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FINITE ELEMENT SOLUTION
OF A HYPERBOLIC-PARABOLIC PROBLEM

RuUDOLF HLAVICKA, Brno

(Received January 28, 1993)

Summary. Existence and finite clement approximation of a hyperbolic-parabolic problem
is studied. The original two-dimensional domain is approximated by a polygonal one (ex-
ternal approximations). The time discretization is obtained using Euler’s backward formula
(Rothe’s method).

Under certain smoothing assumptions on the data (sce (2.6), (2.7)) the existence and
uniqueness of the solution and the convergence of Rothe’s functions in the space C(T,V) is
proved.
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AMS classification: 65N30, 65MG0.

1. FORMULATION OF THE PROBLEM

By a two-dimensional hyperbolic-parabolic initial boundary value problem we
understand a problem of the following type: Let ©, 4, Qp be two-dimensional
bounded domains with Lipschitz continuous boundaries such that @ = Q4 U Qp,
QuyNNp =0, mes Ny > 0. If mes Np = 0, we get only equation (1.1)—a hyperbolic
problem. Find a function u: € = R such that uy = ulq,, (M = H, P) satisfy the

cquations
*uy 2.9 1 Oun H .
(1.1) o _”X; a—(k,]a )+f in Q% (0,T),
_ dup <~ @ [ pdup P
1.2) 5= zz: O—(Lua )+f in Qpx (0,T),
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where 0 < T < oo and ki’;f’ (x), fM(z,t) are given functions satisfying (2.3)-(2.5).
Equation (1.1) is of hyperbolic type and Eq. (1.2) is of parabolic type. The function
u has to satisfy some boundary condition, for instance

u(z,t) =0 on I'p x(0,7),

2 ou
Zl“]a vj=0 on Iy x(0,7T),

i,7=1

where I'p is a nonempty relatively open subset of I' := Q, 'y = I' = Tp and vj
denote the components of the unit outer normal to I'. The initial conditions are

u(z,0) = u° Vz € Q,

Jupy(z,0)
S =2 Vrequ,

where u?, z% are given functions. Finally, on the interface A := dQy N INp the
function u has to satisfy for all ¢t € (0,7T) so called transition conditions: At every
T E A the limit value of uy is equal to the hnut value of up and the limit value of

Z kH94Ly; is equal to the limit value of Z k£ 3L v;, where v; denote the com-

i,j=1 i,j=1
ponents of the unit normal to A oriented in a unique way. The transition conditions

are briefly written in the form

[ZkUa }H 0.

i,j=1

A motivation for studying this type of a problem is the computation of two-
dimensional electromagnetic fields in the case when in 2y the electrical conductivity
is o =0 and in Qp it is o > 0 (for similar situations see e.g. 1, 3, 5, 6, 8, 9]).

Note. The symbol C is used as a generic constant, which means that this
constant may represent various values on different places in the paper.
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2. VARIATIONAL FORMULATION
Let I'p and 'y is relatively open subsets of I" such that
'pNy =0, mes;'p +mes; 'y = mes; I, mes; T'p > 0,

where I'p consists of a finite number of disjoint arc-components, each component
being of a positive one-dimensional measure. We set

V:={ve H'(Q):v=00nTp}.
Let Qg and Qp be subdomains of  with the properties
Q=04UQp, QuNQp =0.
We shall assume that I'p satisfies one of the following three possibilities:

rnofty NndQp C I'p,
Ny naﬂpnfD =0,
Ny NdNpNT ={Q1,Q2: Q1 €Tp, Q2 ¢Tp}

and that the boundaries ' = 99, 9Qy, 0Qp are piecewise of class C3.

We define
Vi = {vym = UIQM :veV} (M=H,P).

Let G C R? be an arbitrary domain, the norm in the Sobolev space H*(G) will

be denoted by ||.|lk,c; |-l := ||-llk.e. The scalar products in the spaces L2(?) and
L»(G) will be denoted by (.,.) and (.,.)a; (v )M = (,,-)Ly(0p)- The norms in V
and in V) are induced by the norms ||.]|1, |I-ll1,0.,, respectively. We shall work with

the spaces C(T, B), Ly(I, B), Lo(I, B), where B is a Banach space and I = (0,T).
The symbol V}; denotes the normed dual of V and for f € Vjj, u € Vy we write

f(u) = (f,u)y. We set
var(t) = v(t)|ay vtel.

