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SPECTRAL METHODS
FOR SINGULAR PERTURBATION PROBLEMS

WILHELM HEINRICHS, Diisseldorf

(Received July 8, 1991)

Summary. We study spectral discretizations for singular perturbation problems. A
special technique of stabilization for the spectral method is proposed. Boundary layer
problems are accurately solved by a domain decomposition method. An effective iterative
mecthod for the solution of spectral systemns is proposed. Suitable components for a multigrid
method are presented.

Keywords: spectral methods, singular perturbation, stabilization, domain decomposition,
iterative solver, multigrid method.

AMS classification: 65N35

1. INTRODUCTION

We consider singular perturbation problems (or advection-diffusion equations)
which can in the one-diensional case be written as

(1.1) —eu' +u' = f in(-a,b),
u(—a) = u(b) =0,

where € > 0, a > 0, b > 0 and f is a given function defined in (—a,b). In the
two-dimensional case we consider problems given by

(1.2) —cAutuz=g inQ=(-a,b)x(-1,1),
u=0 ondN,

where g is a given function defined on Q. In particular, one is interested in prob-
lems with small € > 0. The problem (1.1) is discretized by a spectral collocation
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method (see 1, 2]). One of the main features of such problems is the occurence
of thin boundary layers which have a width of order O(¢) for ¢ — 0. The “max-
imum principle” in the physical space does not hold for spectral approximations.
Nevertheless, Canuto [1] has proved a certain sort off “maximum principle” in the
frequency space, in the sense that all Chebyshev coefficients of the spectral solution
are strictly positive for all £ and N (/N: maximal degree of polynomials). By using
this property it is possible to derive convergence estimates. One of the main results
is the following: if e N2 — 0o as N = oo and € — 0 in such a way that eN? = N«
for a suitable a > 0, then the spectral discretization error tends to 0 faster than an
power of N~! (see [1, 3.2A]). In particular, it comes out that the spectral scheme is
stable for ¢ = N~!. This is a property which is also known from central difference
discretizations of (1.1) or (1.2). In the case of very small e < N ™!, artificial viscosity
with & = N~! is introduced in order to stabilize the scheme (sce [3, 4, 7]). An obvi-
ous disadvantage of this approach lies in the fact that the method now becomes only
first order accurate. For finite differences the second order accuracy can be obtained
by applying a “Mehrstellen”-operator to the right hand side (see [4, 10, 12]). By
similar technique we stabilize our spectral scheme.

First we introduce artifical viscosity and then we perturb the right hand side f
by adding the first and second derivatives. Here it is assumed that f is sufficiently
smooth. This assumption is reasonable since in connection with spectral methods
we are mainly interested in the case of smooth data. This method of stabilization
leads to an approximation error which is perturbed by quantities of order O(eé) or
O(e?é) for small . A similar treatment is performed in the two-dimensional case.
We present numerical results which substantiate this improvement.

In Section 3 and 4 we consider a domain decomposition method for singular per-
turbation problems in one and two dimensions. We present an iterative procedure
with interface relaxation. Here we mainly follow the treatment in [6]. During each
iteration, at every interface between two subdomains, first Dirichlet boundary condi-
tions are imposed on the on side, and the Neumnann boundary conditions are imposed
on the other. In order to ensure convergence, a relaxation of the Dirichlet data at
the interface is used. We analyze this algorithm and prove convergence for relaxation
parameters which lie in a certain interval. In the one-dimensional case the optimal
relaxation parameter can be explicitly calculated and this choice leads to convergence
in two steps. In the case of two dimensions the number of iterations depends on the
location of the interface. If the interface lies near the boundary layer, convergence in
a few steps (less then 10) can be achieved. If the interface is located far away from
the boundary layer, the number of iterations becomes dependent on € and asymp-
totically behaves like O(¢~2) for ¢ — 0. Furthermore, we investigate a strategy for
an automatic selection of relaxation parameters (see [6]). In the one-dimensional
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case it will converge after three steps (independent by of the starting relaxation pa-
rameter). In the two-dimensional case it also yields very satisfying results and is in
general faster than the method with a fixed relaxation parameter. Numerical analy-
sis is performed in both the continuous and the discrete case. Numerical results are
presented which confirm the expected behaviour from the theoretical analysis.

In Section 5 we introduce an effective iterative method for the solution of singular
perturbed spectral systems. Special techniques of preconditioning are proposed.
Numerical results are presented. It is shown how the relaxation method can be
imbedded in a multigrid V-cycle.

2. STABILIZATION OF THE SPECTRAL METHOD

We consider the one-dimensional advection-diffusion equation (1.1). Let L. de-

note the singular perturbed operator, i.e. Leu = —eu” + u'. By L?’ we denote the
corresponding collocation operator with nodes z; = cos % (1 =0,...,N). After an

elimination of the boundary conditions the collocation problem now reads as follows:
Lév unN = f N,

where fy = ( f (.1:,-))].=],._., n—;- For small e the operator L, becomes instable and
hence we introduce a stabilized operator LY which corresponds to LY with ¢ replaced
by € > e. From the results in Canuto [1] and from numerical experiments it becomes
obvious that Lé" with € = 1/N is stable for all N. Unfortunately, by a simple
replacement of LY by LY we get a first order method and the high accuracy of the
spectral method is lost. Hence we propose a simultaneous change of the right hand
side. This is an idea which is closely related to the “Mehrstellen”-method (see [4,
7, 10, 12]). Doerfer et al. [4] introduced this method for central finite difference
discretizations. In general the introduction of artifical viscosity makes the method
only first order accurate. By means of the “Mehrstellen”-method it becomes second
order accurate. Now we introduce two perturbations of the right hand side f:

fe=f+E-8f,
fP=f+E=8f +(e-8ef".
Here we assume that the second derivative of f exists. The corresponding collocation

problems read
LN’U —rl
e UN = Je,N

and
N _ 2
Ls' WN = fE,N’

