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ORDER STATISTICS AND (r, s)-ENTROPY MEASURES 

M . D . E S T E B A N , D . M O R A L E S , L. P A R D O , M . L . M E N É N D E Z , Madrid 

(Received April 10, 1992) 

Summary. K. M. Wong and S. Chen [9] ana lyzed the Shannon entropy of a sequence 
of r andom variables under order restr ict ions . Using (r, s)-entropies , I .J . Tancja [8], these 
results are generalized. Upper and lower bounds to the entropy reduct ion when the se­
quence is ordered and condit ions under which they are achieved are derived. Theorems 
are presented showing the difference be tween t he average entropy of the individua l order 
stat is t ics and t h e ent ropy of a member of t he original independent identically d is t r ibuted 
(i.i.d.) popula t ion . Finally, the entropies of the individual order statistics are studied when 
the probabil i ty density function (p.d.f.) of the original i.i.d. sequence is symmetr ic abou t 
its mean . 

Keywords: Unified (r, s ) -entropy measure, order s tat is t ics, Shannon entropy, logistic 
d is t r ibut ion . 

A MS classification: 62B10 , 62G30 , 94A15 . 

1 . INTRODUCTION 

Statisticians have been studying the properties of order statistics for some time 
and have applied them to solve nonparametric inference problems like tolerance in­
tervals for distribution, coverages, confidence interval estimates for quantiles and so 
on. Recently, applications of order statistics in diverse areas have been found such 
as in engineering, signal processing, speech processing, image coding, image and pic­
ture processing, echo removal and image coding. A partial list, with very readable 
references, can be found in K. M. Wong and S. Chen [9]. 

Th is work was partially suppor ted by the Direccion General de Investigacion Cientifica 
y Tccniai (DG1CYT) under the contracts PB91-0387 and PB91-0155. 
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Here we examine some interesting properties of order sequences and order statistics 

using the (r, s)-entropy studied by Taneja [8]. A numerical example with the logistic 

distribution is given. 

Suppose we have a set of random variables A"i, A r
2 , . . . , K/v, with joint probability 

density function (p.d.f.) f(x) at a point x = (.XT, . . . ,£yv). If we write exp2(a) to 

denote 2a , then the (r, s)-entropy of the sequence X = (A r i , . . . , XN) is defined as 

£°r(X) = { 

H?(X) = ( 2 1 - - I)"1 [(/R„ / (*rdx) ; '= ! - l ] , r ji 1, a # 1, 

Ht(X) = ( 2 1 - - l ) - 1 { e x p 2 ((a - 1) /R„ / (x ) log 2 / (x ) dx) - l } , 

Щ(X) = ( l - r ) - Ч o g 2 / R N / ( x Г d x , 

[H(X) = - / R „ / ( x ) l o g 2 / ( x ) d x , 

r = l, sфl, 

rфl, s = l, 

r = 1, s = 1 

for all r G (0, oo) and any s G (—00,00), provided the integrals exist. 

This measure includes as particular and / or limiting cases the measures studied 

by Shannon [6], Renyi [5], Havrda and Charvat [4], Arimoto [1] and Sharma and 

Mittal [7]. 

For every set of random variables Ai ,A 2 , . . . , A"A/, the following limit relations 

hold 

Щ(X) = lim Щ(X), Щ(X) = lim Щ(X) 
r—•! s-łl 

and 
H(X) = lim H?(X) = lim Hr(X). 

s-> l r->l 

We arrange the set of random variables Ai, A"2,..., XN, in ascending order of 
magnitude so that 

-Y(l) ^ ^ ( 2 ) ^ • • • ^ -^(/V) 

where the subscript (n) denotes the index of the variable after ordering. For con­
venience of notation, we denote the set after ordering by Yi,Y2,... ,YN so that 
Yn = A'(n). Then Yn is called the nth-order statistic (n = 1,. . . , N). 

