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PRECONDITIONING OF CONJUGATE GRADIENTS 

BY MULTIGRID SOLVER 
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(Received February 5, 1993) 

Summary. Solving a system of linear algebraic equations by t h e preconditioned conjugate 

gradient m e t h o d requires to solve an auxiliary system of linear algebraic equations in each 

s tep. In this paper instead of solving t h e auxiliary system one i teration of t h e two level 

m e t h o d for t h e original system is done. 
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1. INTRODUCTION 

Solving a system of linear algebraic equations Ax = b by the preconditioned con

jugate gradient method requires to solve an auxiliary system of linear algebraic equa

tions Cx = r in each step. The multigrid method for solving the auxiliary system 

has been used (e.g. see [4]). In this paper an other usage of the multigrid method 

for preconditioning is suggested. Instead of solving the system Cx -= r one iteration 

of the two level method for the original system Ax = b is done. 

2. PRECONDITIONED CONJUGATE GRADIENT METHOD 

Wc will solve the system of linear algebraic equations 

Ax = b 

where A is a positive definite real matrix of order n. We will denote by {xyy) the 

usual scalar product in Rn, the norm in Un being ||.T|| = {x,x)i. 
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For an arbitrary linear operator L on Rn, ||L|| denotes the operator norm of L 

defined by the vector norm ||x|| and ||L|U denotes the operator norm of L defined 

by the vector norm \\X\\A = (Ax,x)~. 

For positive definite operators C, A on Un let us define the so called relative 

condition number 

C ° n d ( C ^ ) = A n i i n ( C - M ) -

Usage of the preconditioned conjugate gradient method algorithm follows the scheme: 

Step 1. Given £ > 0, x0 = 0, let k = 0 and 

rG = b — AXQ = b 

h0 = C-Vo, 

Po = h0. 

Step 2. Do 

(Pк,rк) 
Ctk = 

(2.1) 

(Apk,PkY 

%k+l = Xk +OLkPk, 

rk+\ =rk -akApk, 

hk+i = C~lrk+i, 

(rk+i,hk+i) 
Pk = —; r-r—, 

(nt,ftfc) 
Pk+l = /lfc+1 + PkPk-

Step 3. Let c/,,. be an estimate of cond(C, A). If Ck (^Vi) ^ e~!» e x ^ e ^ s e k = k + 1 
and go to Step 2—see [1]. 

Let us define the error e(x) by e(x) = x — x, where x = A~lb. 

Then for the error of the preconditioned conjugate gradient method the following 

formula can be derived—see [3]: 

(2.2) \\e(xt)\\A < 2 ( ^ C ° n d ( ^ ? : ? ) 1 | l ^ o ) I U -
\ x/cond(C, A) + 1 / 

Let us remark that e(xo) = —x. 
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3 . MULTIGRID METHOD 

Our aim is to replace the solution of an auxiliary system of linear algebraic equa
tions in (2.1) with one iteration of the two level method constructed for the solution 
of the system Ax = b. Let us consider the space Rm, m < n with the usual scalar 
product denoted by (x,x)>2- Let us suppose that an injective operator p: Rm —> Rn 

is given (for technical details see [5]). Now let us denote by r the adjoint operator 
to /; with respect to the both scalar products. Further, a linear iterative method of 
the form 

(3.1) S(x) =Mx + Nb 

is supposed to be given, where M and IV are operators on Rn satisfying the consis

tence condition 

(3.2) I = M + NA. 

Let us note this condition is necessary and sufficient for the fulfilment of 

S(x) = x, ' 

where x = A~lb is the exact solution of the given system. The usual two level 
algorithm follows the scheme: 

for given Xi we set 

x = S(xi), 

(3.3) x = x- p(rAp)-lr(Ax - 6), 

#*+i = S(x). 

It is not difficult to see that the algorithm (3.3) can be written in the form 

.Ti+i = Qxi + Qb, i = 0 , 1 , . . . , 

where 

Q = M(I -p(rAp)-1rA)M 

and 

(3.4) Q = MN - Mp(rAp)~lr(AN - I) + N. 

These relations yield 

(3.5) e(xi+l)=Qe(xi), t = 0 , 1 , . . . . 

If we start with xQ = 0 then .X] = Qb. 
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R e in a r k 3.L Let us denote by P = I - p(rAp) lrA. It is easy to show that 
P2 = P and 

(APx, y) = (Ax, Py) for all x, y 6 Rn. 

Therefore P is the A-orthogonal projection. 
Now we will use Q instead of C~l in (2.1). For this reason we need symmetry 

of Q. 

4 . CONVERGENCE ANALYSIS 

Let us consider the preconditioned conjugate gradient method (2.1) and let us set 
C~l = Q, where Q belongs to an iterative method 

J't+i = Qzi + Qb, i = 0,1, 

In this section estimates of rate of convergence will be proved. 

Assumptions 4 .1. Let us suppose ||QJU = Q < V Q ls symmetric, the consis
tence condition I = Q + QA is fulfilled and (AQx,x) ^ 0 for all x e R„. 

Lemma 4 .1. Let Q, Q fulfil assumptions 4.L Then Q is positive definite. 