163



where
fon=In+ (=91
and
n=In+ (=N + (e - ey

. : ’ _— ’ . "o __ T \f ~
Here we write fiy = (f'(2)),, _n_1» fv = (f"(23));oy, n—y- Now we are
interested in the error functions uy — vy and uy — wn. An easy calculation yields

—E(un —vn)" + (un —on)' = —euy +u)y + vy — vy + (e — Euly
=fn = fly + (e =l
— —(e— O + (e —
= —(¢ = &)(~euy +uy) + (e — uy

(e = &)euly,

which behaves like O(é¢) for small . Since LY is a stable operator we conclude that
lun — v ll2 = O(&e),

where || |2 denotes the discrete L?-norm, i.e.

N
1
w2 = —F=—= 1 €Ty 2.
” "2 \/N i§=0 w(7 )

By similar calculation one obtains

—é(uy —wn)" + (uy —wy)' = (€ = &)enl — (e — E)e(—euly +ufy

=(c—8) 2ufvv,
which behaves like O(¢2¢) for small e. Hence we obtain

luny — wnllz = O(e%8).

This means that the spectral accuracy is perturbed by O(é<) or O(e2¢), respectively,
which is quite small for small €.

A similar treatment can also be transferred to the two-dimensional singular per-
turbation problem (1.2). Let uy denote the solution of the corresponding collocation
problem with respect to the nodes (x;,y;) = (cos %‘,cos %‘) (4,7 =0,...,N). This
means that

un € P = {pn: pn polynomial of degree < N in 2,y and py = 0 on 90N}
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and
(—eAun +un ) (wi,y5) = f(2i,y;) (G,i=1,...,N—-1).

The corresponding stabilized problems define functions vy, wny € P as follows:
(=8UN oo = €UN gy + UN2)(Ti,y5) = (f + (€ = ) fe) (i, 95)

and

(2.1)  (—€wnaz — €WNyy + WN L) (T, Y:) = (f + (€ — E) fz + (€ — E)eAS) (a1, Y;5)

fori,j =1,...,N — 1. Since only the first a-derivative is involved we only have to
introduce artificial viscosity in the z-direction. Once more we are able to estimate
vy —upny and wy — uy. We easily obtain

—E(ON —UN)ex —E(UN —UN)yy + (vv —un): = (€ - )e(un zze + "N,yyz)v

which behaves like O(¢2£) for small .
By similar calculation one obtains

—E.'('U)N —UN)_,,-I —E(IUN—’UN)yy'i'(wN —"N)x = (5‘:"“5)52(uN,11:za:+2UN,:t:cyy+uN,yyyy)1

which behaves like O(2£) for small €.
Since the modified operator is stable, it follows that

low —unll2 = O(e)

and
lwy — unllz = O(28),

where || ||2 denotes the discrete L2-norm in two dimensions. In practice, the deriva-
tives of f are also calculated by applying spectral collocation derivative operators.

The previous analysis can be adopted in a straightforward manner. We apply these
methods to saine numerical examples.

In Tables 2.1 and 2.2 we present numerical results which show the stabilization
of our treatment. For the numecrical tests we consider singular perturbed problems
with the exact solution

u(zx) = sin(nr)

in the one-dimensional case and
u(z,y) = sin(nz) sin(ry)
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in the two-dimensional case. We fix e = 1076,
N _luy —ullz_|lon —ullz JJwy —ull2
4 .196-10° .194 - 109 .194 - 10°
8 .122-10% .401-10"% .401-1073
12 .201-10"2 .522.10°% .127-10°S
14 .176-10"* .445-107% .145.10°8

Table 2.1. Numerical results in the one-dimensional case.

luv —ullz llow —ullz lwx —ull2
550-10F  .109-10°  .109-10°

.649-10'  .754.10"%2 .250-10"%
117-1072 .646-107% .795-10"7
1041074 .556-10"% .904-107°

NN

Table 2.2. Numerical results in the two-dimensional case.

It becomes obvious that the singular perturbed problem is unstable for small
N. For increasing N this effect of instability is somewhat disturbed by the high
consistency of the spectral method. Our methods of stabilization work very well.
The improvement of the approximation wy over vy becomes visible for N = 14
where the spectral accuracy is sufficiently high.