Let fi(x) be the p.d.f. of Xi and let Fi(x) be its cumulative distribution function 
(c.d.f.). If Xi,..., XN are independent, then the joint p.d.f. of the order statistics 
Y = (Yi,.. ., YN) at y = (yu . . . ,yN) is given by 

h(yi) f2(yi) /Iv(-yi) 

/(У) 
/l(?/2) /2(?/2) //V(žl2) 

/i(y/v) fi(yN) ÍN(yN) 
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for yi < y2 < ... < yN and f(y) = 0 otherwise, where j j is the permanent which is 
defined like the determinant, except that all signs are positive. The p.d.f. of Yk at y 
is given by 

+ Fi(y) F2(y) FN(y) 
k — 1 rows 

Fi(y) F2(y) FN(y) 

h(y) /a(tf) fN(y) 
1-F^y) 1-F2(y) \-FN(y)h 

П(У) = 
1 

(N-k)\(k-l)\ 

1-F^y) 1-F2(y) l-FN(y) ì N — k rows 

The extension of the derivation of the joint p.d.f. of Y = (Yi,..., Y}v) to the case 
where (K i , . . . , Xjy) are depedent, having a joint p.d.f. /(rci,.. . , x/v), is given by 

N\ 

r(y) = £ /(yi)» 
j = i 

where yj is the jth permutation of the elements in the vector yi = (1/1,..., yjv) and 

2 /1^2 /2^ . . . ^ VN-
In the following sections we examine some interesting properties of the (r, s)-

entropy of the ordered sequence Y = (Yi,..., Y^) and of the individual order statis­
tics. 

2 . ( r , s ) -ENTROPY MEASURE OF AN ORDERED SEQUENCE 

In this section a result is presented showing the amount of (r, s)-entropy reduction 
when the sequence is ordered. Upper and lower bounds to the (r, s)-entropy measure 
reduction and conditions under which they are achieved are derived. 

Theorem 1. The (r, s)-entropy measure of the ordered sequence Y = (Yi,..., Y}v) 
is given by 

' ( 2 1 - - 1)-X[(/R„ / ( y i ) r ( | | ; ^ j ' d y i ) ^ - l ] , r -1 1, s ± 1, 

( 2 1 - - I)"1 [exp2 {(s - 1) /R„ / ( Y l ) log2 ( g f(y5)) dYl } - l ] , 

(l-r)-Mog2 [fRN / r ( y i ) ( | | ; ^ l ' dyi], 

- / R W / ( y i ) i o g 2 ( E / ( y j ) ) d y i , 

^S(Y) = { r = l, sф\, 

rф\, s = \, 

Г = 1, 5 = 1 
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for all r £ (0, oo) and any s € (—00,00). provided the integrals exist. 

P r o o f . The region of integration of the joint p.d.f. of the ordered sequence Y 

is governed by the condition -00 < yi ^ y2 ^ . . . ^ 2/yv < 00. To incorporate this 

condition into the expression for / (y ) , we use the unit step function 

y>0 

y<0 

and introduce the notation 

U(y) •C: 
£ % i ) = U(yN - ?//v-i) • U(yIv-i - y/v-2) • . - • • U(y2 - t/i). 

As Ur(yi) = U(yi), the unified (r, s)-entropy of the ordered sequence can be rewrit­

ten as 

tfr
s(Y) = (2 1 - s - l ) - 1 | [^ (cl(yi)E/(yi))rdyi '"' - l } 

= {21--lГ1{[JлиU<y1)-{ZZLiftoďULxrbk) 
E7=i /r(y;) 

dyi 

Interchanging the order of integration and summation, we obtain 
IV! ,. r /T l̂V! n__ \\T^ 

/Ls(Y) = (21- -1)-1! [ZjRS fT(y»)u(yi) (£7-../(*))' 
Ľ ï i /r(Уi) 

dyi 

]**-}• 

. - - 1 

" - ' } • 
If we change the variables in the fcth integral from y^ to yi then f(yk) be­

comes /(yi) and U(yi) will be transformed correspondingly to U(ym) for some 

in € {1 ,2 , . . . ,7V!}. The terms in the sums will remain unchanged since each y, 

corresponds to a distinct yn under the fcth transformation (k = 1,...,IV!). Fur­

thermore, the Jacobian of the fcth transformation is unity for every fc = 1 , . . . , IV!. 