P r o o f . Let / E Rn be arbitrary nonzero. Let us denote by 5; = A~lf,e(x) = 

x — x. Let us set XQ = 0. Then e(xo) = —x ^ 0. Assumptions 4.1 imply 

(AQe(x0),Qe(x0)) < (Ae(xQ),e(xo)). 

Using the relations c(.vi) = Qc(xo), where e(x{) = xi — x = Qf — x we got 

(A(Qf-x),Qf-x)<(Ax,x), 

and using the positive definitcness of A we conclude 

0^\(AQf,Qf)<(Qf,f). 

This inequality completes the proof. • 

The following useful lemma is not difficult to prove. 

Lemma 4 .2. Let K, L be two positive definite operators on Rn. Then 

1. a(KL) = o(KiLKh) = a(LK) = o(L*KL*). 

360 



2. A > 0 for all A G a(KL) and KL is diagonalizable. 

Lemma 4.3. For all eigenvalues A of A~QA~ we have 

l-q^X^l. 

P r o o f . At first from the assumptions 4.1 we get that Q — I — QA is A— 

positive definite and therefore for all eigenvalues A of A~QA~ we have (see Lemma 
4.2) A ̂  1. The second part of the above inequality is the consequence of 

\\I-QA\\A=q<l 

(see again Assumptions 4.1) and Lemma 4.2. • 

R e m a r k 4.1. The relative condition number cond(C,^4) was defined in Sec

tion 2 as 

C O n d ( C ' ^ ) = A m i l > ( C - M ) -

Due to Lemma 4.2 cond(C, A) is equal to 

condfC A) = A " » ( A C " 1 ) = W^C-1^) 
V ' ' W - 4 C " 1 ) \m[n(A

l-C-iA1-)' 

Theorem 1. Let us consider the preconditioned conjugate gradient method (2.1) 
in which C~l = Q,Q being defined by the iterative method Xi+i = Qxi + Qb. Let 
us suppose assumptions 4.1 are fulfilled. Then 

1. c o n d ^ A K T - ^ , 

2. \\e(xi)\\A < 2^ | | e (x 0 ) |U, where qG = f ^ g 
is the estimate for the preconditioned conjugate gradient method. 

P r o o f . The statement 1 is the immediate consequence of Lemma 4.3. The 
estimate 2 follows from 1, (2.2) and Remark 4.1. • 

Theo rem 2. Let us consider the preconditioned conjugate gradient method (2.1) 

in which C~l = Q, Q being the operator of the two level method (see 3A). Let us 

suppose that M = I - BA, N = B, where B is symmetric, \\Q\\A = q < 1 (for Q see 

3.4J. Then 

1. cond(C,AK i r j , 
2. \\e(xi)U < 2<fc||e(*0)IU, to = £ $ = § . 
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P r o o f . We will verify assumptions 4.1. First, the consistence condition I = 

Q + QA is easy to prove using (3.4). The operator Q can be written in the form 

Q = 2B- BAB + (I - BA)p(rAp)~lr(I - BA)T, 

its symmetry now being evident. For an arbitrary x 6 Rn we have 

(AQx, x) = (A(I - BA)P(I - BA)x, x) = (AP(I - BA)x, (I - BA)x) > 0 

as P = I — p(rAp)~lrA is the A-orthogonal projection (see Remark 3.1). D 

R e m a r k 4.2. Conditions 

(4.1) M = I-BA, N = B, 

B symmetric are fulfilled for the damped Jacobi method 

(4.2) S(xi+i) = (I- uD~lA)xi + u>D'lb, u e (0,1), 

D being either the diagonal part of A or generally the block diagonal part of A, as 

well as for the iterative method 

(4.3) S(xi+i) = (I - WA)XІ + шb. 

If we use the method (4.2) or (4.3) several times (even with different u>) it is 

possible to show that the obtained iterative method is also of the form (4.1) required 

by Theorem 2. 

R e m a r k 4.3. The relation between q and qc, = J T ^ I ^ is shown in Fig. 1. 
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5. SOME REMARKS ON THE CONVERGENCE OF TWO LEVEL METHOD 

In this section we will present (without proving) some statements about the con
vergence of the two level method (3.3)—for details see [5]. Let us consider the two 
level method described in Section 3. Let us denote by U = Ker(r^4), Xu the restric
tion of an operator X to U. Then 

IIQIU < \\Mu\?A 

(see Lemma 6.5 in [5]). 

If the iterative method 4.3 is used the operator norm ||Mc/||/i can be estimated as 

follows. 

Let the constant c > 0 be such that for every x G Rn there exists v G Rn, 

c||ar — jtwll ^ \\x\\A. 

Then \\Mu\\A ^ [1 - cu(2 - w£(j4))]|M|yi for every u G U (see Lemma 7.2 in [7]). 

If the iterative method (4.2) is used the operator norm ||Mf/||^ can be estimated 

as follows: 

Let D > 0, let c be a positive constant such that for every x G Rn there exists 

v e Rn such that 

c\\DHx-pv)\\^\\x\\A. 

Then | |Mu|U < [1 - cu(2 - e(D~^AD^))]\\u\\A for every u € U (see Lemma 6.8 
in [5]). 

For model examples the technique for determining the numerical values of c can 
be found in [4], 
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