We further remark that a similar treatment is not possible if the first order terms
in both directions, i.e.

aug + fuy

with a,8 € R, a # 0, 8 # 0 are added to the second order operator. In this
case the above treatment always introduces the mixed derivative u., which cannot
be eliminated. More general problems result from a rotation of the rectangle R =
(—=1,1)2. The rotation by an angle ¢ is given by

(5)==() ,

S, i
Tw:( cos smcp).

where

—siny, cosy
We denote the rotated rectangle by R,. The transformed problem now reads as
follows:

(2.2) —eAz + cospz; —sinpzy = f in R,,

z2=0 ondR,, where Az = zz; + z35.
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For such an equation the corresponding stabilization can be determined by a rotation
of the corresponding stabilized problems in R. It is explicitly given by

—é(cos2 PWUN,zz — 2C0Spsin Wy z5 + sin? PON 5§
— e(sin® YN, zz + 2 cos @sin YN, z5 + cos® PN 35)
+ COs QW N,z — SINPWN, 3
= f+ (e —é)(cospfz —sinpf;) + (€ + §)eAf in R,
wny =0 ondR,.

The corresponding error ||z — wx||2 behaves like O(2€) (¢ — 0).

Finally, we numerical observed that problems like (2.2) defined on R instead of R,,
instead of R, are stable for all ¢ € [0,2n), ¢ # kn/2, k € {0,1,2,3}. The solution of
the continuous problem is denoted by Z and the solution of the corresponding spectral
problem is denoted by zn. By Zy we further denote the spectral approximation of
the stabilized version.

N 4 8 12 14
12— 2nll2 0,209-10° 0.529-10~% 0,195-10-% 0.231-10~8
|- 2nll2 0.153-10° 0,443-10~3 0.141-10~° 0.160-10~8

Table 2.3. Numerical results for ¢ = n/4.

From the numerical results in Table 2.3 it becomes obvious that the spectral
problem is already stable. The spectral approximation from the stabilized problem
only yields a slight improvement in accuracy. Hence for ¢ # kn/2, k € {0,1,2,3}
it is not necessary to resort to the stabilized version. At the moment it is not clear
why this phenomen of instability occurs only if the direction of flow is parallel to the
coordinate axes.

3. DOMAIN DECOMPOSITION IN ONE DIMENSION

3.1. The continuous case. We once more consider the one-dimensional
advection-diffusion equation (1.1). In particular, we are interested in the special

equation with
1

a+b

f=-
By the transform

- r+a

it =u+-—— in(—a,b),

b+a
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problem (1.1) is now equivalent to the houndary value problem

(3.1) —€llyy + U =0 in (—a,b),
i(-a) =0, a(b)=1.

The exact solution of (3.1) is given by

CH—" 1

=

w(2) =
et o1

The boundary layer exhibited near z = 0 when € — 0 has now a width of order O(¢).

We are interested in a domain decomposition approach to this class of problems.
If we denote by v the restriction of « to the interval (—a,0), and by w its restriction
to (0,0), it follows that (1.1) is equivalent to the split problem

—EVpz + v, = f in (—a,0),
v(—a) =0,
v(0) = w(0),
v:(0) = w;(0),
w(b) =0,
—sw,z +wy = f in (0,0).
A similar statement holds for decompositions of (—a, b) into a finite number of subin-
tervals.

In analogy to the trcatment in [6] we define the following two sequences v(™, n > 1
in (—a,0) and w™, n > 1 in (0,0) which solve the problems

(3.2) —col oW = f in (=a,0),
v{™(=a) = 0,
v™(0) = A,

and

(3.3) —ew™ +wl™ = f in (0,b),
w™(b) =0,
w{™(0) = v{(0).

Here \; is given a number, and the A,, (n > 2) are defined by the formula
A1 = 0w™M(0) + (1 -0\, n>1.
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0 € [0,1] denotes the relaxation parameter. For a further study of the interface
relaxation let us introduce the error functions

el (2) = v (@) = v"(2) in (=a,0)
and
e0() = W™ () = w D (z) iu (0,0)

for n > 2. In terms of the error functions the interface relaxation procedure now
reads as follows:

—Ees,',':)z +el™ =0 in (-a,0),
el (—a) =0,
eM(0) = 8¢5~ (0) + (1 - 9)e*~1(0),
—eel) +el =0 in (0,0),
e (b) =0,
e(;,(0) = e{7)(0).

v,

Convergence analysis of this relaxation procedure yields the following result:

Proposition 3.1. The interface relaxation (3.2), (3.3) converges provided 8 sat-
isfies

0<8<6 ),

where
6*(e) =2(1+0e)) ™
with .
o eé - 1
ole) =e T
The optimal choice for 0 is given by Oope = 16*(e). With this choice the procedure

(3.2), (3.3) converges after two steps.

Proof. The error functions e, el can explicitly be written as

.l‘z" _ 1
e{M(a) = el (O)G—eg——l',

) (2) = e (0)cet (T ~ 1).
Using
el (0) = e{") (0)ee? (e~ — 1),

n n 1 a 1
end(0) = e (0) zef
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we derive

outte

L
e™(0) = _e_: ) (0).

Hence

e{"t1(0) = 8l (0) + (1 - 8)e™ (0)
=[1-6(1 + o(c))]e{™(0)
= [1-26"()~'0)e™(0).

Therefore the necessary and sufficient condition for convergence is
[1—20*()7"0 < 1,

which yields 0 < 8 < 6*(¢). Furthermore, it can be seen that v® = v(?) = y in
(=a,0) and w® = w? = in (0,b) if 6 = Oopt. ]

This means that with the choice § = 6,,. we can always guarantec convergence
in 2 steps. Nevertheless it is interesting to see what happens to the interval of
convergence (in 8) when € tends to zero. For e = 0 we obtain

0*(e) ~2e7%¢ 0.