Thus, after interchanging the order of summation and integration we see that the 

(r, s)-entropy of the ordered sequence is given by 

n) 
ВДv)-P'--i)-{[Л,r(ï-.)(|^.,)[(gÄ]d.1]=

!.1}. 
IV! 

As YI U(ym) = 1 almost everywhere, we conclude that 
m = l 

tfr
s(Y) = (2 1 - 8 - 1) -{[/, Г(yi) 

(Ľf=i/(y,))r 

Ľîli ГШ J 
dyi Ч 

By taking limits we can easily check the corresponding expressions for (r = 1, 

s # 1), (r 7- 1, 5 = 1) and (r = 1, s = 1). D 
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R e m a r k 1. The result obtained for r = 1 and s = 1 is the one proved by 
K. M.Wong and S. Chen [9]. 

Theorem 2. The (r, s)-entropy of a sequence of any N random variables is de­
creased if the sequence is ordered. The decrease in entropy is given by 

{ (1 - N\s~l)(Hs
r(X) + (21"5 - l ) " 1 ) , s # 1 

0 ^ ( X ) - £ r * ( Y K U ' ' 
| > g 2 N ! , .s = l. 

Equality on the left hand side holds iff f(yj) = 0, j = 2 , . . . , N\ almost everywhere 
in ft, where Q is the region in which / (yj ) is defined. Equality on the right hand 
side holds ifff(yi) = / (y 2 ) = . . . = / ( y w ) . 

P r o o f . Let r ^ 1, s ?- 1. Since 

(Efii/(yj))r U - , o < r < i 

£?=i/r(y;) U i , r>i, 

multiplying by / r ( y i ) on both sides and integrating we get 

L fr( ,(Ef=i/(yj)) r . / ^ / R , T ( y i ) d y i , 0 < r < l 

»* lyi) E£i/r(yi) y i UvT (y i )dyi , r>l. 

Let us consider the function 

n(x) = (21"5 - l ) - 1 (x& - 1), r -- 1, s ^ 1, r > 0. 

It is easy to verify that 77 is increasing in x > 0 for 0 < r < 1 and decreasing in x > 0 
for r > 1. Thus, applying 77 to both sides we obtain 

H°r(Y) <. H:.(X) 

for all r > 0 and any s. Therefore, by continuity of HS(Y) and HS(X) with respect 
to r and s, we have 

£ r
s(Y)<.£ r

s(X) 

for all r > 0 and any 5. Equality holds iff / (yj) = 0 (j = 2 , . . . , 1V!) almost every­
where in H, where ft is the region in which f(yj) is defined. 

On the other hand, applying Jesen's inequality we have 

E?=I/(У;)У 
m ) < 

U Ľ Í I / Ҷ У І ) 

^ JV! 

^ Ľ S I Г ( У І ) 
. ^ л r t l 

0 < r < 1 

r > 1 
ЛГ! 
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I.Є., 

( E j i / W T f ^ ! ' - 1 - 0 < r < l 
EflifT(yj) U^vr-1, r > i . 

Multiplying by / r (yi) on both sides and integrating we get 

/ 
JR" 

(E; = I/(УІ)) 7 >N\r-1JRMfr(y1)dyi, 0 < r < l 
r ( y i )

 E £ I / ^ Í ) ^U-V^/RWtyOdyi, r>i. 

Thus, applying i] to both sides, we obtain 

Hr
s(Y) ^ Nl^H^X) + (21"5 - l ) " 1 ^ ! 5 " 1 - 1) 

for all r > 0 (r 7-= 1) and any s. 
Therefore, by continuity of H*(Y) and H*(X) with respect to r and 5, we obtain 

the announced result. Finally, equality holds iff 

/ ( y i ) = / ( y 2 ) = . . . = / (yN!) . 

