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ORDER STATISTICS AND (r,s)-ENTROPY MEASURES

M. D. ESTEBAN, D. MORALES, L. PARDO, M. L. MENENDEZ, Madrid

(Received April 10, 1992)

Summary. K. M. Wong and S. Chen [9] analyzed the Shannon entropy of a sequence
of random variables under order restrictions. Using (r, s)-entropies, I.J. Tancja [8], these
results are generalized. Upper and lower bounds to the entropy reduction when the se-
quence is ordered and conditions under which they are achieved are derived. Theorems
are presented showing the difference between the average entropy of the individual order
statistics and the entropy of a member of the original independent identically distributed
(i.i.d.) population. Finally, the entropies of the individual order statistics are studied when
the probability density function (p.d.f.) of the original i.i.d. sequence is symmetric about
its mean.

Keywords: Unified (r,s)-entropy measure, order statistics, Shannon entropy, logistic
distribution.

AMS classification: 62B10, 62G30, 94A15.

1. INTRODUCTION

Statisticians have been studying the properties of order statistics for some time
and have applied them to solve nonparametric inference problems like tolerance in-
tervals for distribution, coverages, confidence interval estimates for quantiles and so
on. Recently, applications of order statistics in diverse arecas have been found such
as in engineering, signal processing, speech processing, image coding, image and pic-
ture processing, echo removal and image coding. A partial list, with very readable
references, can be found in K. M. Wong and S. Chen [9)].

This work was partially supported by the Direcciéon General de Investigacién Cientifica

v Técnica (DGICYT) under the contracts PB91-0387 and PB91-0155.
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Here we examine some interesting properties of order sequences and order statistics
using the (r, s)-entropy studied by Taneja [8]. A numerical example with the logistic
distribution is given.

Suppose we have a set of random variables X;, Xo, ..., X, with joint probability
density function (p.d.f.) f(z) at a point x = (z1,...,zy). If we write exp,(a) to
denote 2%, then the (r, s)-entropy of the sequence X = (X1,..., Xy) is defined as

(H:(X) =@ =) (fw @) T =1],  r A1 s#1,
Hy(X) = (217 = 1)7H{ expy (s = 1) fyow F() 1o, F(x) dx) = 1},

E(X) =4 r=1, s#1,
HIX) = (1= 1)~ logy fpu f(X)" dx, Pl s=1,
(HX) == fw f(x)log, f(x)dx, r=1,s=1

for all 7 € (0,00) and any s € (—o00,00), provided the integrals exist.

This measure includes as particular and / or limiting cases the measures studicd
by Shannon [6], Renyi [5], Havrda and Charvat [4], Arimoto [1] and Sharma and
Mittal [7].

For every sct of random variables X1, X5,..., Xy, the following limit relations
hold

H;(X) = lim H3(X),  H}X) = lim H}(X)
r—1 s—1

and
=1 s — i 1
H(X) = lgri H{(X) = 11-1_1}11 H_(X).

We arrange the set of random variables X;, X2,...,Xn, in ascending order of
magnitude so that
Xy <X <. <&

where the subscript (n) denotes the index of the variable after ordering. For con-
venience of notation, we denote the set after ordering by Y;,Ys,...,Ynx so that
Y, = X(n). Then Y, is called the nth-order statistic (n=1,...,N).

Let f;(z) be the p.d.f. of X; and let F;(x) be its cumulative distribution function
(c.d.f). If X;,...,Xn are independent, then the joint p.d.f. of the order statistics
Y =(M,...,Yn) at y = (y1,...,yn) is given by

The) @) ... )|
fily2)  faly2) ... n(y2)
fy)=| . : :
filyn) falyn) ... fn(yn)
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forys <wy2<...