We shall use a form
a: H'(Q) x HY(D) — R,

where
M Ov Ow 1
(2.1) apm(v,w) = Zl/ AU 31253:1-(110 Yv,w € H (),
i,j=
(2.2) a(v,w) = ay (v, w) + ap(v,w) Yo, w € H'(Q).
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We assume
Mo\ _ M s s . —
(23) I"x] (l’) - ,‘ji (:B) (1'7] = 1721 M= Ha P)7

then a(v, w) = a(w,v) and further

(2.4) K ewlL@u) (,j=1,2,M=H,P),
2
(2:5) D kM @)&E > mE +8)  VreQm,Va,&ER,
i,j=1

where v > 0 and the domains )y D 0 Mm(M = H,P) will be specified later in
Section 3. The symbols i, will denote the strong derivatives with respect to t of
an abstract function u (for the definition see [2, Chap. IV]).

Problem 2.1. Let the form a(v,w) be defined by (2.1), (2.2), where the functions
kY satisfy (2.3)~(2.5). Let u®, z§;, f be given functions such that

(2.6) eV, 2% €L (),
(2.7) MeL,(I,wh@u)), fMeL(I,Wi(Qum)), (M=H,P).

Find a function u: T = V with the properties

u e C(I,V),
u € Ly(I, La(R)),
iy € Lo(I, V),
u(0) =u’ €V,
un(0) = 2§ € La(Q),

T T
/ {(il,v),,+(11,v)p+a(u,v)}dt=/ (fo)dt Vo€ Ly(I,V).
(1] 0

218



3. DISCRETIZATION

We shall approximate the domain 2 by a domain ,, with a polygonal boundary
the vertices of which lie on I'. Let T, = {I\,..., K} be a triangulation of €2,,. Let
o, be the set of all nodes in 7;,,. We shall assume

on C 0, on,NON, CT,
-fD N r1.4‘\1 C On;

the points of ' where the condition of the C3-smoothness is not satisfied, belong to

On.

We shall consider only those triangulations 7, that at most two vertices of each
triangle lie on I'; such triangles are called boundary triangles.

Let ' be a boundary triangle and let By, By, B3 be its vertices, By, B3 € I'. Let
T be the part of I' which is approximated by the segment B; Bs. The closed curved
triangle ' with two straight sides B; Bz, B2Bs and one curved side I is called the
ideal triangle associated with the triangle Ii'. If we replace all boundary triangles in
T,. by their associated ideal triangles we obtain the ideal triangulation 7;¥. We shall
assume that k' ¢ K or K C K9 for every K € T,.

Every triangulation 7, consists of two subtriangulations 7, u, Tn,p such that

T =To,n U TP, TounNTyp=0.

The subtriangulations 7, p has all properties described in the preceeding text.
With cvery triangulation we associate three parameters

h=max hy, h= min hx, 6= min
rer, KeT. X KeT,
where hy; is the length of the greatest side and 6y is the magnitude of the smallest

angle of the triangle X' € 7,,. We shall assume that the following conditions are

satisfied:
ﬁn
’—>C0>0 n=1,2,3...),
L‘Il
0,>60>0 (n=1,23...),
lim h, =0.
n—00

Let {At,}32, be a sequence independent of {h,}32; with the properties

n=

T
At, >0, lim At, =0, r,:= — isinteger.
n—00 t

n
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Let the bounded domains 2, Q0 satisfy

oo

U@wuM)con (M=8H,P),
n=1

lj (Que,) cq,

n=1

where M,, is the domain with a polygonal boundary associated with the triangula-
tion 7o M.
We define finite dimensional spaces
X, ={veCR): v|K is linear for all K € T},
Vao={ve X,:v(B;)=0 VB;€o, NnTp}.
For v € X, the symbol vps denotes the function from the space C(M,) which is
linear in every triangle K € T, u satisfying
VM (B,) = ’U(Bi) VB; € o, ﬂﬁn.
We define
VoM = {UM;'U € Vn}.

Further, we define the forms

(3.1) an,(0,0) = 3 / k,gla(;;Ma‘”“_” : Vowe X,

i,j=1

a, =ay, +ap,.

We shall approximate the terms a,(v, w) and

(fo)ni= Y (o)

KeT.

using a quadrature formula of degree of precision d = 1 on each triangle. The results
will be denoted by a! (v, w) and (f,v)!.The following lemma can be found in [9, 10].

Lemma 3.1. Let the assumptions (2.3)-(2.5), (2.7) be fulfilled. Then for all
v,w € X, we have

32) |an (v, w) = ag (v, w)| < Challvll0, i .,

(3.3) I(f(8),0)n = (F(8),0)n] < Chall S )l 0 allvln g, VEET,
(3.4) laj, (v, w)| < Mllvlh . llwllig.,

(3.5) Bllvli o, < an(v,v),
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where the constants C, M, 8 are independent of n and of the functions v, w.

