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Summary. One method for computing the least eigenvalue of a positive definite matrix 
A of order n is described. 
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1. INTRODUCTION 

The goal of this paper is to describe one possibility how to compute the least 
eigenvalue of a positive definite matrix A of order n. The method described is in fact 
the power method part of which is the choice of an appropriate starting approxima­
tion of the corresponding eigenvector. The starting approximation is determined by 
solution of a less dimensional generalized eigenvalue problem. 

2. CONVERGENCE 

Let us consider the space Rn with the usual scalar product (x,y) and the corre­
sponding norm ||:c|| = y/(x,x). Let m < n. Again the usual scalar product on R m 

will be used. Let .A be a positive definite operator on Rn, 0 < Ai < A2 < ... < As, 
2 ^ s < n all mutually different eigenvalues of A. Let p: Rm —•> Rn be a linear 
injective operator, r the adjoint operator to p with respect to both scalar products. 

Lemma 2.1. Let 

wє(°'ÃľTл:)' "Фk forаJìj 
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Then g(M) = 1 - u\\ is the spectral radius ofM = I - uA. 

P r o o f . Due to the assumptions, 1 — CJAI > 0. We must prove 

|1 - LJ\J\ < 1 — CJAI for j = 2 , . . . , 5. 

But this inequality is equivalent to 

u/Ai < u\j <2 — UJ\\ , 
2 

0 < LJ < — for all j . 
\i + A,- J 

The last inequality is the evident consequence of the assumption of Lemma 2.1 • 

Definition 2.1. For any positive integer v and any v E Rm, Vy-0, let us define 

||M"+1H| Q(v,v) = 
\\M"pv\\ ' 

Q(v) = max Q(v, i/), 

V(i/) = {fi,Q(t),i/) = 0(i/)}. 

R e m a r k 2.1. V"(i/) U {0} is a linear space, for proof see Lemma 2.2. 

Algorithm 2.1. for determining an approximation of Ai consists in the following 
steps: given */, £ positive integers 

Step 1. determine v such that Q(v, v) = Q(v)—see Lemma 2.2. 

Step 2. compute Xt = l ~ Q(w + 0 

£ additional iterations are done in order to suppress remainders of components of 

Mupv with high energy, i.e. || • |U > II • ||. 

Definition 2.2. For two linear operators K, L on a linear space U let us define 

a generalized eigenvalue /i and a generalized eigenvector v corresponding to /i by 

Kv = yLv, v ^ 0. 

The set of all generalized eigenvalues will be denoted by a(K,L). 

R e m a r k 2.2. If K, L are positive definite operators on an euclidean space U 

then a(K,L) is real. For further properties of generalized eigenvalues see [1] p. 383, 
algorithms for computing can be found in [2]. 
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L e m m a 2.2. V(v) is the set of all generalized eigenvectors corresponding to the 

maximal generalized eigenvalue from a(Kv,Lu), where 

Ku=rM2l/+2p, Lu = rM2l/p. 

Further this maximal generalized eigenvalue is equal to Q2(v). 

P r o o f . KU,LU are obviously positive definite, therefore 

Kuv = pLvv, v 7*= 0 

if and only if 

and hence 

Further 

—1 —i l 

Lu * K U L U *x = iix, x = Llv 

a(Kv,Lu) = a(Lu^KuLu^). 

__ i _ i 

2 (Kvv,v) (Lv*KvLv*x,x) 
Q (*>, v) = ~ 

(Lvv,v) (x,x) 
i 

where x = Li v. This equality completes the proof. D 

Definition 2.3. For every A» G a(A) let us denote by Hi = KerfA,-/ - A), let 

Pi: Rn -» _?.,- be the orthogonal projector on Hi, pi = 1 — CJA,-, i = 1,2,..., s. 