++
< yn and f(y) = 0 otherwise, where | | is the permanent which is

defined like the determinant, except that all signs are positive. The p.d.f. of Y} at y

is given by

+ Fi(y) Fy) ... Fn(y) A
. C : k — 1 rows
. . ?1 ((y)) i‘z((y; ...... ?N((y))
fily) = Wy 2(y) ...l Ny
WN=Bk=D Tr) 1-B) ... 1~ Fn(y)
. C . : N — k rows
1-F@y) 1-FE@y) ... 1-Fn(y)

The extension of the derivation of the joint p.d.f. of Y = (¥3,...,Yn) to the case

where (X;,...,Xn) are depedent, having a joint p.d.f. f(z;,...,Zn), is given by

N!
) =Y fvi)
j=1

where y; is the jth permutation of the elements in the vector y; = (y1,...,yn) and
NLYe2<..- SYN-

In the following sections we examine some interesting properties of the (r,s)-
entropy of the ordered sequence Y = (Y3,...,Yy) and of the individual order statis-
tics.

2. (r,8)-ENTROPY MEASURE OF AN ORDERED SEQUENCE

In this section a result is presented showing the amount of (r, s)-entropy reduction
when the sequence is ordered. Upper and lower bounds to the (r, s)-entropy measure
reduction and conditions under which they are achieved are derived.

Theorem 1. The (r, s)-entropy measure of the ordered sequence Y = (Y3, ...
is given by

aYN)

=1

(@ =07 [(faw S0 B an )T -], 1,02,

N!
(27* = 1)7 [expy {(s = 1) fyow F(r) 1o (T f(v)) dyn } = 1],
j=1
E(Y) =4 r=1,s#1,
(l_r)—ll()g'.’ [fRN fr(yl)%dyl]i T#l, S=1,
N!
|~ Jaw ) o, (3 £(y5)) dya, r=1,s=1
Jj=1




for all v € (0,00) and any s € (—o0,00), provided the integrals exist.

Proof. The region of integration of the joint p.d.f. of the ordered sequence Y
is governed by the condition —0o < y; € ¥2 € ... € yv < 0o. To incorporate this
condition into the expression for f(y), we use the unit step function

1, y20
U(y) =
0, y<0

and introduce the notation
U(y1) =U(y~n —y~n-1) - Ulyn—1 —yn=2) - ... - U(y2 — n1).

As U"(y1) = U(y1), the unified (r, s)-entropy of the ordered sequence can be rewrit-
ten as

m =@ -y {] [ (U(yl)éf(yj))rdyl]% -1}

=(21-5—1)"‘{URN U(yl)(zﬁ’g’ )f%})’f ) yI]E —1}.

Interchanging the order of integration and summation, we obtain

v = @ - 17 [g [, e [M] an | = 1},

Y f1(v5)

If we change the variables in the kth integral from y; to y; then f(yx) be-
comes f(yi1) and U(y;) will be transformed correspondingly to U(yn) for some
m € {1,2,...,N'}. The terms in the sums will remain unchanged since each y;
corresponds to a distinct y, under the kth transformation (k = 1,...,N!). Fur-
thermore, the Jacobian of the kth transfornation is unity for every £k = 1,...,NL
Thus, after interchanging the order of summation and integration we sce that the
(r, s)-entropy of the ordered sequence is given by

=1

mw=e@--pf] [ f’(yl)(ijl Ulyn)) [(gvl—i(yy))] | 1),

N1
As 3 U(ym) =1 almost everywhere, we conclude that

m=1

o= {[ oo 2] )

By taking limits we can easily check the corresponding expressions for (r = 1
37é1)a(T?él,S:I)and(r:l,s:l), O
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Remark 1. The result obtained for » = 1 and s = 1 is the one proved by
K. M. Wong and S. Chen [9].

Theorem 2. The (r, s)-entropy of a sequence of any N random variables is de-
creased if the sequence is ordered. The dccrease in entropy is given by
(I-NEDYHHX)+ 2 =17,  s#1

0<&EX)-E(Y) <
) ) {log2N!, s=1.

