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ASYMMETRIC RECURSIVE METHODS FOR TIME SERIES 

TOM AS ClPRA, Praha 

(Received January 22, 1993) 

Summary. The problem of asymmetry appears in various aspects of time series model­
ling. Typical examples are asymmetric time series, asymmetric error distributions and 
asymmetric loss functions in estimating and predicting. The paper deals with asymmetric 
modifications of some recursive time series methods including Kalman filtering, exponential 
smoothing and recursive treatment of Box-Jenkins models. 

Keywords: asymmetric recursive methods, time series, Kalman filter, exponential 
smoothing, asymmetric time series, autoregressive model, split-normal distribution 
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1. INTRODUCTION 

By considering various forms of asymmetry of time series data we can improve 
results of the corresponding analysis. 

A typical example is the case of asymmetric time series which respond to innova­
tions with one of two different rules according to whether the innovation is positive 
or negative (see e.g. [14]). Sometimes an asymmetric loss function may be suitable 
for the construction of predictions due to a practical motivation (see e.g. [7]). If 
prediction errors are analyzed as asymmetric (e.g. in investory control) the resulting 
confidence intervals may significantly reduce costs (see [9]). The asymmetric curve 
analysis is presented in [13]. 

This paper suggests asymmetric modifications of some recursive time series meth­
ods since the recursive procedures are popular in practical time series analysis. A 
simple asymmetric modification of the Kalman filter based on the asymmetric least 
squares is described in Section 3. Asymmetric modifications of exponential smooth­
ing procedures motivated by the relations of exponential smoothing to Box-Jenkins 
models are given in Section 4. Asymmetric recursive estimation in autoregressive 
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models is considered in Section 5 including a convergence result for asymmetric 
trimming. Section 2 contains some preliminaries necessary for further text. 

2. PRELIMINARIES 

2.1. K aim an filter. In applications to univariate time series it is sufficient to 
consider the Kalman filter of the form 

(2.1) xt = Ftxt-i+wt, 

(2.2) yt = htxt +vt, 

where E(wt) = 0, E(vt) = 0, E(wsw[) = 6stQt, E(vsvt) = Sstrt, E(wsvt) = 0 and 
some initial conditions are fulfilled. The state equation (2.1) describes the behavior 
of an n-dimensional state vector xt in time while the observation equation (2.2) 
describes the relation of xt to the scalar observations yt. 

The Kalman filter gives recursive formulas for construction of the linear mini­
mum variance estimator x\ of the state xt and for its error covariance matrix 
Pi = E(xt — x\)(xt — x\Y in a current time period t using the previous information 
{2/o-2/i.---»2/*}: 

(2-3) i\ = á-r1 + . „ . i ! . ' (Vt - htf-1), 
htPt h[+rt 

P}-lh>t 4 

PÍ-1.VA. P í _ 1 

(2.4) Pt=PÍ-1 - ^'xf: , 

htPt hr
t+rt 

where 
(2.5) x\-x = Ftx\-_l y\-l = htx

l
t-\ 

(2.6) Pl
t-

l=FtP>t:lF't+Qt 

are the predictive values constructed for time t at time t — 1. The state value x1 

can be obtaii 
minimization 
can be obtained for the given predictive values x\ l and P\ * by the least squares 

(2.7) .*{ =ai-gmin{(£fr1 -xt)\P\-xT\%rl-*t)+rTX{Vt-htXt?Y 
xteR" 

2.2. Exponential smoothing. The exponential smoothing procedures are 
popular in practice for their numerical simplicity (see e.g. [2]). For instance, the 
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simple exponential smoothing suitable for time series {yt} with a locally constant 
trend has the form 

(2.8) # = y r 1 + a ( y . - y t
t - 1 ) , 

(2-9) y\+k = yl k>\, 

where a is a suitable smoothing constant (0 < a < 1) and yl
t+k denotes the prediction 

of ?;*+/. at time t (in particular, yl
t is the smoothed value at time t). It can be shown 

that the predictions provided by (2.8), (2.9) are the same as the recursive ones by 
the model ARIMA(0,1,1) 

(2.10) (l-B)yt = et-(l-a)st-U 

where B denotes the backward-shift operator fulfilling Byt = yt-i-

2.3. Asymmetric time series. The asymmetric time series which respond to 
innovations in two different ways according to whether the innovation is positive 
or negative form an important class of nonlinear time series. For instance, the 
asymmetric process MA(1) has the form 

(2.11) yt = et + tfiiet"-i + ^21^-1 . 

where 

(2.12) e~~ = min(£t,0), ef = max(£:*,0) 

are negative and positive innovations (white noise), respectively, and i?n, $21 are 
parameters of the model. If On = ^21 then (2.11) is the classical process MA(1). 