Lemma 2.3. Let v G Rm be such that P\pv ^ 0. Then 

lim Q(V,V) = Q(M). 
i/—>oo 

P r o o f . Due to Lemma 2.1 Q(M) = p\. Further 

s 

pv = ] T _̂7W 

and 

2>Г 2 IИHI 2 

л I ЛЛ ~*г i " ł W I r и м 

Q 2 ( v , f ) -
.2/.. .л _ (M2"+2PV,PV) _ < = 1 

(M2"pv,pv) * 
__Hi\\Pipv\\ 
i=l 

2t/-f2 ( /£• \ —t/-Г-5 7г) ИHI2) 
. _ Цл ' i - 2 "Џl 2 

iiянia+ (£-)"..piHľ 
ť=2 

D 
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Lemma 2 .4 . Let there exist v €Rm such that Pipv ^ 0. Then 

lira Q{v) = Q{M). 
V—•oo 

P r o o f . To prove the statement we use the evident inequality 

Q(V,V)^Q(V)<^Q(M) 

and Lemma 2.3. 

L e m m a 2.5. If K is a self adjoint operator on a Hilbert space U then 

H7l'2xll > J S l for everv x 6 u \ Ker(K) 

\\Kx\\ * \\x\\ l o r e v e r y * e i / \ K e . W . 

P r o o f . 
\\Kx\\2 = {K2x,x)^\\K2x\\-\\x\\. 

T h e o r e m 1. Let there exist v G Rm such that P\pv ^ 0. Then for every v G V(v) 

and every positive integer £ 

i i m l _ Q ( ^ + 0 = A i 

v—>oo (J 

P r o o f . At first we will prove the inequality 

Q(v)^Q(i>,v + 0 

for every v G V(v) and every positive integer f. Using Lemma 2.5 and induction we 

get 
HM^+V)|| HAf+Vll _ ^ 

To complete the proof it is sufficient to apply Lemma 2.4. D 
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3 . RATE OF CONVERGENCE 

Definition 3.1. Let us denote by 

Su = R(Mup), Tu = Ker(rMu). 

R e m a r k 3.1. It is not difficult to see that Tu is the orthogonal complement 
of Su. 

Lemma 3.1. For every v E V(v) 

[M2-Q2(v)I]MupveTu. 

P r o o f . Due to Lemma 2.2 for every v E V(v) we have 

(rM2u+2p)v = Q2(v)(rM2up)v 

which is equivalent to 

rMu[M2 - Q2(v)I]Mupv = 0. 

D 

Lemma 3.2. Let v G V(v), let there exist an a > 0 such that 

\\[M2 - Q2(v,v-r 0I]Mu+*pv\\ ^ a\\Mv+*pv\\. 

Then there exists in G a(M) such that 

|Q2(O,«' + 0-M?l<c*. 

P r o o f . As 

||[A/2 _ Q2 ( f i > v + t)HM''+ipv\\ > Xmin(M2 - Q2(v, v + t)I)\\Mv+tpv\\ 

hence 

\min(M2-Q2(v,V + OI)^<*. 

Since {fi2 — Q2(v, v + f)} is the spectrum of M2 — Q2(v, v + £)I the lemma is proved. 

D 

Notation. Let U be a linear space, T a subspace of U. For every linear operator 
X on U we will denote by XT the restriction of X on T. 
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L e m m a 3.3. Let v £ V(v). Let us denote by 

\\M"+2pv\\ 
||M"pO|| • 

Then for every positive integer £ 

| |Afg[Af2-g2(i/)/]Af"p6||a ^ „ 2 6 2 - o V ) 
||M"+«pt)||2 ^ " T J I 6« ' 

62 ^ <T>). 

P r o o f . Due to Lemma 3.1 

[M2 - Q2(v)i]Mvpv e r„, 

M"pt> 6S„ = 2^ . 

