

(36) ||cj(en)||s + ||2(e")||z + ||A(en)|U ^ C Vn, 
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wherc||A|U = ({A,A)J 1 / 2 . 
In fact, let us point out that the inequalities 

(37) a(en;q,q)>aa\\q\\s 

(38) a(en;p,q)^C\\p\\s\\q\\s 

hold for all p, q G Qh and for all en G Uarf. with constants a0 and C independent of 
p, q, en. Then it is easy to verify that Lemma 2.1 of [4] holds with constants C, C 

in [4, (2.2)] independent of en . 
Obviously, there exists a function z° G -Zn such that z°(P) ^ <^(P) + | e m a x at 

all points P G H>°. Using Lemma 2.1 of [4], we obtain a unique q0n G Qh such that 
[z°,q0n] G Wh(e

n). Since z° > ip + | e n at P G E°, [z°,g0n] G / ^ ( e n ) and 

(39) lk1 0 n | |S<C- 1 | k ° | |z = C Vn. 

By definition (26), we have 

\a(en;q(en),q(en)) - (f,z(en)) ^ \a(en;q0n,q0n) - (f,z°) . 

Making use of (37), (38), (39) and Lemma 2.1 of [4], we get 

\ao\\q(en)\\l4C0 + \\f\\z'\\z(en)\\z<C2 + C3\\q(en)\\s. 

Consequently, the norms ||</(en)||s are bounded. Lemma 2.1 of [4] yields the bound-
cdness of 5(en) . Since R™'1 is isomorphic with the subset A^ = {Xh G Zh \ Xh ^ 0}, 
we may insert z := A(en) in (28) to deduce that 

HA(eB)||2= -6 (g (e ' l ) ,A(e" ) ) - (LA(e" ) ) 

^ C(\\q(en)\\s+\\f\\z,)\\X(en)\\z < C\\X(en)\\k. 

Thus we arrive at (36). 
3° It is readily seen that 

(40) | a (eV/(e) ,A n ) - a(e;$(e), A n ) | ^ C| | (en)-3 - e-3||0,oo -> 0 

as 7i —> co, realizing that (36) implies 

l |A„| |s<| |9(en) | |5 + | | « (e ) | | s<C ' Vn. 
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On the basis of (37) and (35). we may write 

a01| A.,11! ^a (e" ;9 (e" ) ,A n ) - o(en;«7(e), A„) 

= [a(e";q(en),An) - a(e;q(e),An)] 

+ [a(e;q(e),An) - a(en;q(e),An)] 

^ I ( A ( e " ) - A ( e ) , e " - e ) / i + | / n | 

<\(\\Men)\\h + \\X(e)\\h)\\e
n-e\\h + \In\. 

Since the right-hand side tends to zero with n —> oo by virtue of (36) and (40), we 
get 

llq(en) - q(e)\\s = | |A n | | s -> 0, as n -> oo. 

D 

Theorem 3.1. The approximate problem (27) Las at least one solution for any 

fixed triangulation Th and any e > 0. 

P r o o f . Making use of Lemma 3.1, we prove that the functions 
[ipi<(eh)qh(eh))] are continuous in U^d (cf. the proof of an analogous Lemma 2.1). 
Consequently, the cost functional in (27) is continuous, as well. 

Obviously, 

ekeU':d <=* ( e ^ P . ) } ? . € A C R r \ 

where P{ are the vertices of Th. The set Ah is compact in Rrh, being bounded and 
closed. Hence the cost functional attains its minimum in U^d. D 

4 . FINITE ELEMENT ANALYSIS 

In the present section we study the convergence of the solutions e\ of the approx­

imate optimal design problem (27), when the mesh size h tends to zero. To this end, 

we shall need the following result. 

Lemma 4 .1 . Let eh G U£d. Then 

(41) \\qh(eh)-q(en)\\s^Ch1^. 

holds with some constant C independent of eh and h. 

P r o o f . Let us denote q(eh) = G, z(eh) = w(ch) = z, qh(eh) = qh, zh(eh) = zh, 

for brevity. 
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Let us.introduce the space of tensor fields 

Q(Th) = {peS\Pij\TeHl(T) VTeTh, i,j = 1,2, 

PijViVj is continuous at each interelement edge}. 

By assumption (A2) (ii) and (iii), the relation (1) implies 

(42) q(eh) € Q(%), 

as the triangulations Th under consideration refine Thir Moreover, (A2) implies 

(43) k(eh)\\'
2
Q{Th) = E E I I ^ M I I U T 

i,j=i;2TeTh 

^ E \Meti\\h,T<CC 
T€Thu 

Obviously, we may write 

(44) a0\\q - qh\\
2
s ^ a(eh;q- qh,q- Uhq) + a(eh;q- qh,Uhq - qh) 

= I1+I2, 

where 11/! : Q(Th) -+ Qh is the (linear) mapping from [1-Lemma 4]. 
Recall that 

(45) b(p - Uhp,yh) = 0 Vp e Q(Th), yh G Zh. 