Let © € H'(R?) be the Calderon extension of the function v € V. Then by [9, 10]
there exists a sequence {v,}32, of functions v, € V;, with the properties

Jim o, =3l 0, =0, lim |loas — 3ll1,m, = 0.
Now we can formulate the discrete form of Problem 2.1:
Problem 3.2. Let n be a given integer and let
t; = ilAt, (i=1,...,7).
Find Ui € V,,(i = 1,...,7,) such that
(3.6) (62U, )., + (BuU,0)p, + ap(Up,0) = (f(t:),0)s Yo € Vi,

where 6,U}, = (Ui — Ui™1)/Atyn, 62U} = (6,U% — 8,Ui™Y) /At with U := U2y, —
At,Z2,,; here {U}32, is a sequence of functions U2 € V,, with the property

(3.7) lim U3 - @|ly.0, =0,

where @° denotes the Calderon extension of the function w® € V, and {Z2,,}2, is
a sequence of functions Z%;, € V,y with the property

(3-8) Jim. W22y — 24 llo,n,. =0,

where 29, € L2(R?) is the extension of the function 29 by zero.

Relations (3.4) and (3.5) imply:

Theorem 3.3. The solution U} of Problem 3.2 exists and is unique.

221




4. A PRIORI ESTIMATE
First we shall define the set

Vo= U {ueV:a(u,v)=(f,v) YveV}
f€L2(R)

By [4] we have
Lemma 4.1. The set V, is dense in the space V.
Lemma 4.2. There exist sequences {"S%}, {"Z%}, {™Z%}, {"U°}, {"fM} such

that ™SY € C§° (), ™Z% € C (), ™Z% € C(Np), ™U° € V and ™fM, mfM
mfM ¢ L, (1, I'VJO(QM))(I\/I = H, P) with the properties

(4.1) ("S%, v )y + (MZ%,v)p + a(™U°,v) = (™f(0),v) Vv €YV,
(4.2) tim (|25 ~ 2y llo.n = 0,
(4.3) lim |"U° - %, =0,
m-—00

: mgM M —
(4.4) A 1P = e (7w @) =

. meM _ M —
(4.5) Jim |7 f Ile(,’W;(QM)) o,

where u°, 29, fM are the data of Problem 2.1.

Proof. By regularization [4] we can construct sequences {"f¥}(M = H, P)
with the properties (4.4) and (4.5).
Lemma 4.1 implies the existence of sequences

™0 € Ly(y), ™% € La(Qp)

such that the solutions ™u® € V of the elliptic problems

(4.6) a(™®,v) = ("F(0),v) = (MY, V) — ("2, v)p VwEV
fulfil
(4.7) lim ||™u® —uO||; = 0.

m-—>00

The density of C§* () in L2(Qp)(M = H, P) uinplies the existence of sequences
(4.8) Sy € CR(Qn), ™Y € CR(Qu), 2% € C(Qp)S
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with the following properties:

(4.9) Jim |"SE - "sYllo.n =0,
(4.10) Jdim |["ZE — 23 llo.ur =0,
(4.11) lim |"Z5 — "2Rllo,p = 0.

Let ™U° € V be the solution of the problem (4.1). From (4.1) and (4.6) it follows
that

I"U° = "™l < CUI™SE = "shillo,st + ™23 — 2R lo,P)-

Thus, by (4.7), (4.9), (4.11),

(4.12) ll_l'r:’° I™U° - u°||; = 0.
The results now follow from (4.8)-(4.12). a

Now, to obtain an a priori estimate in Lemma 4.5, we shall formulate the following
auxiliary discrete problem using better input data than in Problem 2.1:

Problem 4.3. Find "U: € V,, (i =1,...,r,) such that

(4.13)  (B2"UL, o), + (6. ™UL,v)p, + al(™Ui,v) = ("f(t:),v). YveV,,

n

where ™UQ € V, is the solution of the discrete problem

(4.14)  o(™U2,v) = ("f(0),v) — (I Sy, 0)u, — (Iy "ZB,v)p, VO EV,
and

(4.15) mz0, =I1H2ZY.

Here IMw denotes the interpolate of a function w € C(Qnar).

In the same way as Theorem 3.3 we obtain:

Lemma 4.4. The solution "U} of Problem 4.3 exists and is unique.

We set
"Zi =6."U,, ™S,=6"U;,

the symbol A™ denotes the backward difference of n-th order with respect to .
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Lemma 4.5. For the solutions ™U: of Problem 4.3 we have

Tn
I"Sksllo. o, < C D I™Skpllo,p, At < C, ZII"‘Z‘III a. <G,
e

where the constant C is independent of m and n.