D 

3. THE (r,s)-ENTROPY MEASURE OF THE ORDER STATISTICS 

Now we consider a sequence of N random variables A"i,...,Ar;v that are i.i.d. 
with p.d.f. f(x). Then the (r, 5)-entropy measure of each of the random variables is 
defined as 

' H?(Xi) = (2l-s-\)-1[(fRf(xydx)^ -\], r > 0 , r # l , * # 1, 

H!(Xi) = (21"* - I)"1 { exp2 ((s - 1) /R f(x) log2 f(x) dx) - l } , 

£aAXi) = { 

H1
r(Xi) = (l-r)-1log2JRf(xYdx, 

{H(Xi) = -JRf(x)\og2f(x)dx, 

r = 1, sф 1, 

Г > 0, Г ф 1, 5 = 1, 

Г = 1, 5 = 1. 

The p.d.f. of the kth-order statistic Yjt, after the sequence Ki,... ,XN has been 
observed, is given by 

My) = ^ " ^ [ F f o ) ] * - 1 ! ! -F(y))N-kf(y). 
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SЧП) = { 

Note that we now write fk{y) instead of f£{y). We define the entropy of the 

fcth-order statistic Yk as 

'-Tr'(n) = (2 1 - - l ) - 1 [ ( / R A(v) r dy)^- l ] , r>0, r # 1, *-i 1, 

#f(Yfc) = ( 2 1 - - ^ - • { e x p a ((* - 1 ) / R /fc(»)log2 fk{y)dy) - l } , 

r = 1, s - U , 

Hl
r{Yk) = (1 - r ) " 1 log2 /R fk{y)rdy, r > 0, r - - 1 , s = 1, 

I .ff(Kfc) = - /R /fc(y) log2 A(tf) d», r = 1, s = 1, 

and we also define, see Wong [9], the average unified (r, s)-entropy of the order 

statistics Yk as 

_ 1 N 

^•(n-^T-E^n). k = l 

In the following theorem we establish an upper bound for the difference between 

the average unified (r, s)-entropy measure of the order statistics and the unified 

(r, s)-entropy measure of a member of the original random variables. 

Theo rem 3. Consider N i.i.d. random variables Ki,... ,Xpj. Then 

^ (1 - N-l)(H;(X) + (21-* - l ) " 1 ) , r > 5 , s + 1 
\{X)-£ţ{Y) 

^ log2 At, Г ^ 5, S = 1. 

P r o o f . Let s 7- 1, r ^ 1. Consider the random variable Z, taking the values 

Zk=JRNr(N2iy(F{y)k-l{l-F{y))N-kyf{yydy, k = l,...,N 

with probability jj, and consider the function 

* ( * ) - = * * - * , s # l , r - M . 

Then 

E[*(Z)1 = }j £ { I Nr (fc I!1)' (TO*"'*- - F{y))N-k)rf{yrdy}^, 

*(E[Z}) = {^J2l^(N2lJ(F{y)^{l-F{y))N-kyf{yrdy^. 
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Applying Jensen's inequality, we have 

Iv 

< 

{^JAtt)'(F^-™ry««riyy-' 

htUA^l)'^1*-™")'™'*}*' 
when ^ < 0 or ^ j > 1. Subtracting 1, multiplying by ( 2 1 - s - 1) _ 1 (s ^ 1) on 
both sides and simplifying, we get 

1 
>l-s 

As 

{фA^Ï(ғ^i-ғыП''^f 
ŹЩ(Y), r>». 

Y,HN

k:l)F(iJ)k-l('-F(y))N-kf(y)]T 

k=i ^ ' 

' ^ Í E N(N:l)F(y)»-i(l-F(y))N-kf(y)}r, r > 1, 

ž[ŽN(N:l)F(y)»-i(l-F(y))N-kf(y)]r, 0 < r < l 
V L A : = 1 J 

IV , IV-A: and £ N{N
k:l)F(y)k-l(l - F(y))iV Kf(y) = N f(y), dividing by TV on both sides 

k=i 
and integrating over R we get 

фAtlh^-^-м*' 
(<wiRNrf(yy<\y, 

r>\, 

>-hSRNrHv)r*y, 
0 < r < I. 