In practice, the predictions in the models of the type (2.11) are constructed recur­
sively as 

, , , , , ., f t fn (»«- i}« t - 1 ) -+ t f2 i (y i -»{- 1 ) + , * = i, 
( 2 1 3 ) ^ = \ o , * > i , 

although the invertibility of the model should be verified theoretically (a model is 
invertible if the innovations {et} can be estimated from the data {yt}). For instance, 
the condition of invertibility of the model (2.11) has the form max(|i?ii|,|#2i|) < 1 
(see [14]). 

2.4. Split-normal distribution. The split-normal distribution is an asymmetric 
distribution that is suitable just for the purpose of asymmetric prediction errors since 
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its parameters can be estimated in a simple recursive way (see [9]). It is sufficient 
to confine oneself to the split-normal distribution N(0; o\,o\) with zero mean value 
that has the probability density of the form 

2r/2 

(2Л4) /(*) = { 
-Ҷ) 

2oг 
Ш- "<0' 

(O i + O 2)o 2 \02 AйУ *>0> 
where <p(-) is the probability density of the standard normal distribution N(0,1). 

One can easily verify that A" ~ N(0;o\,o\) satisfies 

(2.15) E(X) = 0, 

(2.16) var(X) = ori<72, 

(2.17) E[(X-)2\X<0]=o\, E[(X+)2\X>0]=o\ 

(the symbols X~ and A"+ have the same meaning as in (2.12)). 
If we denote the one-step-ahead prediction error by the symbol 

t-\ (2-18) et = yt-y\ 

(this symbol will be used troughout the following text) then updated estimates o\t, 
o\t of o\, o\ can be obtained as 

"2 * 2 , c / 2 *> 2 \ 

(2 19)

 a\t = a\}t-\ + ozt-i(et_1 - <71>t_J, 
'>2t "2 - °l,t-\ + bzt-^e2^ - o\t_1), 

where zt equals 1 if et < 0, otherwise it is 0, and S (0 < 5 < 1) is a damping constant 
(see [9]). 

3. ASYMMETRIC KALMAN FILTER 

A simple approach to asymmetry consists in replacing the least squares (LS) es­
timation by the asymmetric least squares (ALS) estimation (see e.g. [10] for linear 
regression models). 

In the case of the Kalman filter wre can use this approach in the framework of the 
LS minimization (2.7). Let us consider the simplest situation when (2.7) is replaced 
by the ALS minimization of the form 

(3.1) x\ = argmin {{i1,-1 - xt)'(P}-1)-1 (x'r1 - xt) 

+ r - 1 [(1/. - htxt)~}2 + r - 1 [(yt - htxt)+]2} 
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for suitable positive values r^ , T2t- If vt ~ N(0; o f^o^) in (2.2) then the natural 
choice of r\t, r2t obviously is o\t, d\t. 

The result of the minimization (3.1) has the explicit form 

/i£ P t /tj +rit ht Pt h[ + r2t 

where et = ijt - yt'1 = j/t - M'*"1-
This can be shown in the following way. Let xt be such that yt — htxt ^ 0. 

Then it is not difficult to derive that the unique value of xt for which the derivative 
(according to xt) of ALS in (3.1) is zero has the form 

, ř - i , pj~lк 
X f = .Г, H 7—. e í -

ľ ' " / l < ^ = ,. n t - i м . e*> 

Since 
____ 

fctP/^hi + rw' 

we have the equivalence ?/£ — / i ^ ^ 0 iff ê  ^ 0. In the case yt — htxt < 0 the results 
are analogous with r-it replaced by r\t. This proves the explicit formula (3.2). 

If r\t = r-2t = f't then (3.2) becomes the symmetric formula (2.3). One of poss­
ible applications of the asymmetric Kalman filter described above will be shown in 
Section 5. 