Proof. We can treat the equality (4.1) as a special case of equalities (3.6) for
i = 0. Subtracting (3.6) for ¢ and 7 — 1 and setting v = ™S, we obtain

m‘l"ll 1mim1. I/m mi_l
(416) (A™SL S, + 3= ("2, "25) + al ("2 AZE) =
We have
(4.17) (A™S}, ™S} ”S ull§ i, = ||S oa, + 5 "ASnHHO.H..‘

Using the symmetry a/ (v,w) = a’(w,v), we similarly obtain
1 ol
2 TL

After summing (4.16) from ¢ = 1 to ¢ = j and using (3.7), (3.8), (4.16), (4.17),
(3.3), (3.4), we find

al("Zi, AZE) =

(mzz mzt) _ _;_a (m -1 ﬂ'LZl 1) + Il (AmZ:;,AmZi).

I"S20R 1, + Zu"‘zwlop,ﬁnmz . +Z||Amzt||19,,
n

i=1 i=1
. < m A 17121
(1.18) a1+ 5 ;(A 169, A"Z0)L)
Using summation by parts we obtain
Jj
(4.19) Y _(ATf(t), A™Z});,
i=1

= (A™f(t;),"Z3)n Z(N "f(tir1), "Za)h — (AT (41), "2 )

=1

From (3.3) and from the mean value theorem we can estimate

(4.20) Col(A™FM(81),™Z]) s, |
< Col(A ™M (t1), "Z0) m. | + Col(A™FM (t1), "Z0) b, — (A™ M (01),™Z2) |
< CIA™FM ) 0,0 M2l Mo + ChallA™FM () 00,00, M 2R N1, M

< OBt Mo (7,1 (g2ay) " Znll ot < OB
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Similarly we obtain
Col(A ™M (83,20, | < CALN™ Mo (7.1 2,00) "2 i

and using an elementary inequality

(4.21) |ab] < ea®/2+b*/(2¢) Va,be R Ve >0,
we find
(4.22) Coll(A™7M (1), "2, | < Atu] (€ + 3 i) "

Further, we have

tita .
Colla "Mt €€ [ [ IOy ey

- t“

tigr .
< CAt, / 1™ (@), o0, 4O
t

i—1
tig /2
scmn(zAtn / ™M @I o ,, do ) :
ti—1

From (4.22) and (4.21) we derive

1 = m mryi
(4.23) = Co| S (AT ™M (ti41),"Zi) |
n i=1

j-1

(bt 00 30 120 M1 M
tig 1/2 .
c}j(Atn / IO g, d0) 12,

j—1
. 1 t .
mgeMy2 - mozi |12
<l ”Lz(l,w;(ﬁu)) +2At“z 1" Zali, ..
1=

Substituting (4.20), (4.22), (4.23) into (4.18) and (4.19) we obtain

mopi || 1 7 j J mopyi
@24) I"Sil,m, + - At Zu Zallo,p. + 512, + D 1A ™Z 1,0,
i=1
ji—-1

SC+3 At ZI!"‘Z’IIIQ..

We obtain the assertion from (4.24) using the discrete form of Gronwall’s inequality.
0O
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5. THE ASSOCIATED FUNCTION

The following lemma can be found in [9, 10}; it is a special case of results proved
in [7].

Lemma 5.2. There exists a linear operator Ii3: C(Kd) —» H'(KY) n C(K'Y)
such that every function w € C(I'9) satisfies
a) Iidw is uniquely determined by the relations

(I¢w)(Bf*) =w(Bf) (i=1,2,3),

where BX are the vertices of both K and K'¢;

b) the function Iilw is lincar along both straight sides Bf BfX, BX BX of the
curved triangle K'Y;

c) ifw(BX) =0 (i =1,2,3), where BX,BY €T, then Iilw = 0 on the curved
side of K4,

d) if w € H*(K'Y) then

llw = Idwlly gia < ChEF|lwllg, ki (k=0,1),

where the constant C does not depend on hyx and w.

Definition 5.2. Let w € X,. The function @: Q,, UQ — R is called the natural
extension of w if

W=w onf,, w|K,d . pIK,. Kk i mes(Kd — K) > 0,

where p is the linear polynomial satisfying pl K= w| P

Definition 5.3. Let w € C(Q). The function Iidw € H'(Q)NC(Q) is called the
ideal interpolant of w if

(Iidw)| gia = Idw VK“* € Tidy ~ Tams
Ild lK" PKlK ’ld erdMnn,M’

where pg is the linear polynomial satisfying px(PX) = w(PK) for i = 1,2,3 and
M =H,P.