Therefore 

||[M2 - o2(i/)/]M"pu||2 = ||M"+2pt>||2 - Q4(i/)||M"p(S||2 = [62 -g4(i/)]||Af"pfi||2 

which implies 

62 S* QA(v). 

Further 

(3.1) ||M«[M2 -Q2(v)I)M»pv\\2 ^ | |Mf j | 2 (62 -Q4(i/))||M"pO|,2-

Using Lemma 2.5 and induction we will prove 

For £ = 2 (3.2) becomes the equality. Let us suppose (3.2) holds for £ then 

l |M"+*+xH| ;., .f ||Af"+€+-pfi|| 
l|M"pO|| " ||Af"+«pO|| ' 

Let us set 

IIM^Vll ||M"+2pi)|| HM^+^II 
1 ||Af"pu|| ' 2 ||Af"+1pO||' 3 ||Af"+«p6|| 

then 
b = AXA2, A3 ^ Ai, A3 ^ -4-2. 

Therefore 
A3 ^ yjAXA2 = \fb 

and (3.2) is proved. Combining inequalities (3.1) and (3.2) we get the statement. 
D 
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Following inequalities are useful for estimating the operator norm (|Af|j | . 

L e m m a 3.4. 

1. HAff, || < ||MT„|| • IJAfr... || • • - ftMT._._lH, 
2. for every positive integer i | |MTi | | < ||MT„||. 

P r o o f . From the definition of T„ it follows x _ Tu implies M'x G T„_,. Further 

\\M*x\\ _ ||3f(/tef<-l»)H ||Mx|| 
||x|| " ||Af€--»|| '•• ||z|| • 

Therefore 
l |Mfji<| |MT l ._£ + 1 | | - . . | |MT„U. 

Now let x £Ti then Mxx G To and using Lemma 2.5 we get 

| |M(M'x)| | | |Mx|| 
||M«x|| " ||x|| 

which yields 2. D 

Corollary. 

IIMfJK||MT|,_<+1||«<||MTo||«. 

Lemma 3 .5. Tfrere exists JJLI 6 a(M) such that 

for every v E Rm, v ^ Q. 

P r o o f . Using Lemmas 3.2 and 3.3 we get 

Jb2 - Q4M 

l / i f -Q^IZ + OI < ||A4JI V ^ ' . 

Due to Lemma 3.3 

for every v € Rm, t> ̂  0. Further 

j |M(M^pe | | HAf^Vit , . . , , , , 
b ~ ||M"+V)|| ' ||M"pO|| < <*MXK">-
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Combining these inequalities we get 

JQ{M)*fr{v)-fr{v)Q*{v,v) 
\rì-QЧw + t)\*\\*Ąџ\\ ni u ҳn2( ҳ 

Qt~l(v,v)Q2(v) 

and 

|M? - QHv, u + 0|< HM̂II y i í p ^ H . 

R e m a r k 3.2. 

1. #(M) in the estimates above can be replaced by 1. 

2. The estimate in Lemma 3.5 is the better, the better approximation of an eigen­
vector belonging to g(M) pv is. 

Convergence of the algorithm (2.1) was proved in Theorem 1. Estimates of the 

rate of convergence are given in the following theorem. 

Theorem 2. There exists A/ G (T(A) such that 

(3.3) \\x - Ail ^ ||A4 II • ^-^)2~Q'2±?h±_ 
K } ' ' " T"M uQt~\v,v)\\-u\s + Q(v,v)\ 

for every v € Rm for which the right hand side is defined. 

P r o o f . We will use Lemma 3.5. As /n = 1 - uXi 

\fi ~ Q2(v,v + 01 = ^ ( 1 - Qfa" + 0 ) - A/| • |1 -LJXI + Q(S,i /+ £)l 

^ c j | A 1 - A i | - | l - o ; A . + g(t;-i/)| 

which yields the statement. 

R e m a r k 3.3. 

1. As in (3.3) can be estimated using the Gershgorin theorem. 

2. Ai in (3.3) can be estimated by 0. 
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