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EXPLICIT CONJUGATE GRADIENT METHOD 

WITH PRECONDITIONING 

JlTKA KRfZKOVA, P E T R VANEK, Plzen 

(Received February 5, 1993) 

Summary. An algorithm of the preconditioned conjugate gradient method in which the 
solution of an auxiliary system is replaced with multiplication by the matrix M = / — LJA 
for suitably chosen u> is presented. 
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1. INTRODUCTION 

The preconditioned conjugate gradient method requires to solve an auxiliary sys­
tem of linear algebraic equations in each step. The aim of this paper is to describe 
an algorithm of the preconditioned conjugate gradient method in which the solution 
of an auxiliary system is replaced with multiplication by the matrix M = I — a;A 
Convergence properties are analysed and acceleration of the process in comparison 
with the standard conjugate gradient method is shown. Generalization based on the 
multiple usage of M is presented, too. 

2 . ALGORITHM 

We will solve the system of linear algebraic equations 

Ax = b 

where A is a positive definite real matrix of order n. We will denote by {x,y) the 
usual scalar product in jRn, the norm in Rn being ||-c|| = (x,x)?. 
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For an arbitrary linear operator L on Rn, \\L\\ denotes the operator norm of L 
defined by the vector norm ||_r|| and \\L\\A denotes the operator norm of L defined 
by the vector norm \\X\\A = (Ax,x)*. 

For an arbitrary positive definite operator B on .Rn let us define the so called 
condition number 

j / r> \ ^max(-j) 
COnd(£) = -T Tjrr-, 

where Amax(-9) denotes the maximal and Xmm(B) the minimal eigenvalue of B. Let 
us denote by a(B) the spectrum of B. Let C be a positive definite operator on 
Rn. Usage of the preconditioned conjugate gradient method algorithm follows the 
scheme: 
Step 1. Given e > 0, XQ = 0, let k = 0 and 

r0 = b - AXQ = b, 

h0 = C_1ro, 

Po = h0. 

Step 2. Do 

ІPk,rk) 
Qfe = 

(2.1) 

(Apk,PkY 

Xk+\ = xk +<*kPk, 

n+i = r f c -akApk, 

hk+i = C~lrk+\, 

a _ (rk+i,hk+i) 
Pk~ (rk,hk) ' 

Pk+i = hk+i + PkPk-

Step 3. Let Ck be an estimate of cond(C_1.A). If Ck ^ ' ^ 1 ^ £2, exit else A; = k -h 1 
and go to Step 2—see [1]. 

Let us define the error e(x) by e(x) = x - x, where x = .A-16. 
Then for the error of the preconditioned conjugate gradient method the following 
formula can be derived—see [3] 

(2-2) ||e(*.)|U < 2 K ^ £ ^ - M ||e(x0)|U. 
y^/cond^-M) -F ly 

Let us note that for C = I the algorithm above is just the standard conjugate 
gradient algorithm (i.e. without preconditioning). It is evident that the smaller 
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cond(C"1.A), the better estimate (2.2) we get. Now let us define C = (I - UJA)~1, 
where UJ is positive, not greater than [Amax(-4)]""1. Therefore C""1 = / — u)A and the 
solution of the auxiliary system of linear algebraic equations in (2.1) becomes multi­
plication by the matrix M = I — u)A. In the estimate (2.2) the number cond(C_1.A) 
will be replaced by cond(M.A). Our goal is to estimate cond(MA) and not only to 
show that cond(M.A) < cond(.A) but to get a quantitative estimate of this fact. Let 
us note that cond(A) occurs in (2.2) when using the standard conjugate gradient 
algorithm (i.e. C = I). 

Theorem 1. Let A be a positive definite real matrix of order n, let 0 < Ai -̂  
A-2... ^ An be the eigenvalues of A, let UJ = (An + Ai)"1 , M = I — u)A, where 
UJ € [0,SJ]. Then 

(2.3) cond(MA) < f(uj) cond(.A) 

where 
1-шX л for 

/и = 
r ^ 7 »w€[°.2fc] 
4Awu;(l1-a>A1) for U €Gfc'4 

The function f(uj) is continuous and decreasing in [0,uJ], 

/<») = '. /(a:)-5-^-- « - i C ^ ) ' -
R e m a r k 2.1. For UJ € [0 ,^-] the inequality (2.3) is in fact the equality. 

P r o o f . All eigenvalues of MA are of the form 

Hi = Ai(l-cjAi), i = l , 2 , . . . , n 

and Hi > 0 as MA is positive definite. If we choose UJ ^ (A» + Ai)""1 for all i then 
Mi = Ai (1 — u;Ai) is the smallest eigenvalue of M.A, i.e. fi\ ^ Mi for all i. For UJ G [0, UJ] 
obviously UJ ^ (Ai + Ai)"1 and therefore yn = min A»(l - uXi). Hence there exists a 
j such that 

J / » ^ > 4 \ A j ( l - a ; A j ) 
C O n d ( M > l ) = A x d - ^ A x ) -

Let us denote by p the quadratic polynomial 

p(t) = t(l-UJt). 

The minimal value of p equals ^- and it is attained for t = £j. It is evident that 

max p(fc) max p(t) 
cond(MA) = ^ — . 