If w € X,, then the function
= I'Yw e HY(2) N C@Q)
is called the function associated with w.
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Let us set

Tn=Qn—ﬁ, wn=Q—ﬁn,

TaM = Mn — Qy, wnM = Qp — M.
We have
mes(e,) < ChZ, mes(snpr) < Ch2 (e = 1,w).

By [9, relations (3.12), (3.17), (3.25), (3.42)], we have for k=0,1 that

(5.1) lomlle,m < Cllwnmlle,m,,  ll@lle < Cllwllkq,.,
(5.2) 1Tl enne < CRY Nwptllins,,  @lle, < ChY 2wk,
(5.3) lop — @alle,m < Challwmlli,n,, 10 = @k, < Challw|lkq.

for all w € X,,, wheree = 7,w and M = H, P.
Relations (5.1) and Lemma 4.5 give us the desired form of a priori estimates:

Lemma 5.4. Let the assumptions of Problem 4.3 be satisfied. Then we have

(5.4) ™82 llo,n < C,
(5.5) Z I™S% pllo,pAtn < C, Z imZil3 < ¢,
im1 im1

where the constant C is independent of m and n.

6. THE C(I,V) CONVERGENCE
We start with some definitions of the finitc clement Rothe’s functions
" (t) = U 4 8, UL (t - tiy)
1AS [t,’-l,ti] (2 = 1,...,1‘n)
mz wp(t) —'"Z Ly ’"Z,’,P(t-—tl 1)

and the step functions

M (0) = "0 M (t) = "U;,)
™2, (0) = "T, ™in(t) = "T,,
"0 (0) = ™23 ™in(t) = "2}
_0 and _ 4 I'E[ti—lat‘i] (’izl,...,'f'n),
mza(0) =7 ma(t) ="2,
"5, (0) = 59 () = ™S,
"5.(0) = ™S ™50 (t) = S,
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where bars and hats are the symbols for natural extension and associated function
introduced in Section 5. Finally, we put

@) ="M ) e (et (=1,...,ma),AT(0) = MY (1)
Using standard arguments, we conclude from Lemma 5.4:

Lemma 6.1. Let the assumptions of Problem 4.3 be fulfilled. Then there exists
a function ™u € C(I,V) such that

(6.1) ™i € La(I,V), ™y € C(I,Ly(Qp)), ™iin € L2(I, L2(Qn)),
™u(0) =™, ™up(0) = M2y

and a subsequence {Un, } of the sequence {U, } which we shall further denote briefly
by {Ux} with the properties

(6.2) ™I =™ in C(T,La(N)),
(6.3) M =™, ™i, =™ weakly in La(1,V),
(6.4) M2 = ™u weakly in Lo(I,V),

mZn = ™ug in C(I,L2(Qn)),
(6.5) ™Zenw = ™uy  weakly in  Lo(I, V),
(6.6) M$ky — ™iy weakly in L‘Z(I,LQ(QH)).

Lemma 6.2. The function ™u from Lemma 6.1 is the unique function satisfying

T
6.7) /0 {(Mi(r), v(r) i + (Mi(r),0(r)) p + a(u(r), v(r)) } dr

/ "ty e dr Vo e La(LL V).
A |

Proof. A) Let v € Ly(I,V) be any function. The symbol & € Ly(I, H*(R?))
denotes the Calderon extension of the function v (see [9, Lemma 3.9] ), that is

120, (1,111 rey) < CMVllLacr vy
"—’In = .

Similarly as in [10, 31.4 Theorem] we can construct a sequence {v,} of functions
vn € Lo(I,V,,) with the property

(6.8) Jim |5 — vn| La(nav@en) = 0.
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B) First we rewrite the equation (4.13) to the form

(6.9) ("5 (8), (1) + ("3(2), 9(2)) p + a(Mak(t), e (1))
3 3 4
+) ") + D "Bi(t) + D "Ch(t)
=1 =1 =1

3
= ("fe(t),™0k(t)) + D TDL(t)  Vtel,
=1

where the forms ™AL, ™BL, ™C!, ™D} are defined as follows:

(6.10) TAL(E) = (M3k (1), Ti(2)) , — (M8 (2), D (D))

(6.11) TAL(E) = (" (1), Te(2)) y — (3K (), T(D))
mAR () = ("5 (1), Tk(2)),,, — (MBk(2), Tk (D)), ,

(6.12) "Bi(t) = (M (), Tk(t)  — (M2k(8), k(1))
"Bi(t) = ("Zk(t), Uk (t) ;; — (M2 (), Tk(2)) s

"Bi(t) = ("2 (1), (1)), , — ("2 (1), Tk()),, .,
"Chm () = apr (Mar (), Te (1)) — am (Mk(2), 9k (2)),
"Cim () = anm (MBk(8), Ta(t)) — anm (Min(2), Tr(2)),
"Citn () = Gy (M0k (1), Th (1)) — Gy, (MTk (2), T (1)),
"Ciu () = ajy, (W (t), (1)) — an, (T(2), Tk (2)),

1TCL(t) = Z CLM? l = 11213145
M=H,P
"Dy (t) = ("M ), Tem(®) — (PFY (), Bem(2)),

(
"Dim(t) = (" (1) vw(t)),w (" (1), Tem (2))
ka (t)— (m (t)!'ka(t)) ( fl:“(tkaM(t))M‘.’