Thus, applying ?/ to both sides, we obtain 

Iv 
1 {^EjAtlíi^-^-^n^^r-

21 

\гs — 1 N5"1 - 1 
= N-lЩ{X)+ 2l_ÿ_v *ЄR, r є 
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Therefore we conclude that 

я г ' (Г)^ jv- 1 я;(X) + - г 

tfs-l _ 1 
Г > S 

2l-s - 1 ' 

and the result follows by taking appropriate limits for r and 5. D 

T h e o r e m 4. Suppose we have N i.i.d. random variables Xi,..., X^. Then 

£*(X)-£*(Y)>0 V ( r , 5 ) e { ( r , 5 ) / r > 0 , 0 2 - £ } . 

,N-k P r o o f . Let us define hk(y) = N(1Zi)F{y)k-1(l - F(y)) /V \ From Minkow­

ski's inequality we get 

( /R(E>*)«»))'*)"' 

£(!<,(bYi>i.(yrm'dyy''=tt,(uwHyrd,y" 1/r iV 1/r 

[^ ^^(/RЛfcЫVÍУГdy) 1 ^ 

r > 1, 

0 < r < 1. 

Then 

(3.1) 

(/.(g^H'*)"' 
< ( £ jr(/R'"(»)'/(!')'d»)",)rfc{. 

V f c = l ' 

(r > 1, £ r > 0) or (0 < r < 1, *=*• < 0) 

^ ( E ^ ( / R M j / ) 7 ( y ) r d 2 / ) 1 / r ) r ^ , 

(r > 1, f=\ < 0) or (0 < r < 1, J=[ > 0). 

Now we consider the function 

t(x) = rrr^rrr, r ^ 1. 

This function is convex when r f-̂ y > 1 or rf— < 0, and concave when 0 < r^5~ < 1. 

If we consider the random variable Z, taking the values 

(УRltfc(2/)r/(?/)rd2/)1/Г, fc=l,2,...,7V 
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with probabilities -^, it follows that 

£[zl = ^ £ ( / M y ) 7 ( y ) r d y ) 1 / r , 

t{E[z}) - = ( ! £ ( / /tfc(y)7(y)rdy)1/r)r'_1, 
^ / c = l j R ' 

t(Z) = ([hk(yrf(yrdy)~^, 

and 

E[ť<<Z)] = ÑІl{ Ыv)rЉ)rdy)r-\ 
k=i J ӣ 

Applying Jensen's inequality, we have 

1 N r i 
д ғ E ( / MyYЯУYdy) 

fc=i , ' R 

iЛVř=т 

3.2 

< £ Ľ ( /R M У ) 7 ( У Г dy) ; = i , rŞ=\ > 1 or rÄ=1 < 0 
fc = l 

ž JT Ľ (/R MУYЯУYdy)^, 0 < r ^ < 1. 
fc=i 

Combining inequalities (3.1) and (3.2), we get 

(/.(S^w/w)'*)" 
š * Ľ ( /R M У ) 7 ( У Г d y ) ľ : 1 , O 1, « > 2 - ì 

fc=i 

^ ғ Ž ( / R M y ) 7 ( y ) г d y ) ^ , в < l , Í > 2 - І . 
fc=l 

Subtracting 1 and multiplying by (21 s -I) l (s ^ 1) on both sides of the inequality, 

we have 

H'r(X) = ( 2 1 - - 1 ) - 1 ( / ( E ^ M y ) / ( y ) ) r d y ) ' _ 1 

> ^ E ^ r i { ( / R M y ) 7 ( y ) r d y ) ^ - i } = /7J(Y) 
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for all (r,s) G {(r,s)/r > 0, s ^ 2- \). Therefore, by continuity of H$(X) and 
H*(Y) with respect to r and s, we get 

£*(X)-£*(Y) > 0 V(r,s) G {(r,a)/r > 0 , O 2 - J [ 

Now we study some properties of the (r, s)-entropy measure of the order statistics 

when the p.d.f. of the original i.i.d. random variables is symmetric about the mean. 