Using the relation (see [4, Theorem 1.2]) 

a(eh;q,p) + b(p,z) = 0 VpeQ(Th), 

the definition of JV^e^), the Lagrange linear interpolation Ih: Z —•» Zh and (45) we 

got 

(46) L2 = a(eh; q, Uhq - qh) - a(eh; qh, Uhq - qh) 

= -b(Uhq - qh, z) + b(Uhq - qh, zh) = b(Uhq - qh, zh - z) 

= b(Uhq - q, Ihz - z) + b(Uhq -q,zh- Ihz) + b(q - qh,zh - z) 

= -b(q, Ihz - z)+ b(q - qh, zh - z), 

since 

(47) b(ph,Ihz-z) = 0 VpheQh. 
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We have zh G Zh C Z and zh ^ <p + \eh in ft by virtue of the assumption (A2)(i). 

Consequently, Lemma 3.2 of [4] yields that 

(48) - 6 t o , ^ - . z ) ^ ( / , ^ - z ) . 

From the definition of the problem (26), we get 

(49) -b(qh, yh - zh) > (/, yh - zh) 

for all yh € Zh such that yh(P) ^ <p{P) + \eh(P) VP G Y?h. Using (48), (49) (with 
yh := Ihz) and (47), we obtain 

(50) b{q - qh, zh - z) = % , ^ - z) - %/.., ^ - Ihz) - b(qh, Ihz - z) 

^ (/, z - zh) + (/, zh - Ihz) = (f,z- Ihz). 

Combining (44), (46) and (50), we arrive at 

(51) «o||<? ~ qh\\'s ^ a(eh; q-qh,q- Uhq) + b(q, z - Ihz) + {f,z- Ihz). 

Making use of (43) and the continuity of the form b, we may write 

(52) b(q,z-Ihz) + {f,z-Ihz) ^{C\\q(eh)\\Q(Th) + \\f\\z.)\\z-Ihz\\z 

< C | | z - M | i , P , n -

The interpolation theory yields 

(53) | |- - /fc-||ifP,n < Cli2/P|z|2,2,n ^ Cli2/p, 

since z = w(eh) is bounded in W2>2(Q) for all eh € Uad by virtue of assumption 

(A2)(iii). 

A slight modification of Lemma 4 in [1] and (43) implies 

\\q-Ilhq\\s<Ch\\q(eh)\\Q(Th)^Ch. 

Consequently, from (38) we derive that 

(54) a(eh; q-qh,q- Uhq) ^ C||<7 - <1/i||;s||<7 - Uhq\\s 

^ ^ a o l k - ^ l l l + oa/i2. 

Combining (51)-(54), we get 

\a0\\q - qh\\
2

s ^ C3h
2 + ČK2'" ^ Ch2^, 

so that (41) follows. 
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Proposition 4.1. Let {eh}, h -> 0+, be a sequence of eh € U^di such that 

ЄҺ —> e iи C(П), as /i —> 0+. 

Tlien 

(55) QҺ(ЄҺ) -> <?(e) ІJJ S, as h —> 0 + . 

P r o o f . By triangle inequality and Lemma 4A 

ll<7/i(eh) - 9(e)||5 < Mk{eh) - q{eh)\\s + ll</(e*) - <l(e)||s 

^C/^-f 11^/0-^)1)5. 

Then (55) follows from Corollary 2.1, since U^d C Uad-

Proposition 4.2. Let the assumptions of Proposition 4.1 be fulfilled. Then 

Je{eh,9h{eh)) -» Je{e,q{e)), as h -> 0 + . 

D 

P r o o f is analogous to that of Lemma 2.1, being based on Proposition 4.1. D 

L e m m a 4.2. For any e E Ua(i there exists a sequence {i]h}, h —> 0+, such that 

Vh e U}

a

l

d and 

i]h -> e in C(H), as h —> 0+. 

P r o o f . Let us set i% = I/ie, i.e., the Lagrange linear interpolate of e over 7/t. 

Since e € IV1,°°(n), the interpolation theory yields 

||e --T/ieHo.oo ^ C/i||e||ij0O. 

Obviously, en,in ^ I/te ^ emax everywhere in fl. Finally, we have, for P-:-P?:+i 

parallel with the ;vj-axis, j = 1, 2, 

ЗД / i C 

ð.i 
= ^ИЛ + 1 ) -e(P ť )KІ£ + I | | l |d .^C j . 

D 
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Theorem 4.1. Let {eh}, h -> 0+, be a sequence of solutions of the approximate 

optimal design problems (27). 

Then there exists a subsequence {e£A C {eh} and an element e£ G Uad such that 

(56) ek -> ee in C(H), 

(57) %(e^)->g(eff) in 5 

and e5 is a solution of the penalized optimal design problem (6). Each uniformly 

convergent subsequence of {eh} tends to a solution of (6) and (57) holds. 

P r o o f . Since U^d C Und and Uftf/ is compact in C(H), there exists a subsequence 
of {e^}, such that (56) holds with e£ G Uad. Then (57) follows from Proposition 4.L 

Let us prove that ee is a solution of the problem (6). Consider any e G Uad and 

use Lemma 4.2 to obtain {nh}, i]h G U%d, such that ?^ —> e in C(lQ). By definition 

(6), 

Meh«h(eV) ^M'lh>9h('lh))' 
Passing to the limit with h -» 0 and employing Proposition 4.2 to both sides, we 

arrive at 

Je{ee,q{ee)) < Jff(e,(z(e)). 

Consequently, e£ solves the problem (6). The rest of the assertion is obvious. • 
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