™Di(t)= Y. Diy, 1=1,23
M=H,P

C) Now, we shall prove the relations

T

(6.13) a) lim mAL(t) =0, 1=1,2,3,
—>c0o 0
T

(6.14) b) Jim mBi(t) =0, 1=1,2,3,
—»00 0

wim’
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k—o0

T

(6.15) c) lim / mCL(t) =0, 1=1,2,3,4,
0
T

(6.16) d) lim/ mpi(t)=0, 1=1,23.
k— o0 0

a) From (5.4), (6.8), (5.1)-(5.3) we estimate

| / 0] < [ IOl B0~ (O
T
< [ o0 - 00Ol dt < Ch [ oo, < O,
0 0
T . T
| [ mazo]< [ 1o - mouollou o) lo.u o
0 0

T
< Chy / 175k ()llo.x, dt < Ch,

l/o LGNS / 15 (8) e 1T ()l

E=T,w

<Ch 3 / 15 ()l ok (0o 1, i < Ch.

E=T,w

b) We can prove the relation (6.14) analogously.
c¢) Similarly we obtain

T T
(6.17) / mCl, ()] < C / k() — 9(B)ll1m1 < Chs,
c’T oT
©18) || mciuw|<c / 1(t) = 4 (&) lar < Ch,
OT
| metuo] < ¥ / T ()1 15 (Ol

E=T,w

(6.19) <Ch 3 / I (Ol N (Ol 0, < O

E=T,w

and from (3.2) we have

T T
(6.20) | [ motu®] < Oh [ I s @), dt < Ch.

The relations (6.17)—(6.20) prove (6.15).
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d) It can be proved analogously.
D) Integrating the relation (6.9) from 0 to T, passing to the limit for £ = oo and
using (6.2)-(6.6), (6.13)—(6.16) and the inequality

M _ M Fmy

we obtain (6.7).

E) Let ™u;,™u; be two functions satisfying (6.1), (6.7), then for the difference
My ;= ", — Mu, we obtain, substituting v = x € La(I,V) in (6.7), where x is the
characteristic function of the interval (0,t), the equation

/0 {(Mi(r), ™i(r)) ,; + ("(r), ™a(7)) p + a(Mu(r), ™u(r)) } dr

= IO + [ MR, pdr+50(mu(e), ™u(e) =o.

T2
This relation and the V-ellipticity of the form a(.,.) imply
™y(t)=0 VtelL
o

Lemma 6.3. Let the assumptions of Problem 4.3 be fulfilled. Then the sequence
of finite element Rothe’s functions {"’i?,,(t)};‘;l fulfils

(6.22) "o =™ in C(I,V).

Proof. A) From the uniqueness in Lemma 6.2 we easily find the equality
{n} = {n} in Lemma 6.1. Integrating (6.9) from 0 to ¢ with k = n, we find

(6.23) /o {("5n(7), (7)) gy + ("20(7),8a(7) p + &(Tin(7), 6a(7)) } d7

= /! ('"fn(T),ﬁn(T)) d‘r_*_/t mEn(T) dr Vv, € L2(I, Vn),
(1] 0

where

3 3 3

4
(6.24) mEa(t) = Y D4 () - 3 mAL(E) = Y "BL(E) = ) "Ch ().
=1

=1 =1 =1
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There exists a sequence {™w, }32,, ™wn € L2(I,V,) such that

(6.25) i Mwn ="l (1 1(@.) = O

where ™w = ™ and ™o denotes its Calderon extension.
Let us put
T = "2, — mwn € L2(I, Vn)

Setting v, = ™v,, in (6.23) we obtain

T
(6.26) lim / [™En(t)| dt = 0,
n—oo 0

since the sequence {||™vnllL,(1,v.)}5%; is bounded.
B) From (6.23) with v, = ™y, let us subtract the equation

/Ot{(’"ﬁ(r), 5n(T)) at (™a(r), " (7)) p +a(Mu(r), ™, (7)) }dr
= /0 ("F (1), ™o (r)) dr

which we obtain from (6.7) by substituting v = x™%,. After elementary transforma-
tions we find