Theorem 5. For an i.i.d. sequence of random variables X\,..., XN, N being odd, 
whose members have a p.d.f that is symmetric about its mean u., the (r,s)-entropy 
measure of the order statistics has the following properties: 

(l)£*r(Yk) = £?(YN-k+i), 
/9x de;.(Yk) _ oe;:(YN.k+i) 
\L) Qk — dk > 

(3)-*£-- = 0if*=--±- , 
(4) Let f(x) be the original p.d.f. of the random variables X\,..., XN and £*(Yk) 

the (r,s)-entropy measure of the kth-order statistic. Let us define X* = aXn + b 
(a > 0), then the corresponding (r,s)-entropy measure of the kth-order statistic is 
given by 

w ; ) = (al"^(yfc) + -^i' "" 
lff.!(n) + logaa, s = l. 

P r o o f . (1) Since 

H°(YN.k+1) = ( 2 1 - - 1 ) _ 1 { ( / fN-k+iivWv)7^ ~ - } , 

taking y = \i + z we get 

H°r(YN-k+i) = (21- - I)-1 {(J fN-k+i(n + z)dz)^ ~ l}. 

As the p.d.f. of the original i.i.d. random variables is symmetric about the mean, 
we have 

/*(/* + V) = / .V-*+I(A* - y)-

Therefore 

i/r
s(Yw_fc+1) = (2 1 - - l ) - 1{(/ /^_ f c + 1 (M -z)dz)^- l} 

= (21- - 1Y1{( jT ^(Odt )^ - l} = H°(Yk). 
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By continuity of H? with respect to r and s we get 

e°(Yk) = e°(YN_k+1). 

(2) Using the definition of H*(Yk) and differentiating with respect to k, we have 

F = (2--1)-{(/R/n»)*)-,^,/R/r-«^%}. дHí 

dk 

We know that (Wong and Chen [9], p. 281) 

9h(v) ( „ „ , . , . F(v) = (-^) + l 0 g T ^ ) ) ^ dk V w ^ 6 i - I 7 0 J ) > 

where 
fc—l /V-fc 

г -*—' г 
ť = l i = l 

IV+1 with the property that D(N - k + 1) = -D(k) for k < ^ 
Suppose ko <. --_):-. Let y = n + z, then 

[-^fc-]fc=fco-(2 l-S-1) ( r-1){(/RAo(l< + ^ ^ ) 

//^(^^(-^(M-Hogj^^^d,} 

=(21-^%1();-i){(/R^-^^-^1-)^"1 

/ /^-fc0+i(M - *)(o(!v - h +1) - log l~/{^_~z)
z)) dy } 

= r ^ ^ ( Y ^ - f c + 1 ) i 
L dk Jfc=fcu" 

By continuity of H*(Yk) with respect to r and s we get 

ae'(Yk) = ag r

s (Yy-fc + 1 ) 
afc at . ' 

(3)If fc= " - ± - , then (2) 

d£r
s(Y«£i) Sf;(YH^i) 

Sfc = dk ' 

Therefore 
d-^=0ifk = ^ . 

dk 2 
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(4) Ug(x) and G(x) are the p.d.f. and the c.d.f. of X*, respectively, g(x) = ^f(^) 

and G(x) = F(^), where F is the c.d.f. of the random variables Xu . . . ,.K;v, then 

5 i t ( .T)- . iV^" i
1 )G f c - 1 ( . r ) [ l -G(a ; ) ] J V - f c p( .T) 

= K*-"i)'*-,(^)[1-F(^)]*'"'^(^) = :A(^i)-
Therefore 

WW)-(.--!)-{(/, i/K^L-i)*)^-!} 

- c--')•'{(/. ^ o * ) ^ - 1 } 

= a'-H'(l,)+5|^i. 

Now the result follows by continuity of H* with respect to r and 5. D 

An example illustrates the result obtained above. 