Equality on the left hand side holds iff f(y;) =0, j =2,...,N! almost everywhere
in Q, where Q is the region in which f(y;) is defined. Equality on the right hand

side holds iff f(y;) = f(y2) = ... = f(ym)-
Proof. Letr#1,s#1. Since
(S fyi) <1, 0<r<1
ZN' fr y] 2 ]_, r> 1,

multiplying by f"(y;) on both sides and integrating we get

(E; 1f(YJ)) < Jov fTy1)dyr, 0<r<1
T ___'_______d
RN ) Eﬁ-vzl fr(y;) 2 [on fT(y1)dy:, 7>1.

Let us consider the function

n(x) = (2 -1)? (7,':_; -1), r#1,s5#1, r>0.

It is casy to verify that 5 is increasing in > 0 for 0 < r < 1 and decreasing in > 0
for » > 1. Thus, applying n to both sides we obtain

H:(Y) < HY(X)

for all » > 0 and any s. Therefore, by continuity of H:(Y) and H:(X) with respect
to r and s, we have

£5(Y) < £3(X)

for all » > 0 and any s. Equality holds iff f(y;) =0 (j = 2,...,N!) almost every-
where in 2, where € is the region in which f(y;) is defined.
On the other hand, applying Jesen’s inequality we have

. Z L f7(y5)

(M) —ow el
N Z T I (v5)
N
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ie.,
(S fy)” [=Nr1 0<r<1
E;\Ql friy;) LSNILor>1

Multiplying by f"(y1) on both sides and integrating we get

,1f( y;)" ) {? NIt fon fT(n1)dyy, 0<r<1
/ e ) _;V'lf( )(YI SN fon iy dyr, 7> 1.

Thus, applying 7 to both sides, we obtain
H:(Y) > NFETTHS(X) 4+ (21 —1)" (Nt =)
for all r > 0 (r # 1) and any s.

Therefore, by continuity of H:(Y) and H:(X) with respect to r and s, we obtain
the announced result. Finally, equality holds iff

fly1) = f(y2)=...= f(ym).
O
3. THE (r,s)-ENTROPY MEASURE OF THE ORDER STATISTICS
Now we consider a sequence of N random variables Xj,..., Xy that are i.i.d.
with p.d.f. f(z). Then the (r, s)-entropy measure of each of the random variables is
defined as

(H(X;) = (2"=° - 1)~ [(f f(z)7 dz )T —1] r>0,r#1, s#1,

Hi(X:) = (2'=° = 1)~ l{exp2 ((s = 1) [ f(z) log, f(z)da) — 1}
5:(Xi)=ﬁ r=1, s#1,
H}(X;)=(1-r)""log, [, f(z)" dz, r>0,r#1, s=1,
H(X:) = — fy f(2)log, f(2) de, r=1,s=1

The p.d.f. of the kth-order statistic Y}, after the sequence X,,..., Xy has been
observed, is given by

5 =N (} 2 D) IP6 0 - Fol¥ ).
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Note that we now write fi(y) instead of fi(y). We define the entropy of the
kth-order statistic Y) as

((H: (Vi) =(2'—*-1)7! [(fR fk(y)’dy):“:—: - 1], r>0,r#1, s#1,

Hi (i) = (217 = )7 { expy (s = 1) fy fu(®) logs fuly) dy ) — 1},

E(Yk) = r=1, s#1,
HY(Y:) = (1 —7r)""log, [y fr(y)" dy, r>0,r#1, s=1,
{ H(Y:) = = [, fi(y)log, fi(y) dy, r=1,s=1,

and we also dcfine, sce Wong [9], the average unified (r,s)-entropy of the order
statistics Y as

_ 1 X
E(Y) = N ) EX(Y).
k=1

In the following theorem we establish an upper bound for the difference between
the average unified (r, s)-entropy measure of the order statistics and the unified
(r, s)-entropy measure of a member of the original random variables.