(6.27) / (55 ("2n(s) = ™)), "Za(s) ~ ™i(s))  ds
N / " (Mals) = Mi(s), ™a(s) = ™i(s)) , ds
+ [ a("0nte) = "), - ("T(0) - ) s
= [ B [ (5 02006) =) i) = (o) , d
_ /0 t (.&4;("12,,(3) = "(s)), "En(s) - "Za(s)) , ds
-/ " (Ma(s) = Mi(5), () = M (s)) , s
_ /0 " a(Min(s) — "n(s), ™2(s) — ™i(s)) ds
_ /0 " a(Min(5) = ™u(s), Mils) ~ ™, (s)) ds
b [ (Fale) =) ()
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Now we estimate the terms on the right-hand side. By (6.6) and (5.4) we have

(6.28) /0 t |(a‘-i; (™Zn(s) = ™i(s)), ™n(s) — '"Zn(s))Hl ds

< M8n — ™| = "Zl oA/

125
L2(1,L2(Q)) L2(1,L2(Qn))

and analogously

(6.29) / ] "‘Zn(s)—md(s)),""d(s)—"”ti)n(s))ﬂlds <CIM="nl, ;1)

By (6.4),

©30) [ 10%0(6) = i), 5) = () plds < O = a1 )
From (6.4), (5.5) it follows that

630 [ (i) = 05, enls) = M)l ds < CALY?

and by (6.3) we have

(6.32) fo Ia("'f}n(s) = "u(s), ™u(s) — "wn(s))|ds < C||™i — ™y

Finally, by (6.21) we have

t
/C; |(mf111w(s) - me(s),"‘fn(s) - mwn(s))Ml
< C"mf'llvl _ nlfM"Lz(I.Wc}o(ﬁM)) g CAt, (M =H,P).

C) Using the integration by parts on the left-hand side of (6.27), we obtain using
(6.28)-(6.32)

(633) 1™Zn(t) — "a(t)|3. 0 + / 175u(r) = ™), p dr + 70 (6) — ™u(®)[
c{u’"zs _mSO|R [0 — O|R 4 ALY
T —
+ /0 |'"En(r>|dr+n’"u—"*wnuL,(,,V)} vteT.

By (4.14), (4.11), (4.12), (4.9), (6.25), (6.26), the result follows, since all the terms
on the right-hand side of (6.33) tend to zero. (]
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Finally, we shall use the following standard inequality (see e.g. [4]):

Lemma 6.4. For all natural numbers r, s and for all t € I we have

(6.34) Ima(t) = *a@®)li§ u + /OT I"a(r) = *a(r)II3,p dr
+[I"u(t) = "u(®)ll}
<c{irve - v+ 120 - <200
b I = P ) P
M=H,P
where "u and Su are the functions from Lemmas 6.1-6.3 for m = r and m = s.
In what follows we shall need the following definitions of Rothe’s functions:

Un(t) = Ui 4+ 8,05 (¢ —tinq)  tetion,ts] (E=1,...,7m),
Znp(t) = Zip + 6,28 p(t —tim1)  tE€[timiyts] ((=1,...,70),

where U} is the solution of Problem 3.2 and Z? := §,U}.
Now, we can formulate the main result of this paper:

Theorem 6.5. Let u® € V and 2% € Ly(Q), fM, fM € Ly(I, WL (Qm)) (M =
H, P). Then there exists a unique solution u € C(I,V) of Problem 2.1 and it satisfies

~

(6.35) U,—=u in C,V),
(6.36) %ﬁn —4  weaklyin Ly(I,Ly()),
(6.37) Zow = ug  in C(I,La(Q)).

Proof. A) By (6.34) there exist functions u € C(I,V) and z € Ly(I, L2(R))
with its H-component 2y := zq,, € C(I, L2(Qy)) such that

(6.38) ™w—su in C(,V),
(6.39) ™=z in Ly(I,Ly(Q)),
(6.40) ™ig — ZH in C(T, Lg(QH)).
We have
t
(6.41) () = ™u(0) + / my(rydr  veel.
0
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Passing to the limit in (6.41), we obtain

u(t) = u(0) + /o! z(r)dr vtel.

Thus, we have
u(t) = z(t) almost everywhere in  I.

From (6.7) we can derive similarly as in [9, Theorem 3.10] that
IMiellL, vy <C Vm.

By the reflexivity of Ly(I,V};) there exist a subsequence {*iiz} of {™iy} and a
function g € Ly(I, V) such that

kiig =g  weaklyin Ly(I,V3).