This means that the interval length 6*(¢) tends exponencially fast to zero.
Now we fix a independent of ¢ and take b = O(¢), say b = o¢ (¢ > 0, constant).
For € — 0 we then obtain
0*(e) ~ 27

This means that now the interval length is fixed independently of . Hence we
observe that a large interval of convergence is obtained if the interface lies near the
boundary layer. This results is very satisfactory since this is just the case one is
mainly interested in.

We are also interested in an automatic generation of the relaxation parameter.
Now we allow @ to change as n changes. As introduced in [6] an effective way to
update 6 is to take 8 = 6,, with

/\n - /\n—l
(/\n - /\n—l) - (“](11)(0) - w(n—-l)(o)) ’

8, = n>2.

The value 6, is a given parameter. By this automatic choice one gets 6, = 0opc and
therefore convergence after 3 steps, no matter how 6, is chosen.

170



3.2. Spectral collocation method. A spectral collocation approximation to
the split problem is defined as follows: Let N, M denote positive integers and let
denote by 'y the space of polynomials of degree < N. We look for two polynomials
vy € Py and wys € Pp such that

(3.4) (—eUNex +on,e) (@) = f2lV) for1<j <N -1,
un(—a) =0,
un(0) = wnm(0),
UN,z(0) = wnm,z(0),
wym(b) =0
(—ewM 2z +wM::)('L( )) = f(:cg.z)) for1<j<M-1.

Here we use the nodes

(1) _ 8N
Tyt = E(f] -1),

; b Jx
zg.‘)') = E(ﬁjM +1), where £ = cos N
This type of approximation was first introduced by Orszag [11]. There it was called
the patching-collocation method. The interface relaxation procedure for (3.4) is now
deﬁuod ab follows: Let A\; be a given number. We define two sequences v( ™ e Py

and w ) e Par, n > 1, such that

3.5 —ev(V +v(")) Dy = £y for1<j< N =1,
N,zz J
UN)(_a) = 07
v (0) =
and
(3.6) W+ )@?) = f(a?) for1<jg<M -1,
’Vl T M,z Jj J
(")(b) _

wip,(0) = v‘;’x(m.
The A, (n > 2) are defined by the following formula:
M1 =00 0)+ (1 -0, n>1.

Here 6 € [0, 1] denotes the relaxation parameter. If @ = 1 there is no relaxation. The
choice of the dynamic parameter is given by

_ _/\n - /\n—l
(A = Xnc1) = (w7 (0) = w37V (0))
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Now we are interested in an analysis of convergence of the interface relaxation pro-

cedure (3.5), (3.6). For this purpose we introduce error functions
el™ = vg’;) - v%"l)

and
elM = wx,') - wy;_” forn > 2.

We deduce that e\™ € Py, e") € Py, and consequently

(—eel™), +elM)(al) =0 for1<j<N -1,
e, (-a) =0,

e™(0) =6,
and

(—ee), +ell) (@) =0 for1<ji<M-1,
e () =0,
er) (0) = e{")(0),

where we have set 6, = A\, — A,_1 for n > 2. For fixed 8 we have the relation
Onsr = 0e{M(0) + (1 - 0)el™(0) forn > 2.

Let us further define error functions e,, e, defined on (—a,0), (0,b) and é,, é,
defined on (-1,1). e,, e, result from é,, é, by the coordinate transform

ey(z) = é,,(;z—la: + 1), ew(T) = éw( - %:L + 1).
é, is defined by

2, R .
(- etvee +ne)(€)) =0, 1<i<N -1,
éu(-1) =0,
é,(1) =1,

€ is defined by

2, u .
(—szew,gg+ew,5)(£;-w)=0, 1<jsM-1,
én(—-1) =0,

R b,
ue(l) = = Zeug(D)
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Furthermore, for 4,, we have the recurrence relation

Sni1 = (Bew(0) + 1 — 6)d,,
= (06, (1) + 1 - 6)5,.

This means that the iterative procedure converges iff
|fé.,(1) +1—6] < 1.

In order to give a more precise criterion for convergence we have to determine the
functions é,, é,,. This can be accomplished by a technique introduced by Canuto [1].
We set €, = %s and obtain from [1, (3.11)]

(3.7) €v(§) = A+ pib(§),

where N
w() = Z WnTm (), Tm(€) = cos(m arccos )
m=1
with
1DN = 1,

. 2e . 2Ne
w,,,:c—n Z k. + 2, 1<mgN-1
™ k>m41 Om,N
|k—m| odd

and

{ 1, |m - N]odd,
Om,N =

0, else,

2, m=0,
Cm =

1, m>0.

A, p are determined by the boundary conditions. One obtains

N N
A= 1[1 _ kz:even k#0 wk]
2 k3 oaaWe |

_ 1
=—F -
221: odd Wk

From (3.7) and by using again the equality 7", (1) = m? we derive

U

N N
eog(1) = pibg(1) = p Y mT(1) = p E Wm?

m=1 m=1

— lZﬁ:l '(i)mmz —_ G
= 2—N_a—— = N(Ea).
2ok odd Wk
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By a similar treatment we can calculate é,,. Setting e, = ;¢ we obtain

where
M
5(6) = Z 5’me(€)
m=1
with
im =1,
M
2ALbam,N, 1<m<M-1.