Theorem 3. Consider N i.i.d. random variables X,,...,Xx. Then

SA=-N"YHH:X)+ " -1, r
< log, N, r

£2(X) - EX(Y) {

Proof. Lets#1,r#1. Consider the random variable Z, taking the values

zk=AN’(]Z::>T(F(y)k’I(1*F(y))N~k)rf(y)Tdy, k=1,...,N

with probability %, and consider the function

Then
E[8(2)) = LXN; {[v(¥2]) (For - Fe)" ) s v} =
v=1
#(512) = { 5 i L (520 (For= - ) ™) s ay }—
-
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Applying Jensen’s inequality, we have
-1

{% Z/ v(io) (P a-F) ) 107 a b
Z { / ( _11>T(F(y)’°‘1 (1-F)" ™) fw)ray }—

when s_} < 0or ::} > 1. Subtracting 1, multiplying by (25 —=1)~! (s # 1) on

r—

both sides and simplifying, we get
-1

=

= 3_1[{ Z/N’( '1) (Fw*( —F(y))N—k)rf(y)’dy} B _1]

<H:(Y), r>s.

As

XNZ [~ (N__ 1) Fu)*' (1- F@)" ™ fw)]
k=1

<[ S NEDFO 0 -FO) W] e
> [ NEDF@ - F) 6] o<

N .
and 3 N(¥ ) F(y)k-1(1 - F(y))N_kf(y) = N f(y), dividing by N on both sides
k=1

and integrating over R we get
SN e N ) dy,
r r>1
N Fy)t(1-F fly)| & ’
- Z/ [ (32 P - ren o) g e
O0<r<l1.
Thus, applying 5 to both sides, we obtain

m=l{vzh G :1> (=) soran) -
(v f(y)’dy]% 1)

2 21-s _
Ns— 1 = NS 1 _
T /f(y ay |’ ‘1} ST

- N+ S semrer
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Therefore we conclude that

s—1pys Nes—l -1
H:(Y)>2N HT(X)+—2ﬁ’ rT>Ss
and the result follows by taking appropriate limits for r and s. O

Theorem 4. Suppose we have N i.i.d. random variables X;,...,Xn. Then

Sy s, _l
E(X) = E3(Y) 2 0 V(r,s)e{(r,s)/r>0 s>2 r}

Proof. Let us define hy(y) = N(Y ) F(y)*1(1 - F(y))N—k. From Minkow-
ski’s inequality we get

(f (g%hk(y)ﬂy))rdy)m

(fn &) m) f@rdy)” = & & (famlwrswray)”,
k=1

r>1,
N 1 1/r
>kE 'ﬁ(fn ’lk(y)’f(y)’dy) , 0<r<l.
=1 .
Then
N 1 r %
(/ (Z—hk(y)f(y)) dy)
R\ =1 N
4 N a2zl
r r 1 T y—
<(Z F (e fwrdy)) 7,
k=1
1 s—1
(3.1) < . (r> >0)0r(0<r<l1 =<0
> ( > # (o he() F(u)" dy)" ) -
k=1
L (r>1, =1 <0or(0<r<1, = >0).
Now we consider the function
t(z) = m’f-_:—:, r#1.
< 1.

If we cousider the random vaua,ble Z, tdkmg tlle values

N

1/r
k=(/hk(y)'f(y)’dy) . k=1,2,...,N
R
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with probabilities 7{,—, it follows that
N
1 1/r
B2 =5 3 ( [ o sy ay)

t(E[Z])=( f) / () F) dy )’ )_
k=1

r—1

2) = (| mwrswray) ™,

and

=1

N
E[u2)] = 5 Z / hew) F7 ay)