4. NUMERICAL EXAMPLE 

Consider the logistic p.d.f. with location parameter \x and scale parameter a, i.e. 

i ( x—/* ^ 

f(x/fi,a) = - 6 X P i ~ » 2 , i e R , / » 6 R , a > 0 , 
« ( l + e x p ( - ^ ) ) 2 

so that the variation of the parameter a results in a family of p.d.f.'s symmetric 
about tt. It can be easily checked that 

E(X/f,,a) = n, V(X/n,a) = ^f, F(x/»,a) = ( l +exp ( - ^ ) ) _ 1 

and 

/nW„..» = ^ ( t - 1
1 ) » p ( - , W - , + 1 ,^)( 1 + e Xp(-^))-"-' 
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Let us define H(s,r, fc,N, a,fj) = H*(Yk), where Yk is the fcth-order statistics of 
a sequence of N random variables that are i.i.d. with p.d.f. /(,// t,a). First, let us 
suppose f.t = 0 and a = 1. Gradshtein [3], p. 305, shows that 

y - o o (e^/7+ e -*/7)^ ^ e x P ^ ^ 1)J r { u ) 

provided Re(^) > Re(fi) > 0 and |Im(/3)| < nRefr). Taking // = (N - fc + 1), 
v -zz (N + l)r, /3 = 0 and 7 = 1, we get 

I fN-l\r f e" ( i V ~ f c " r l ) r x da; 
/ / ^ s j r ( t - i ) l ( i ^ 

._ vf!v-iyr(r(iv-fc + i))r(rfc) 
~ i V \k-l) r(r(iV + l)) ' 

which yields 

, f/.V(^- 1) rr(r(AT-fc + l))r(rfc)\ST •, 
g(,,r,t.N.,.0) = (2--l)-{( U - ' r ( ^ + 1)) ') -l}. 

s / 1 , r - - l , 

and 

m , 1 AT i n . 1 r !V(L"/)' 'r(r(A t-fc+l))r(rfc)^ 
tf(l,r,fc,.V,l,0)=(i_r)log2log| T{r(N + l)) / ' 

r # l , 

where log = loge and T(p) = /0°° xp~1e~x dx. Furthermore 

-1 r+o° 
H (1,1, fc, N, 1,0) = — J /y, (x) log / n (x) dx 

=i^{ -iog K* -" 11)]+(iV --+-)£**&** 
+ (N + 1) J log(l + e~x)fYk(x) dx }. 

J — OO 

Now, from the relation 
n—1 -

$ ( „ ) - - _ 7 + ^ T , 
ż = l 

334 



where $(z) = ^ l o g l X z ) = Y& is the psi (or digamma) function and 7 = 

- /0°°e"xlogrcda; = 0.577,215... is Euler's constant, we obtain after substitut­

ing u = 1+*__. and u = - log( l -f e~x) in the integrals / * ~ XJYL (X) dx and 

f-& log(l + G~x)fyk (x) dx , respectively, that 

«(i.i,ft.jv.i,o)-si5{-io-[iv(*-1

I)]+<Ar-* + i)(gi-gl) 

3=0 

and 

H(5,l,k,N,l,0) = (2l~s - l r^expa ((1 - s)H(l, l,k,N, 1,0)) - l}, s 7- 1. 

For more results about order statistics of the logistic distribution see the book of 

Balakrislman N. and Cohen A.C. [2]. 

Finally, we have 

H(s,r,k,N,a,џ) — < 
o Я ( g , r , t , l , 0 ) ł ° . _ , _ | , sф\ 

H(s,r,k,l,0) + 1^, . = 1. 

The (r, s)-entropies H(s, r, k, TV, a, /I) of the order statistics are plotted in Figures 1 

and 2 for various values of a. The number of input samples jV is taking to be seven. 

The median (k = 4) is the point that has globally maximum entropy and the first-

order and seventh-order statistics have globally minimum entropy. 
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Figure 1. (r, s)-entropy of the order statistics with logistic distribution 
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Figure 2. (/*, s)-entropy of the order statistics with logistic distribution 
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