_@’. Z k3 — .
m

Zm =
Tm
k>m+1
|k—m| odd
The parameters g and o are determined so that the boundary conditions are fulfilled

This means:
?ul( 1)—9‘*’0’2&1" l)m =
R . 2 b
bwe(l) =0 Z Zmm” = —;GN(E“)
m=1
This implies
b GN (Ea)

o=--
17 R
Y1 Zmm

p= b Zmat En(CD”
a E —1 Zmm?

GN(E,I).

By these formulas we obtain

M
ew(1)=0+022m

m=1
M a
—_ 2 (Zvn:l <m
= i - -
a Z-m 1 z"”mz
b 2 Zm S 4Lsm odd ™M Zm -
N(‘va)
AT 22
_ b GN(EE)
a GM(Eb) ’

)

M ~
Znt::l Zm - )GN(sa

_ i -
E1n:l Z7n77l2

=™
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M s 2
where we have set G y/(s;) = %ﬁﬁkﬂ Let us further define

e odd S

on,m(€) = gg—NA;((Z—Z;

From the above consideration we now derive the following proposition:

Proposition 3.2. The interface relaxation procedure (3.5), (3.6) converges pro-
vided 6 satisfies
0 <6 <0y (),

where
On.0(€) = 2(1 + on,m(e) .

The optimal relaxation parameter is given by

Oopt = 50,1 (€).

With this choice the procedure (3.5), (3.6) converges after two steps.

Remark 3.1. If there is no relaxation (# = 1) the interface relaxation procedure

converges iff
b a

Gu() ~ Grlea)

For the automatic parameter choice we obtain 6, = ,,¢ and hence convergence after

3 steps, no matter how A; is chosen.

Remark 3.2. Obviously, for increasing N, M the function pn,m(€) approxi-
mates g(e). Hence we also obtain

0*(e) = N EgooﬁN,M(e) for all € > 0.

Therefore, in general (if N and M are not too small), the—easily available—
relaxation parameter from the continuous case can be adopted.
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4. DOMAIN DECOMPOSITION IN TWO DIMENSIONS

4.1. The continuous case. We now consider the two-dimensional singular per-
turbed problem (1.2). We are interested in a decomposition of problem (1.2) into
two subdomains, say Q, = (—«,0) x (—1,1) and Q, = (0,b) x (=1,1). Let T denote
the interface between 2, and Q;, i.e. I' = {0} x (—=1,1). If we further denote by v
the restriction of u to 2, and by w the restriction of u to Q, it follows that (1.2) is
equivalent to the split problem

—cAv+v, =g infl,,
0 ondN, \T,

v=w onl,

v

vz =w; onl,
w=0 ond\T,
—cAw+w, =g in .

The interface relaxation procedure now reads as follows: A; is a given function defined
on I'. We define sequences of functions v(™) on 9, and w(™ on Q4, n > 1, by the

“iteration
(4.1) ’ —eAv(™ + vi.") =g inQ,
v™ =0 on dN, \T,
v™ =\, onTl
and
(4.2) —eAw™ + wfr”) =g in §,

w™ =0 onad, \T,

w™ =ov™ onT.
An (n > 2) are defined by the recursive formula
Antl = fuw'™ + (1-6A, onT, n>1.

Here 8 € (0,1] denotes the relaxation parameter. Following the analysis in one
dimension we once more introduce error functions

e(m = (W) — (=D o) = () — (=D > 2
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By using the error functions the interface relaxation procedure can now equivalently
be written as

(4.3) —elel + CS,",) =0 in Q,,
ef™ =0 onaQ,\T,

ef,") =6, onTl
and

(4.4) —edel) +e() =0 in O,
e =0 onaN,\T,

et = ef,',‘; onT.

0, are defined by the recursive formula
Ont1 = 965{,’) +(1- 0)65,11) onl, n>2.

By means of the representation with the error functions it is possible to derive a
convergence result.

Proposition 4.1. The interface relaxation procedure (4.1), (4.2) converges pro-

vided 0 satisfies
0<0<0*(e),

where
0*(e) =2 inf .
(€ =2, 1 loxle))
and
() =1 afefre — o ePrb _ 1
Ok - eﬁkﬂ -1 a;eﬁkb — ak+
with

Proof. We solve the problem (4.3), (4.4) by separation of variables. Let
{¥x, k = 1} be the eigensystem of the eigenvalue problem

oy = (ETY:
~Hw = (5) »), -1<y<,
=0

Yr(—1) = (1) = 0.
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Let us further denote by {@k, k& > 1} and {\&, & > 1} the eigensystems to the
problems

—epi(x) + or(z) = —€(k2 ) pr(z),
oe(—a) =0, @r(0)=1
and
ka2
- exf(e) + xi@) = —<(5) ),
xe(b) =0, xi(0)=1.

The eigenfunctions are explicitly given by

k
Yely) =sin S (y+1), k>1
and
a:'z a; —C _L a:’ )’

ou(e) = — (e
13 k

eaz’x+n,:b _ en; 1‘+atb).