Applying Jensen’s inequality, we have

z /T =
(2 ([ morsora)™)
<w kN 2 (Jn he(w)” f(y)’dy) risl>lorr=l <0

N '___.
> %El (Joh@) fy) dy) ™", O0<re=l<l,
3.2 B

Combining inequalities (3.1) and (3.2), we get

(/R( 3 N’lk(y)f(y))r )%

N
S%g_:(fnhk(y) f) dy)=T, s>1,s>2-1
| & =1
>ﬁ§(fnhk(y f)rdy) =", s<1,s>2-1L

Subtracting 1 and multiplying by (2175 —1)"! (s # 1) on both sides of the inequality,

we have

.~

HY(X) = (2" - 1)-‘(/R (kzijb-huy)f(y))rdy) B

N 2=1

fuydy) T -1} =Hx(Y)

k=1
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for all (r,s) € {(r,s)/r >0, s > 2— 1}. Therefore, by continuity of H3(X) and
H3(Y) with respect to r and s, we get

EXX)~EE(Y) 20 ¥(rs) € {(r5)/r>0, 522 71}

g

Now we study some properties of the (r, s)-entropy measure of the order statistics
when the p.d.f. of the original i.i.d. random variables is symmetric about the mean.

Theorem 5. For an i.i.d. sequence of random variables X,, ..., Xy, N being odd,
whose members have a p.d.f. that is symmetric about its mean u, the (r, s)-entropy
measure of the order statistics has the following propertics:

(1) £(Yk) = EX(YN-k+1),

9) 2E:0) _ _ OEi(Yn-i41)
oK ok

(3) L) =0 if k= NfL,

(4) Let f(x) be the original p.d.f. of the random variables X, ..., Xy and £;(Yx)
the (r, s)-entropy measure of the kth-order statistic. Let us define X} = aX, + b
(a > 0), then the corresponding (r, s)-entropy measure of the kth-order statistic is
given by

bl

1-s

—strs a -1
a' er(Yk)"’F_—l" s#1

H(Y)) + logy a, s=1.

& (YI:) =

Proof. (1) Since

=1

H(YN-k41) = (2'7° = 1)_1{(/R fN—k1 ('J)‘dy)m - 1},
taking y = p + 2 we get
H(Yn-ks1) = (21 - 1)-1{(/R FRokm(p+2) dz)% - 1}.

As the p.d.f. of the original i.i.d. random variables is symmetric about the mean,
we have

fe(u+y) = fn—ks1(n—y).

Therefore
1 0-) = @ =7 [ Fiknatu—2) @)™ -1}
= (21-s _ 1)—1{(/R f[(t)dt)ﬁ _ 1} — HV).
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By continuity of H; with respect to r and s we get
E(Yk) = E(YN-k+1)-

(2) Using the definition of H:(Y}) and differentiating with respect to k, we have

OHZ (Vi) _ o1—s _ r—1 afk(y)
20— @0 {( [ ) 2V 4y ).
We know that (Wong and Chen [9], p. 281)
fily) _ . F(y)
or = (= D0 +1og 75 ) ey)
where
~ k—1 1 N—k-l—
i=1 ¢ i=1 g
with the property that D(N — k + 1) = —D(k) for k < X£L
Suppose ko < N—;—‘- Let y = p+ z, then
6HS() ) (s=1)r ., =t
(5 Jieso = (21- s_1)(T_1){(/Rfk“(u+z)dz)

| S5+ 2)( = Do) + 1o g ) K }

—1) 1
(21 s(s_ 1),._1 /fN ko1 (14 )(lz)

[ it o=2) (DY = ko 1) - tog 12T =) 0y )

= [3_&%&1)]’: ko

By continuity of H3(Y:) with respect to r and s we get

08, (Ye) _ _ 96 (YN-kt1)

ok ok .
(3) Ifk= then (2)
OF:(Yup)  OEX(Yiny)
ok ok
Therefore 962 (Y:) ' N+1
ok - 0if k= —
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4) If g(z) and G(z) are the p.d.f. and the c.d.f. of X7, respectively, g(z) = L f(2=2)
and G(z) = F (37"), where F is the c.d.f. of the random variables X,

gr(r) =N (f:;) G 1(x)[1 - G()] N_kg(.'::)