4. ASYMMETRIC EXPONENTIAL SMOOTHING 

One can use a similar approach as to the robustification of exponential smoothing 
when a suitable robustifying function is applied to the prediction errors et in the 
corresponding recursive formulas of exponential smoothing (see [3], [6]), or as to the 
exponential smoothing in the Li-norm when the absolute value is used (see [5]). In 
the case of asymmetry, it is natural to take the prediction errors et in the recursive 
formulas of exponential smoothing in the same asymmetric way as in the models of 
asymmetric time series (see Section 2.3). Moreover, if this approach is used then for 
each case of asymmetric exponential smoothing it is possible to find an asymmetric 
time series analogue of the type (2.11) that provides the same recursive predictions. 

Let us start with the simple exponential smoothing (2.8), (2.9). According to the 
above discussion its asymmetric modification is 

(4-1) t/J = y t
£ - 1 + a 1 e t - + a 2 e + , 

(4.2) yt+k = yl k > 1, 

207 



where a i , a 2 £ (0,1) are the smoothing constants. The same recursive predictions 
can be obtained by means of the asymmetric model ARIMA(0,1,1) of the form 

(4-3) (1 - D)yt =et-{l- ai)e t--i - (1 - a 2 ) e+ x . 

Namely, in (4.3) we have (compare with (2.13)) 

Vt+k = 2/. - (1 - oti)e~ - (1 - a2)e+ 

= Vt -et + axe~ + a2ef 

= y[~l + a\e~ + a2e+. fc ^ 1. 

These predictions are equal to those in (4.1), (4.2). 
Further, let us consider the Holt model of exponential smoothing that is suitable 

for time series {yt} with a locally constant linear trend. Its asymmetric modification 
can be written as 

(4.4) St = St-i + Tt-i + a ie f + a2e+, 

(4.5) Tt = T t-i + ai7ie t" + a 2 7 2 ^ , 

(4.6) y\+k = St + kTh k > 0, 

where St and Tt denote the level and trend of {yt} at time t, respectively, and a i , 
a-2, 7i, 72 € (0,1) are smoothing constants. The same recursive predictions can be 
obtained by means of the asymmetric model ARIMA(0,2,2) of the form 

(4.7) (1 - D)2yt = et + (<*i + a m - 2)eJ_x + (1 - ai)e£--2 

+ (a2 + a 2 7 2 - 2)£+_i + (1 - a-2)4-2' 

The proof is similar to the case of the asymmetric simple exponential smoothing. 
Finally, the third example of the exponential smoothing important from the prac­

tical point of view is the Holt-Winters model that is suitable for seasonal time series 
{yt} with a locally constant seasonality of length p. The asymmetric modification of 
the additive Holt-Winters model can be written as 

(4.8) St = Si_i + Tt-i + axe~ + a2e+, 

(4.9) Tt = Tt-i + ai7ie t" + a272e^, 

(4.10) h = It-p + *i(l - a i ) e r + *2(1 - a2)e+, 

(4.11) yl+k = St + kTt + h+k-p, k = 1 , . . . ,p, 

where St, Tt and It denote the level, trend and seasonal index of {yt} at time t, 
respectively, and a i , a2 , 71, 72, <$i, 82 E (0,1) are smoothing constants. The case 

208 



of the multiplicative Holt-Winters model is similar. The same recursive predictions 
can be obtained by means of the asymmetric seasonal ARIMA model of the form 

(4.12) (1 - B)(l - B-)Vt =et + i ? n ^ - i + • • • + ^ I , P + I ^ " - P - I 

+ $2iet-i + ... + i?2,p-f-i^_p_i, 

where i?a = - 1 + a{ + am, dip = - 1 + am + 6{(1 - a»), tf{,P+i = (1 - oti)(l - Si), 
tiij = a ; 7 i (i = 1,2; j = 2, ...,p- 1). 