Let us write (6.7) only for the subsequence {k} and let us pass to the limit for ¥ — oo.
Then we obtain

[ 10,00+ (,0(0) p + alut), o) o
- /0 L )0 dr Vo€ LI V).
We can write
Can (), va)n = (24 @), vm)n = /O Fin(ompdr Vo €V Veel
Passing to the limit for k — oo, we obtain

(ug(t),vu)y — (Z?{(t),vy)H

t
= / (9(7),vm)ydr Yoy €Vy Vtel.
0
This fact and the equality fot (9(1),vp)ydr = (fot 9(1),vu ), d7 imply
t -—
(6.42) uy(t) = 2% +/ g(r)dr vVtel.
0
Differentiating (6.42), we find

g (t) = g(t) ae.in I.
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The existence of the solution of Problem 2.1 is proved.
B) Now we shall prove the uniqueness. Let u;, uz be two solutions of Problem
2.1. Then u := u; — u, fulfils

T
(6.43) /0 {(i@(®),v(®)) y + (a(t),v(7)) p + a(u(t),v(t)) }dt =0 Vv € Ly(1,V),
u(0) =
uy(0) =0

Let us choose s € T arbitrarily and let us set

t
vs(t)z{/su(f)d‘r 0<t<s,

0 s<t<T.
Then
T s
(6.44) /0 a(u(7),vs(7)) d‘r:/0 a(vs(7),vs(7)) d7
= %/0 %a(vs(r),vs(r)) dr = —-;-a(vs(O),vs(O)),
T s
(6.45) || Gn) b (@) dr = [ ) ) ar
-3/ 5“- (un (), un (7)) 47 = 3l (5) 1R,
T .
646)/ (2p(7),v5(7)) p d7 = [(up(7),vep(7)) Plg —/0 (up(7),0sp (7)) pdr

- /0 up ()3 pdr

Let us set v = v, in (6.43). Then according to (6.44)-(6.46), we obtain

1 1 . T .
3(02(0,0.00) + SO0 + [ lur(r)lf par =0.
Since s € T was chosen arbitrarily, we have
a(vs(0),v5(0)) =0 Vsel.

Thus
u(t)=0 ae. in I.
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C) We shall prove the relations (6.35)-(6.37). Let ™U} be the solution of Problem
4.3 and let U} be the solution of Problem 3.2. Similarly as in Lemma 4.5 we obtain
the inequality

i
123 = Z3I§ w, + Dtn Y 23 = Z3G p, + II"U3 = Uil o,

=1

<o{I"vs - VRl g, +1"22 — Z3113 s,

+ ¥ Qwﬂ"—meﬂlwkmM»+n?ﬂ”—mea@M;mMn)}

M=H,P

By virtue of (5.1)

||mZnH(t) - ZnH ®)llo,u € an + Bm,
T
(6.47) /0 1™ 2np(t) = 20 (B)18.p < Gn + By

™0 (t) = Un(®)llr < @n + Bem,

where
Brm = C{ll"'U° —u®lly + 123 — Y llo.u

B 0 = P ) HI = P s )} YD
M=H,P

and

an = an(m) = C{I"U2 - "Vl 0. + llug - URlliq.

+1"Z3u = "Znullo,n, + "2y — "znpllon,} Vm,n €N

Here we denote by U2, u% the Calderon extensions of the functions ™U°, u® € V
and by ™Z, % the extensions by zero of the functions ™2, z € L2(Qy). Now
(4.2)~(4.5) yield

(6.48) lim B =0

m—o0

and for every fixed m by (4.14), (4.15) we have

lim a, =0.
n—o0
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Passing to the limit in (6.34) and using (4.2)—(4.5), (6.38)—(6.40), we obtain

1™ (t) —2u@®)llon < Bm vtel vm € N,
T
/ miup(t) — ap(@)2 pdt < B Vm EN,
0

(6.49) I™u(t) — u(t)|ly < Bm vtel VYmeN.

Let us prove (6.35): Let ¢ > 0 be chosen arbitrarily. First we find, according to
(6.49), such a natural number m; that

(6.50) IMu(t) —u(@)] < viel Vm 2 m,.

£
3
Futher, let mg > m; and n; € N be such numbers that by (6.48), (6.47) we have

(6.51) 0T, (t) — Un(t))l1 < viel Vn>n.

Wl m

Finally, by (6.22) we can find ng > n; such that

(6.52) ™o, (t) — ™u(t)|, < Viel  Vn > ne.

Wim

Thus according to (6.50)—(6.52) we obtain

1T(t) = w(®)lls < [Ta() =™ T ()l
+ I Un(t) = ™ u(@)lh + ™ u(t) = u@®)lh
<e/3+¢/3+€¢/3=¢ vteT Vn>n.

The relations (6.36) and (6.37) can be proved analogously. O
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