Xk (;l:) =
af

Now ef, ) ef,, ) can be expanded as follows:

Z B i ()i (v),

where
= / (W¥r(y)dy, k=1
and bl
el™ = Z’Y/(cn)xk(w)‘/’k(y)’
k=1
where

1
L = / e (0, y)p () dy

By the interface condition on the z—derivative we immediately obtain

7 = g (0)8.
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This leads to the recurence relation
P = (005 (0)xk(0) + (1 — 0)i(0))Br fork>1, n>2.
We have ¢ (0) = 1 and an explicit calculation yields

- + - - ot
et —eMb ate e —a e
@ (0)xx(0) = — - .

e~ e-ata o

ea;b _ a;eatb

By simple transforms one finally obtains
P = (1 - 0ok(e)) B
Hence the interface relaxation procedure converges iff
|1 —0or(e)] <1 forallk>1.

This leads to the convergence criterion stated in the proposition. O

Now let us discuss the behaviour of gr(e) and the resulting restriction on the
relaxation parameter . In particular, we are interested in situations with small €.
Because of the exponencial terms we approximately obtain

+

«
k

ok(e) ~1 - —=.
Qy,
. — .22 .
Since ak+ak =_k +— we further derive
4 +

or(e) ~1+ W(ak )2

This implies

2e72  4e71 [} k2n?
~ o= = [lg-2
Qk(s) 2+ k2n2 + k2n2 | 47 + 4

For fixed k& and ¢ — 0 we obtain
or(e) ~0(E™?) (e —0).
On the other hand, for fixed € and k& — oo we derive

ok (g) ~ 2.
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Altogether, we obtain
2 < or(e) < O(e7?).

This bound on g (<) leads to a qualitative bound in 8 of the form
0 <6 < O(?).

Once more we are especially interested in the case when the interface lies near the
boundary layer. We consider the case when b = O(¢), say b=0¢, 0 > 0. Fore — 0
we obtain Y
ok(e) ~1— a:_' Te;—

a, -e7 —
This means that now gk(c) becomes independent of . The corresponding optimal
relaxation parameter is fopt = ¢77. With this choice one should get convergence of
the interface relaxation procedure in a few steps (see also Table 4.1).

For a definition of the dynamical parameter choice we introduce the inner product
of the space L%(T)

1
(o) = [ u(0,4)0(0,)dy

-1

and its associated norm ||ul| = (u,u)!/2. As was already mentioned in [6] the auto-
matic parameters are given by

(n) ) ("))

(n
(ev 1€y " — €y

fles™ — el |12

The first relaxation parameter 6; should be prescribed. A geometric interpretation
of this choice is given in [6].

A similar treatment can be applied if the singular perturbed operator is of the
“stabilized” form (see (2.1))

—EUpz — Elyy + Uy,

where € > € > 0. The statement of Proposition 4.1 still holds with af replaced by
dki, where

st 11 lzo2 4 1322 2
ap =36 £ \/Z“: 2+ gk?n%es— L.
Hence we obtain convergence iff

0<8<6%e),
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where
GO~ it (@)

Here gy (¢) is constructed in the same way as g (€) with oz,c replaced by a . A study
of the qualitative behaviour of gk(e) for € — 0 yields

~ 4 -
Br(e) ~ 1+ oy (e8)

which implies
0<0<0(é) ! fore—o0.

If we allow b to depend on ¢, say b = o¢ (¢ > 0), then we obtain
ék (6‘) ~1

and therefore the optimal relaxation parameter becomes 6oy = 1 (no relaxation).
The numerical results in Section 4.3 confirm our theoretical considerations.

4.2. Spectral collocation method. For an introduction of the spectral collo-
cation method we define a subspace of polynomials

Pn.L = {px(2)pe(y): pr,pe are polynomials of degree < k and
< ¢, respectively, for 0K k< N, 0< €< L}.

Let the nodes w(l) (j=0,...,N), a'(2) (= 0 ., M) be defined as in Section 3.2.
In (-1,1) we further define nodes Ye = cos Z =0,...,L. The spectral collocation
method corresponding to our split problem now leads as follows: Find vy € Py 1,
wpr € Py, such that

(—eAuy +unz) (@, ye) = g(a$),ye) for 1<j<N-1,1<E<L-1,
on(@),y) =0 forj=N, 0<¢<L, €=0,L, 0<j<N,
un(0,y¢) = wm(0,4¢) for1< €< L-1,
UN,z(0,¥¢) = wpm,z(0,y¢) for1 <€ L—1,
,€=0,L,0<j <M,

wM(z(- ,Y¢) =0 for]—O 0K
(—eAwps +wp,e) (28, ye) = g(a1P,ye) for 1< j

The corresponding interface relaxation procedure now reads as follows: Find two

sequences, va) € Pn,. and wgw) € Pum,L, for n > 1, by solving the collocation
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problems

(_E/'_\'ux‘)l +v§\’,‘)l)(17§1)’y£) = g(l‘;”,yz) for 1<j<N-1,1<¢<L-1,
W@, =0 forj=N, 0< <L, (=0,L, 0<j<N,
v{M(0,9¢) = Aulye) for 1< €< L

and

(- EAwM - +1U$\;)x)(;l’§2),y1) = g(wgz),yg) forI<j<M-1,1<¢<<L-1,
wnl)(r(-z),yi):O for j=0,0<(¢(<L,¢=0L,0<j<M,
<l

wMI(O Ye) —le(O ye) forl L-1.