5 . ASYMMETRIC RECURSIVE PROCEDURES IN AUTOREGRESSIVE MODELS 

Let us deal with a problem of asymmetric recursive estimation in an AR(p) process 
{yt} which can be written for this purpose in the Kalman filter form 

(5.1) Xt=Xt-l, 

(5.2) yt = htxt + vt, 

where ht = (yt-i, • • • ,Vt-P) and {vt} is a white noise. 
Moreover, let the innovations {vt} of the process {yt} be distributed asymmet­

rically, the assumption vt ~ iid N (0; af, &%) being acceptable. Then the result of 
Section 3 can be used producing the recursive formulas 

Pl~lh' P*"1/,' 
(5.3) x\ = x\~\ + ti^L—e- + f 'T1

 0e+ 
K } l t"1 KPtzlK + a'l1 KPtzlK + al1' 
(5 4) Pl = Pl~l - Pt-ih'thtPt-i 

l t _ 1 KPtzlK + G^ 

(obviously, x\-1 = x\z\, P/_1 = Pt~\, et = yt - htx\z\). The formula (5.4) is only 
an approximative one (it is taken from the symmetric procedure (2.3), (2.4)). In 
practice, the parameters o\, a\ can be also estimated recursively using the procedure 
(2.19) parallelly with (5.3), (5.4). 

Various forms of trimming of prediction errors are typical for recursive estimation 
in autoregressive processes (see e.g. [1], [4], [12]). It makes it possible not only to 
face outliers in data but it may be important for the proof of convergence of the cor­
responding recursive formulas. The next theorem is an example of such convergence 
results for asymmetric trimming. 

Theorem. In the model AR(1) 

(5.5) yt = (pyt-i + vt, t = ..., - 1 , 0 , 1 , . . . 
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with 

(5.6) vt~iidN(0;a2,a*) 

let an estimate of the parameter ip be given by means of the recursive formulas 

(5.7) x\=x[z[ + pt
 P:V'2X U ^ ( ^ ) +<rrt(£)], * = 1,2 

PtVt-1 + ^1^2 L ^ 1 ' ^ 2 I J 

M ^=p t-f?T , « = i,2,... 
Pt-iyUx +<Ti<T-2 

with initial (random) values XQ and PQ, where et = yt — yt-ixlzl and 

(5.9) ф(: 
\cs\ 

\z\ < c, 

l~l > c :sgn(2), 

(c > 0 is a constant). Let the following assumptions be fulfilled: 

(5.10) M < 1, 

(5.11) E(XQ)2 < oo, Po > 0 a.s., ig, PQ , v4 are independent. 

Then 

(5A2) i:J -» <p a.s. 

P r o o f . See Appendix. 

If we denote 

' -cau 

(5.13) j>(z) = I z, 

<ca2, 

then (5.7) can be rewritten to the form 

z < —coi, 

—ca\ -̂  z •$ ca2, 

z > ca2 

(5.14) *.=*í:I + p, ,?'". . .^) P/ž/Ѓ_i +^1^2 

so that one can really speak about asymmetric trimming. If a\ = a2 = a then (5.7) 

becomes the typical recursive estimation formula for the autoregressive processes (see 

e.g. [12]). 
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APPENDIX: PROOF OF THEOREM 

For simplicity we will omit the upper indices in the subsequent text (e.g. we shall 

write xt instead of xL
t). 

Lemma 1. Let &Q C &\ C . . . C & be a sequence of a-algebras in a probability 
space (Q,^,P). Let zt, fit, €t, Vt (t = 0,1, ...J be non-negative ^-measurable 
random variables such that 

(A.l) E(zt | St-i) < (1 + A-i)~*-i + 6 - i - >h-i, l = U , . . . , 

(A.2) _L,Pt < oo a.s., ^ 6 < oo a.s. 
f=0 t=o 

Then the sequence zt converges a.s. 

P r o o f . See [11]. D 

Lemma 2. Jii the model from Theorem let an estimate xt of the parameter <p be 
given by means of the recursive formulas 

(A.3) xt =xt-i + at-iyt-ii>{yt -yt-ixt-i), t = 1,2,... 

with an initial (random) value x0. Here at (t = 0,1, . . . ) are ^t-measurahlc random 
variables for &t = CJ{XQ, Vt, vt-i,.. •} fulfilling 

(A.4) 0 <. a\l) < at ^ a[2\ f ] a*1' = oo, f > < 2 ) ) 2 < oo 

t=o t=o 

for deterministic sequences a\ , a\ . Then 

(A.5) xt -> (D a.s. 

P r o o f . Put xt = xt — if. Then (A.3) can be rewritten as 

xt = xt-i + at-iyt-iil>(-yt-ixt-i + vt). 

