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Summary. One method for computing the least eigenvalue of a positive definite matrix
A of order n is described.
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1. INTRODUCTION

The goal of this paper is to describe one possibility how to compute the least
cigenvalue of a positive definite matrix A of order n. The method described is in fact
the power method part of which is the choice of an appropriate starting approxima-
tion of the corresponding eigenvector. The starting approximation is determined by
solution of a less dimensional generalized eigenvalue problem.

2. CONVERGENCE

Let us consider the space R, with the usual scalar product (z,y) and the corre-
sponding norm ||z|] = \/(z,z). Let m < n. Again the usual scalar product on R,,
will be used. Let A be a positive definite operator on R,, 0 < A\; < X2 < ... < Ag,
2 < s < n all mutually different eigenvalues of A. Let p: R,, & R, be a linear
injective operator, r the adjoint operator to p with respect to both scalar products.

Lemma 2.1. Let

2 1 .
LUE(O,XI—‘;—A—’), w’#/\—J fOl’a.”].
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Then o(M) = 1 — w); is the spectral radius of M = I — wA.

Proof. Due to the assumptions, 1 — wA; > 0. We must prove
[1-—wlj]l<l—-wA forj=2,...,s.
But this inequality is equivalent to

wA; < w)\j <2-—wl,

O<w< for all j.

2
A+ /\j
The last inequality is the evident consequence of the assumption of Lemma 2.1 0O

Definition 2.1.  For any positive integer v and any v € R,,,, v # 0, let us define

|M¥+pu]|
M pol
Q(V) = T:()’(Q(v, I/),

V(v) = {5,Q(d,v) = Q(v)}.

Qv,v) =

Remark 2.1. V(v)U {0} is a linear space, for proof see Lemma 2.2.

Algorithm 2.1. for determining an approximation of A; consists in the following
steps: given v, £ positive integers

Step 1. determine 9 such that Q(#,v) = Q(v)—see Lemma 2.2.

Step 2. compute A\; = MZ’&Q

{ additional iterations are done in order to suppress remainders of components of
M¥pd with high energy, i.e. ||-la> ||

Definition 2.2. For two linear operators K, L on a linear space U let us define
a generalized eigenvalue u and a generalized eigenvector v corresponding to u by

Kv=puLv, v#0.

The set of all generalized eigenvalues will be denoted by o(K, L).

Remark 2.2. If K, L are positive definite operators on an euclidean ‘space U
then o(I(, L) is real. For further properties of generalized eigenvalues see [1] p. 383,
algorithms for computing can be found in [2].
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Lemma 2.2. V(v) is the set of all generalized eigenvectors corresponding to the
maximal generalized eigenvalue from o(K,, L,), where

K, =rM**2p L, =rM?*p.
Further this maximal generalized eigenvalue is equal to Q2(v).
Proof. K,, L, are obviously positive definite, therefore
K,v=upLwv, v#0

if and only if .
L:’KVL;ix =uz, zT= Lév

and hence
o(K,, L) = o(Ly 1K, L }).
Further , ,
2 (Kw,v)  (L,?’K,L,%z,z)
TN T T @
where z = L.%v. This equality completes the proof. O

Definition 2.3. For every \; € (A) let us denote by H; = Ker(\:I — A), let
P;: R, = H; be the orthogonal projectoron H;, g; =1 —wl;,1=1,2,...,s

Lemma 2.3. Let v € R,, be such that Pypv # 0. Then
lim Q(v,v) = o(M).
V—00

Proof. Due to Lemma 2.1 o(M) = p;. Further

pv=> Ppu
i=1
and
v+2 2
Zu I Pipvll
Q?(,v l/) — (M2"+2pv,pv) — i=1
(M2pv, pv) ~ 2
> u||Ppol|
=1
i
WPl + Y (G )Pl
= ’_2 - pff.
1Pl + 3 ("') 1Ppo?
=2
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Lemma 2.4. Let there exist v € R,,, such that Pypv # 0. Then

lim Q(v) = o(M).

v—00

Proof. To prove the statement we use the evident inequality
Q(v,v) < Q) < o(M)
and Lemma 2.3. O

Lemma 2.5. If K is a selfadjoint operator on a Hilbert space U then

IKa) _ |1Kal

> for every z € U \ Ker(X).
&zl > Tl \ Ker(

Proof.
|Kz|? = (K*z,z) < |K?x] - ||].

O

Theorem 1. Let there exist v € R,, such that Pipv # 0. Then for every 4 € V (v)
and every positive integer £

lim 1-—Q(‘6,V—|—£) =)

v—o0o w

1

Proof. At first we will prove the inequality
Qv) < Q(d,v +§)

for every © € V(v) and every positive integer £. Using Lemma 2.5 and induction we

get
X I M +E+po|| | M+pdll _
Q(d,v+¢§) = - —— = Q(v).
)= el
To complete the proof it is sufficient to apply Lemma 2.4. O
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3. RATE OF CONVERGENCE
Definition 3.1. Let us denote by
S, = R(M"p), T, = Ker(rM").