P(Ai) p(Ai) 
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F o r u e (db> C l , i.e. UJ satisfying A2 ^ ^- ^ An we get 

cond(Afj4) ^ - — — - = — — — cond(^l), 
4a;p(Ai) 4Anu;(l - uLAi) 

for UJ € [0, 2X7] t n e correspoding formula reads 

cond(Af.4) = ~cond( .4). 
1 — o;Ai 

The above inequalities prove (2.3). The remaining properties of f(uj) are easy to 
prove. • 

3. GENERALIZATION 

Generalization of the above algorithm will be presented in this section. 
Generalization follows the following idea: Instead of preconditioning by the matrix 

C = M~l we will use preconditioning by the matrix C = (MfM)~l, where Mf = 
/ — ujfAr, Af = M.4 for u/ suitably chosen. To give estimates for condition numbers 
we start with some notation. 

Definition 3.1. Let us define sequences {-4»}, {Mi} as follows: 

Ao = A, UJO = UJ, M0 — I - UJQAO, fo(^o) = /(<*>), 

Ai+x = MiAi, M£+i = I - uJiAi, 

where uji is a positive real number. 

Theorem 2. Let A be a positive definite real matrix of order n. Let {-4»}, {Mi} 
be sequences from the previous definition. Let us denote by Ai(.4i) the minimal and 
by\n(Ai) the maximal eigenvalue of Ai for alii. Let ussetuJi = (An(i4i)+Ai(.4i))~1. 
ForuJi e {0,oJi} 

cond(.4t-+1) < / i(u/ i)cond(.4 i), 

where 

fi being continuous and decreasing. 

P r o o f . The proof follows from Theorem 1 immediately. D 

312 



Corollary 3.3. For large cond(Ai) we have 

f(
 l u- * 

/.(w.) « ^ 

/i being decreasing in [~\~~~J)^i]' 

P r o o f . The proof follows from the fact that 

r ( l \ = Xn{Ai) 

,l\2Xn(Ai)) 2A„( .4,)-A 1 (A i ) ' 

. ,_v 1/, Ai(A,-)\-

D 

4. PRACTICAL REMARKS AND NUMERICAL EXPERIMENTS 

The full scheme for determining C~lx is the following: 

C~lx = [ | MІX, 
i=0 

where 

Mi = I -UiAi, 

Ai = Mi-ii4i_i, 

-40 = A 

The number k is chosen. Let us note that this scheme can be very easily programmed 

using recursion. For large k the prevailing operations are those for determining Ax, 

which can be done paralleliy. When using the algorithm described above we must 

choose u>i for i = 1,2... k. We will start with /o, Lo chosen so that 

/o > Ai(A0), L0 > An(A0), lo + Lo^ 2An(,40). 

Generation of Wi, i = 0 , 1 . . . follows the scheme: 

1 
CJi = 

ІІ + LІ' 
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-Łt+i = 4á;i, 

h+i =h(l -Vili). 

It is not difficult to see that Wi just defined fulfil the condition 

To test the algorithm we consider the model problem 

- AM = / ( * , y) on H = (0,1] x [0, lj 

u = 0 on dil, 

where 

/(«,») = x ^ + л/xye**-. 

Using the discretization on the square grid by the finite differences method leads to 

the system of linear algebraic equations Ax = b* Computations were carried out for 

the initial choice IQ =0.1, L0 = 8. The results can be found in the following table: 

ÍÌ k . iteraŕions tìme of computing 
0 263 47s 

3600 1 141 Зls 
2 73 20s 
3 39 14s 
0 233 29s 

2500 1 119 18s 
2 : 61 l l s 

3 31 8s 
0 119 3.90s 

625 1 62 2,48s 
2 36 L76s 
3 20 1.38s 

Required accuracy was 10 1 3 , n denotes the number of equations. 
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5. UNIT REALIZING PRECONDITIONING 

Unit Precondition; 
Interface 
const 

n = 2500; {dimension of the problem} 
k =3; {number of recursive steps} 

type 
Vector = array[1..N] of real; 

Procedure SetOmega(11,12 : Real); 
Procedure Prec(var x,y : Vector; k : integer); 
Procedure Ax(var x,y : Vector); 
implementation 
var 

om : array[0..k] of Real; 

Procedure Ax(var x,y : Vector); 
begin 
(Implementation of y= Ax ) 

end; 
Procedure SetOmega(ll,12 : Real); 
var i : integer; 
begin 

for i := 0 to k do 
begin 
om[i] := 1/(11 + 12); 
11 :=11* (l-om[i] *11); 
12 := 1/(4* om[i]); 
end; 
end; 

Procedure M(var x,y 
Procedure A(varx, y 
var xl : Vector; 
begin 
if k = 0 
then Ax(x, y) 
else 
begin 
M(x,xl,k- 1); 
A(xl,y,k-1) 
end; 

end; 

Procedure M(var x,y 
var 

xl : Vector; 
i : integer; 

Vector; k: integer); Forward; 
Vector; k : integer); 

Vector; k integer); 
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begin 
A(x,xl,k) ; 
for i := 1 to n do 

y [ i ] : = x [ i ] - om [k] * xl [ i ] ; 
end; 
Procedure Prec(var x,y : Vector; k integer); 
var xl : Vector; 
begin 

i f k = 0 
then y : = x 
e l s e 

begin 
M(x,xl,k- 1); 
P rec (x l ,y ,k- 1) 

end; 
end; 
end. 
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