(L) - Y -

a

.,XN, then

(=)= ()
Therefore
= {( )
=@ -7 {( [ =i J)‘“)ﬂ—l}
()™ -2} ()
(O

Now the result follows by continuity of HZ with respect to r and s

An example illustrates the result obtained above

4. NUMERICAL EXAMPLE

Consider the logistic p.d.f. with location parameter x and scale parameter a, i.e

1 exp(—%=£
fafmay=2—2PC) i ep uen, aso,
a (1+ exp(—=£))

so that the variation of the parameter a results in a family of p.d.f.’s symmetric
about p. It can be easily checked that

a’n?
E(‘Xr//“v a) = p, V(‘¥/I‘v a) = 3

» F(z/p,a) = <1+exp(— x—”)).—l

a
and

prtafma =2 () e (-

x -'u>(1_.+exp (d'a:;u))—zv-l'
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Let us define H(s,r, k,N,a,u) = H:(Yy), where Y} is the kth-order statistics of
a sequence of N random variables that are i.i.d. with p.d.f. f(. /i, a). First, let us
suppose i = 0 and a = 1. Gradshtein (3], p. 305, shows that

+oo —IT ] -
[ ey = oo {o(n- 2R,

provided Re(%) > Re(n) > 0 and |Im(B)| < nRe(y). Taking p = (N — k +1),
v=(N+1)r, f=0andy=1, we get

. - N ~-1\" e~(N—k+‘1)rzd$
/Rfy'k(m)dx =N (k—l) /R—(l+e—m)(N+l)r
N =1\"T(r(N - k+1))T(rk)
=N (k—l) L(r(N+1)

which yields

N™(N-"Y'T(r(N =k +1D)(rk =
H(s,r,k,N,l,O):(21‘5—1)"1{( (k“)p((.:((NH); o )) "1}’
S#l, 7‘#11

and

H(1,r,k N,1,0) =

L { TV T~k 1))[‘(1’};)}
(1-7r)log2 3 T(r(N +1)) )
r#1,

where log = log, and I'(p) = f x2P~le~* dz. Furthermore

-1 too
H(l’l’kaNalvO)= iO_g—Q/ fYk(‘T)longk(z)dx

—00

=i£§{ 1og[N( 11)]+(N—k+1)/~:oxfn(x)d$

+ (N + 1)/ log(1 +e~%) fy, (z) dz }

Now, from the relation

U(n)=-y+ Z—
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where ¥(2) = -Llogl(z) = LG s the psi (or digamma) function and v =

dz I'(z)
~ [ e ®logadz = 0.577,215... is Euler’s constant, we obtain after substitut-
ing u = TJFI-?— and u = —log(l + e™®) in the integrals f_t: zfy, (z) dr and

12 10g(1 + %) fy, (z) dz, respectively, that

1 N-1 “1 &1
H(1,1,k,N,1,0) = @{ —log[N(k_1>] +(N—k+1)< = ;)

i=1 =1

+(N - 1)N(1Z__11> NZ—R (N i k)(‘I)N'k“j(‘J\TiW}

3=0

and
H(s,1,k,N,1,0) = (2! = 1) {exp, ((1 = s)H(1,1,k,N,1,0)) -1}, s#1.

For more results about order statistics of the logistic distribution see the book of
Balakrishnan N. and Cohen A.C. [2].
Finally, we have

al~* -1
(I,H(S,1‘,k,1,0)+'2—l—_s—1, S#l
H(S,II', k’ N7a7”) = Ioga B
H(s,r,k,1,0) + —— =1
(8,1, bt )+10g2’ S

The (r, s)-entropies H(s,r, k, N, a, 1) of the order statistics are plotted in Figures 1
and 2 for various values of a. The number of input samples N is taking to be seven.
The median (kK = 4) is the point that has globally maximum entropy and the first-
order and seventh-order statistics have globally minimum entropy.
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