Here )\; is a polynomial of degree < L which is defined on the interface I'. The A,
(n > 2) are recursively defined by the formula

Ang1 = Hw(") +(1-60)A, onT, n>1.

Here 6 € (0,1] is a fixed relaxation parameter. In order to give a definition of the
dynamical parameter choice we once more introduce the error functions

L"I)V = v(") - v%’_l) € Pn,L, CS:)M = wa wM D¢ Par,L-

The discrete inner product in L?(T') is given by

L

(U, ’U)z = Z U(O, yl)v(oa yl)wb

£=0

where we (€ = 0,...,L) denote the Chebyshev-Gauss-Lobatto weights. Now, let A,
be a given palametel Then 6,, (n > 2) are automatically given by
( (n) (n) _ (n )

(45) 611 - v, N> € ur M

( )
”6171,11)\/ SJLMHZ

where ||ul|3 = (u,u)2. The error function eg ')v can be expanded as follows:

N (x,y) = Zﬁ ) or ()i (v).



Here pi (K =1,. —1) is a polynomial of degree N and ¢ (k=1,...,L—1)isa
polynomial of deslee L. The polynomials ¢, are solutions of the (leClete elgenvalue
problem

Yp (1) = mePi(yn), €=1,...,L -1,
Yr(=1) = ¢i(1) =

The cigenvalues i, (k= 1,...,L — 1) are rcal and positive. The polynomials ¢, are
the solutions to the collocation problem

Ew('«(l)) + %(b = —sﬁwk(wﬁ-”), j=1...,N-1,
¢r(—a) =0, <Pk(0) =1

The coefficients ﬂ,(cn) are determined by the relation
L=1
> B k() = N 0y), n>2.
k=1

In the same manner CS:)M can be expanded as follows:

L-1
e (@y) = 3 A @) (y)-
k=1

The functions y, arc polynomials of degree < M and eigenfunctions of the discrete
cigenvalue problem

- EXZ(:E§2)) + ,\’L($§2)) = _Eﬁk/\lk(xgz))s .j = 17~ .. vA[ - 11
Xk(0) =0, X (0) = 1.

The coefficients 'y( ™ are determined by the relation
n 865‘:"%4
vac "pi(y) = —22(0,y).

k=1

Hence one obtains the recurrence relation
) = [1-6(1 - 9, (0)xk(0)] 8™ for1<k<L-1,n32
and convergence is achieved iff
[1-6(1-¢i(0)xk(0))| <1 forallk=1,2,....
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By means of the polynomials ¢y, and y it is now possible to derive explicit conditions
on convergence (compare the one-dimensional case). For the sake of brevity we leave
this out. For increasing N, M the polynomials @, X1 approximate the corresponding
continuous eigenfunctions. Then the more practical criterion from the continuous
case can be adopted.

4.3. Numerical results. We consider problem (1.2) with

o= ath

eF —e e 1 .
g(r,y) = [sn2 P a7 b} sin(ny).

Hence the exact solution is given by

er —e: r+al .
u(z,y) =[ o b+a} sin(rny).

u has a boundary layer of width £ near ¥ = b. We exaine the interface relaxation
procedure fora = land b=1orb=¢. Wefix N = M = L = 12 and study the
stable method with e = 1/N. Different kinds of relaxation parameters are examined:

— fixed relaxation parameter with

=2 forb=1,

f=e1forb=c¢;

— dynamical parameter choice (4.5).
We further measure the discretization errors ERV and ERW on Q, and Q,, respec-
tively:

ERV = llon = vllzar  ERW = [luns = w]lz.

Here || |2, and || ||2,» denote respectively the discrete L? norms on Q, and Q, i.e.,
in particular,

N . 1/2
0120 = [ S u(al ),yg)l] /N.

7,€=0

In Table 4.1 we present numerical results for different values of b and different re-
laxation parameters. We give the number NIT of interface relaxations which is
necessary to reach an accuracy of at least 10 digits. As already results from the
numerical analysis, the choice b = 1 requires many more relaxations than the choice
b = e. For b = ¢ we always obtain convergence after 9 steps.
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6 NIT ERV ERW
€ 557 .28-107% .50-107°
(4.5) 44 .28-107% .50-107°
el 9 .75-107¢ .12.10°°
1 e (4.5) 9 .75-107¢ .12.107°

- e | D
—

n

Table 4.1. Interface relaxation for problem (1.2).

Now, we consider the two-dimensional example introduced in Section 2. We apply
the domain decomposition technique to the stabilized problem with the right hand
side fny. We once more compare the dynamical parameter choice with the fixed
relaxation parameters from the theoretical analysis. We fix a = 1 and choose b = 1 or
b =¢. In the case b = 1 the fixed relaxation parameter is given by 8 = € and in the
case b = ¢ the fixed relaxation parameter is = 1. In order to reduce the computing
time we fix N =8, =1072, £ = 1/N. In Table 4.2 we collect the numerical results
for this example. If @ = b = 1 the number of iterations is dramatically reduced by
the parameter choice (4.5). Furthermore, for b = € the number of iterations 3 or 4,
respectively. The relaxation parameter generated by (4.5) is approximately equal to
that which analytically turned out to be the optimal choice.

a b 6 NIT
1 1 e 1830
1 1 (45) 133
1 ¢ 1 3
1 ¢ (4.5) 4

Table 4.2. Interface relaxation for the example in Section 2.