Hence one obtains 

(A.6) x2 ^ x2
t_x + 2at-iyt-ixt-i^(-yt-ixt-i + vt) + [a^Cyt-i]2 
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and for conditional expectations 

E(x2 | _*•(_,) < _2_. +2at-iVt-ixt-iE{^(-yt-iXt-i + vt) | ^ , _ i } 

+ [a<2.)1Cj/,_1]
2, 

where C = c max (or, 02). 

Let us apply Lemma 1 with zt = x\, 0t-i = 0, &__ = [«£!_! Cy t_i]2 , ryt—1 = 

-2a_-i_/.-irr__i-5'{^(-_yt-i^.-i + v«) | ^ i - i } . The only problem may be to verify 
that ?/* ^ 0 a.s.: Let us denote 

(A.7) g(b) = Ev$(b + v), -00 < b < 00. 

Since v* ~ 1V(0; a2, a2) one can easily show that 

(A.8) M b ) > 0, b 7- 0, 

which guarantees ./* ^ 0 . 

According to Lemma 1 there exists a (finite) random variable x such that 

(A.9) xt -> x a.s. 

For an arbitrary n it follows from (A.6) that 
n n 

x\ < rr2, + 2Y^at-iyt-iXt-iH-yt-iXt-i + vt) + C2 _^(a | 2 \? /_- i) 2 

_=i *=i 

and hence 

OO CO 

-2 J2E{at-iyt-ixt-uP(-yt-ixt-i + vt)} ^ E(x2) + (Cay)
2 _£(a<2)_)2, 

t=i t=i 

where a2 = var(yt) = E(y2). Therefore according to (A.4) one has 

~Y^at-iE{yt-iXt-i^(-yt-iXt-i +vt)} < 00. 
t=i 

Since ____ a[ — 00 there exists a subsequence such that 

00 

_>_]£{ - y^-ix^-i^-y^-ix^-i + vtj)} < 00. 
.7=1 
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Hence 

-ytj-iXtj-\E{i){-ytj-ixtj-i +vtj) | &tj-i} -> 0 a.s. 

or equivalently 

-ytj-ixtj-iQ(-ytj-ixtj-i) -* 0 a.s. 

Due to (A.8) this implies 

(A.10) yii-lxtj-l -> Oa.s. 

Further, one can write 

(A .ll) VtjXtj-i = ytj{xtj-i - xtj)+ytjxtj - ipytj-lxti-l. 

Since ytj are identically distributed and the limit relations (A.9) and (A.10) hold all 
three summands on the right-hand side of (A.ll) converge in probability to zero, i.e. 

(A.12) vtjxtj-i -+ 0 in probability. 

Due to independence of xtj-\ and vtj, where vtj are identically distributed, and due 
to (A.9) we conclude 

xt -> 0 a.s. 

D 

P r o o f of T h e o r e m . We have 

P = [Ptz\ +yUl(°i02)Y1 = [Po1 + (vl + ... + yl1)/(w2)]~1-

Hence 
( 2 ^ o 2 ) ~ l ^ [Ptyf-i+o^)-1 ^ {oxo2)~

l 

and further, due to the properties of the process yt (see [8, p. 210, Theorem 6]), 

(A.13) tPt -> oio2/ol a.s. 

Let us choose an arbitrary e > 0 and 0 < S < o\o2/Oy. By virtue of (A.13) there 
exists t0 such that 

P ( f | [ | * P t - c r 1 a 2 / ( T ; | < * ] ) > l - e . 

t^to 

Put 

{ xt, * = 0 , 1 , . . . , * 0 - 1, 

*1-1 + Pty?-]+°i°*^yt " ^ - 1 ^ ~ 1 ) ' l > *o, |<-P* - O i ^ / ^ l < <S, 
•f<-1 + t A ^ i ^ ^ - 1 ^ * yt-ixt-i), t ^ t0, \tPt - oxo2/ol\ > 6. 
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Then Lemma 2 with a\l) = \{oio2/a
2

y - S)(2aia2)~
1 and a[2) = \(o 102/0* + 

S)(oio2)~
l yields 

xt -» ip a.s. 

Finally, one can write 

p(xt -> ̂  2 p(( n I*'=**-n -** -> ^ 0 = ^ ( n &=*«]) > 

^ F ( n [ i ^ t - ^ i ^ / ^ i < < j ] ) > i - s . 

Since e > 0 can be arbitrary we have .£* —•> <p a.s. D 

[e: 

[7: 

[9: 

[ю: 

[11 

[12: 

[iз: 

[14 
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