Remark 3.1. It is not difficult to see that T, is the orthogonal complement
of S,.

Lemma 3.1. For every ¥ € V(v)

(M2 - Q*(v)IIM*pb € T,.

Proof. Due to Lemma 2.2 for every & € V(v) we have
(rM**2p)o = Q*(v)(rM™p)d

which is equivalent to
rMY[M? — Q*(v)I\M"pi = 0.

Lemma 3.2. Let & € V(v), let there exist an a > 0 such that
M2 - Q2(3,v + OIIM " *pi|| < al| M**pi|.
Then there exists u; € (M) such that

|Q*(9,v + &) — pf| < a.

Proof. As
(M2 — Q(d,v + E)IIM " pi|| 2 Amin(M? — Q%(D,v + E)I)|| MY pi)|

hence
/\,m-n(M2 - Q2(f), v+8I)<a.

Since {u? — Q?(9,v + &)} is the spectrum of M2 — Q?(9, v + £)I the lemma is proved.
O

Notation. Let U be a linear space, T a subspace of U. For every linear operator
X on U we will denote by X the restriction of X on T.
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Lemma 3.3. Let & € V(v). Let us denote by
p = 1Mol

| M* po|
Then for every positive integer £

| ME[M? — Q*(v)I]M* pi||? ¢ 2b? = Q*(v)
v+€,. 2112 < "MT,,” )
| M+ pi| b

v > Q4(v).
Proof. Due to Lemma 3.1
[M? - Q* W) IM¥pi € T,,
MYpve S, =T+
Therefore
M2 — QW) I|M*pd||* = | M**2po|* — Q*(v) | M*pi|* = [b* — Q*(W)]IM " pi|*
which implies
b > Q(v).
Further
(3.1) IMEM? - Q*(w)IIM*po|* < Mz, P (6° — Q*(v)) || M pi||.
Using Lemma 2.5 and induction we will prove
M+ pi|
|M* pi|
For £ = 2 (3.2) becomes the equality. Let us suppose (3.2) holds for £ then

Mo o MY pi)|
- z - .
7o) 1M+ Epol]

£

(3.2) > b3,

Let us set
4, 2 WM M M
| M*po| M+ po| M+ pi|
then
b= A1A2, A3 > A1, A3 2 As.
Therefore

A3 2 \/AlAz = \/I;

and (3.2) is proved. Combining inequalities (3.1) and (3.2) we get the statement.
O
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Following inequalities are useful for estimating the operator norm IIM%' It

Lemma 3.4.

LIME I < IMe |- 1M, 1) - WM,
2. for every positive integer © || Mr,|| < [[M~l-

Proof. From the definition of T, it follows z € T, implies Mz € T,_;. Further

Mzl _ IM(ME )l || M|
llll | ME-tz| llell

Therefore
IME | < \Mr,_yo - - - 1M .

Now let z € T; then M’z € Ty and using Lemma 2.5 we get

M) Ml
Dzl > el

which yields 2. O

Corollary.
1M, 1 < 1M, e I < 1M |15

Lemma 3.5. There exists p; € o(M) such that

‘ Ve(M)2 = Q¥(v,v)
W?—Q%MV+5“<"M%”,QQ&%MWUV

for every v € R,,,, v # 0.

Proof. Using Lemmas 3.2 and 3.3 we get

Vo2 = Q)

luf = @@ + I <IME | S—r——

Due to Lemma 3.3
b> Q*v) 2 Q*(v,v)
for every v € R,,,, v # 0. Further

_ M@ poll (1M psll

b= < o(M)Q(v).
e I T B
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Combining these inequalities we get

Ve(M)2Q2(w) - R2(1)Q(v,v)
Q¢~1(v,1)Q(v)

luf — Q*(5,v + )| < [IM§, |

and

Ve(M)? - Q2(v,v)
Qo)

luf - Q*(b,v + )| < ||M§, |l

Remark 3.2.

1. o(M) in the estimates above can be replaced by 1.
2. The estimate in Lemma 3.5 is the better, the better approximation of an eigen-
vector belonging to o(M) pv is.

Convergence of the algorithm (2.1) was proved in Theorem 1. Estimates of the
rate of convergence are given in the following theorem.

Theorem 2. There exists A\; € o(A) such that

V(1 —wli)? - Q%(v,v)
wQt (v, V)1 —wis + Q(v,v)]|

(3.3) AL = Al < IME |-

for every v € R,, for which the right hand side is defined.

Proof. We will use Lemma 3.5. As y; =1 — wl,

lu} — Q* (v +§)| = w 5(1 - Q@,v+8)— M| 11 —wA +Q(5,v + &)l
2w = A - |1 = whs + Q(v, )|

which yields the statement. a

Remark 3.3.

1. A in (3.3) can be estimated using the Gershgorin theorem.
2. \; in (3.3) can be estimated by 0.
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