5. ITERATIVE SOLVER AND MULTIGRID METHOD

We consider the two-dimensional singular perturbation problem (1.2) and the sta-
bilized version (2.1). We fix € = 1/N and € = 107%. We intend to solve the spectral
problems by an iterative method. In this context the Richardson relaxation (see (8,
9, 13, 14] is an appropriate scheme. Iterative methods for spectral problems are only
efficient if fast (Fourier) transform are available. For this purpose the Richardson
method is very well suited in contrast to other methods used for finite difference
of finite clement methods. Because of the high condition number of the spectral
operators some kind of preconditioning is necessary. In order to make the precondi-
tioning not too expensive one prefers finite difference of finite element discretizations.
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These low order problems themselves are not solved exactly but by a few steps of an
appropriate iterative solver.

Here we consider finite difference preconditioning. For the second order derivatives
we employ the standard central differences (sce [8]). For the first order derivative we
also use a central finite difference formula, i.e.

1 1 1 1
U o~ ———U "‘i— —— —_— "'l:
“ (.’L‘,) - 2(.’1,‘,'_1 - wi)U(l l) 2 (:L‘,;_l —I; €Ty — Tyl )u(l )

1 in
- u(; inx;=cos—,i=1,...,N —1.
2(1:1_ _-'I:i-l-l) ( +l) N ¢

Unfortunately, upwind finite differences have very poor preconditioning properties
(see [5]).

For preconditioning of problem (1.2) we employ one step of the alternating zebra
line relaxation (ZLR) method (sce [8, 9]). It consists of relaxing along lines of con-
stant z and y in an alternating manner. Vectorization is achieved by solving first for
the odd and then for the even lines. The resulting systems are tridiagonal and sym-
metric. Hence they can efficiently be solved by means of a Cholesky decomposition.
An alternative to this method results from an incomplete LU (ILU)-decomposition.
This approach yields similar preconditioning properties as the ZLR. Since the alter-
nating ILU needs twice as much work for the decomposition (see [8]) we prefer the
alternating ZLR.

For preconditioning of problem (2.1) we employ one step of ZLR only in the 2-
direction. Another step in the y-direction is not needed since the coeflicient ¢ is
much smaller than &. In Tables 5.1 and 5.2 we present the minimal and maximal
eigenvalues of the precondictioned spectral operators. It becomes obvious that our
technique of preconditioning works very well also for increasing N. For the stationary
Richardson relaxation with optimal relaxation parameter wope = x# we obtain
_Axxu:;_i..m:: We also present wopt, Oopt for different N. It
becomes obvious that preconditioning is very effective for problem (2.1). For problem
(1.2) the convergence factors are not satisfactory.

a convergence factor gopt =

/\min /\max Wopt, Qopt

1.18 7.31 0.2356 0.7220
0.65 17.1 0.1127 0.9268
0.58 65.8 0.0301 0.9825

o o &2

Table 5.1. Awins Amaxs Wopt, Qopt for the problem (1.2).
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Amin__ Amax Wopt Qopt
1.10 1.87 0.6734 0.2593

1.03 2.20 0.6192 0.3622
0.90 247 0.5935 0.4659
0.42 285 0.6116 0.7431

Table 5.2. Aminy Amax, Wopt, Qopt for the problem (2.1).

Finally, we have found suitable components for a multigrid method. For the
construction of an effective multigrid method we have to consider the stabilized
problem (2.1). For relaxation we chose the iterative method which has already been
described. The transfer operators for restriction and interpolation are chosen in a
standard way (sce [8, 13]). The most important aspect for the multigrid method is
the construction of the coarse grid problems. Here we tried a lot of different variants
but only one gave satisfying results. Here we choose é = 1 on all levels. On the
coarse grids the right hand side is not perturbed by adding derivatives. It is exactly
the restricted residual. Hence on the fine grid we obtain on O(e%) perturbation of
the exact solution whereas on the coarse grids we only have an O(1) approximation
of the solution. Also different &, for instance € = 1/N, result in bad convergence
results (with factors of about 0.9 — 1.0).

In order to estimate the convergence properties of the spectral multigrid method
we compute the spectral radius g of the multigrid operator by means of the power

/W we define the convergence factor per work unit (see [8]).

method. By pow = o
The standard work unit is the amount of work involved in one relaxation sweep on
the finest grid. We compare stationary and nonstationary Richardson (SR and NSR)
relaxation. In NSR we allow the parameter to change in each step. For SR relaxation
we employ one relaxation before coarse grid correction. For NSR relaxation we
employ three relaxation steps before coarse grid correction. The optimal parameters
are given in [8].

In the numerical computations we have use a V-cycle with four grids, i.e. N = 4,
8, 16 and 32. The convergence factors gw (see Table 5.3) are acceptable and quite
close to the values we obtained for the Laplace operator. We finally remark that a
similar treatment is possible for the more general problem (2.2). Here one also has

to resort to the corresponding stabilized version.

Relaxation 0 ow
SR (1 Relax.) 0.4230 0.5232

NSR (3 Relax.) 0.0217 0.3823

Table 5.3. o, pw for the V-cycle. °
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