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SPECTRAL METHODS 

FOR SINGULAR PERTURBATION PROBLEMS 

WlLHELM HEINRICHS, Diisseldorf 

(Received July 8, 1991) 

Summary. We study spectral discretizations for singular perturbation problems. A 
special technique of stabilization for the spectral method is proposed. Boundary layer 
problems are accurately solved by a domain decomposition method. An effective iterative 
method for the solution of spectral systems is proposed. Suitable components for a multigrid 
method are presented. 

Keywords: spectral methods, singular perturbatiou, stabilization, domain decomposition, 
iterative solver, multigrid method. 

A MS classification: 65N35 

1. INTRODUCTION 

We consider singular perturbation problems (or advection-diffusion equations) 

which can in the one-dimensional case be written as 

(1.1) -eu" + u' = f in ( -a , 6), 

u(—a) = u(b) = 0, 

where £ > 0 , a > 0 , b > 0 and / is a given function defined in (—a, b). In the 

two-dimensional case we consider problems given by 

(1.2) -sAu + ux=g in ft = (-a,b) x ( -1 ,1) , 

u = 0 on 3Q, 

where g is a given function defined on Q. In particular, one is interested in prob­

lems with small £ > 0. The problem (1.1) is discretized by a spectral collocation 
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method (see [1, 2]). One of the main features of such problems is the occurence 
of thin boundary layers which have a width of order O(e) for e -•> 0. The "max­
imum principle" in the physical space does not hold for spectral approximations. 

Nevertheless, Canuto [1] has proved a certain sort off "maximum principle" in the 
frequency space, in the sense that all Chebyshev coefficients of the spectral solution 
are strictly positive for all e and N (IV: maximal degree of polynomials). By using 
this property it is possible to derive convergence estimates. One of the main results 
is the following: if £IV2 —» oo as IV -> oo and s —> 0 in such a way that eN2 = Na 

for a suitable a > 0, then the spectral discretization error tends to 0 faster than an 
power of N~l (see [1, 3.2A]). In particular, it comes out that the spectral scheme is 
stable for e = IV"1. This is a property which is also known from central difference 
discretizations of (1.1) or (1.2). In the case of very small £ « . V _ 1 , artificial viscosity 
with i = N~l is introduced in order to stabilize the scheme (see [3, 4, 7]). An obvi­
ous disadvantage of this approach lies in the fact that the method now becomes only 
first order accurate. For finite differences the second order accuracy can be obtained 
by applying a "Mehrstelien"-operator to the right hand side (see [4, 10, 12]). By 
similar technique we stabilize our spectral scheme. 

First we introduce artifical viscosity and then we perturb the right hand side / 
by adding the first and second derivatives. Here it is assumed that / is sufficiently 
smooth. This assumption is reasonable since in connection with spectral methods 
we are mainly interested in the case of smooth data. This method of stabilization 
leads to an approximation error which is perturbed by quantities of order 0(sf) or 
0(£2i) for small £\ A similar treatment is performed in the two-dimensional case. 

We present numerical results which substantiate this improvement. 

In Section 3 and 4 we consider a domain decomposition method for singular per­
turbation problems in one and two dimensions. We present an iterative procedure 
with interface relaxation. Here we mainly follow the treatment in [6]. During each 
iteration, at every interface between two subdomains, first Dirichlet boundary condi­
tions are imposed on the on side, and the Neumann boundary conditions are imposed 
on the other. In order to ensure convergence, a relaxation of the Dirichlet data at 
the interface is used. We analyze this algorithm and prove convergence for relaxation 
parameters which lie in a certain interval. In the one-dimensional case the optimal 
relaxation parameter can be explicitly calculated and this choice leads to convergence 
in two steps. In the case of two dimensions the number of iterations depends on the 
location of the interface. If the interface lies near the boundary layer, convergence in 
a few steps (less then 10) can be achieved. If the interface is located far away from 
the boundary layer, the number of iterations becomes dependent on £ and asymp­
totically behaves like 0(e~2) for s —•> 0. Furthermore, we investigate a strategy for 
an automatic selection of relaxation parameters (see [6]). In the one-dimensional 
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case it will converge after three steps (independent by of the starting relaxation pa­
rameter). In the two-dimensional case it also yields very satisfying results and is in 
general faster than the method with a fixed relaxation parameter. Numerical analy­
sis is performed in both the continuous and the discrete case. Numerical results are 
presented which confirm the expected behaviour from the theoretical analysis. 

In Section 5 we introduce an effective iterative method for the solution of singular 
perturbed spectral systems. Special techniques of preconditioning are proposed. 
Numerical results are presented. It is shown how the relaxation method can be 
imbedded in a multigrid V-cycle. 

2 . STABILIZATION OF THE SPECTRAL METHOD 

We consider the one-dimensional advection-diffusion equation (1.1). Let L€ de­
note the singular perturbed operator, i.e. L£u = —eu" + u'. By L^ we denote the 
corresponding collocation operator with nodes Xj = cos ^ (j = 0 , . . . , N). After an 
elimination of the boundary conditions the collocation problem now reads as follows: 

T N £ 
L£ UN = JN, 

where fN = (f(xj)) .= 1 N 1 . For small e the operator Le becomes instable and 
hence we introduce a stabilized operator Lg which corresponds to L^ with e replaced 
by e ^> e. From the results in Canuto [1] and from numerical experiments it becomes 
obvious that L1- with e — 1/N is stable for all N. Unfortunately, by a simple 
replacement of L^ by L^ we get a first order method and the high accuracy of the 
spectral method is lost. Hence we propose a simultaneous change of the right hand 
side. This is an idea which is closely related to the "Mehrstellen"-method (see [4, 
7, 10, 12]). Doerfer et al. [4] introduced this method for central finite difference 
discretizations. In general the introduction of artifical viscosity makes the method 
only first order accurate. By means of the "Mehrstellen"-method it becomes second 
order accurate. Now we introduce two perturbations of the right hand side / : 

/ ? = / + (£-£)/', 
f* = f + (e-i)f' + (e-i)ef". 

Here we assume that the second derivative of / exists. The corresponding collocation 
problems read 

L?VN = fe,N 

and 
Lg wN - JeN, 
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where 

flN = fN + {e-2)fh 
and 

flN = fN + (£-i)f'N + (e-£)efN. 

Here we write f'N = (f'(xj))j=1^N_v fN = (f"(*j))j=1 N_r Now we are 
interested in the error functions uN — vN and uN — ivN. An easy calculation yields 

-i(uN - vN)" + (uN - vN)' = -eu"N + U'N + ivN - v'N + (e - i)u"N 

= fN- fl,N + (e - i)u'N 

= -(e-i)f'N + (e-i)u'N 

= - ( e - i)(~sU'H + u'N) + (e- i)u"N 

= (e-i)eu'^ 

which behaves like 0(ss) for small e. Since L^ is a stable operator we conclude that 

\\uN -vN\\-2 = 0 ( f e ) , 

where || H2 denotes the discrete L2-norm, i.e. 

M І 2 = ^ v\ф,)2. 

By similar calculation one obtains 

-e(uN - wN)" + (uN - wN)' = (e - e)£u^ - (e - i)e(-eu!/ + ii'̂ ') 

= ( £ - e ) e 2 w ^ , 

which behaves like 0(e2e) for small e. Hence we obtain 

\\uN-WN\\2 = 0(s2i). 

This means that the spectral accuracy is perturbed by 0(ee) or 0(e2i), respectively, 

which is quite small for small e. 

A similar treatment can also be transferred to the two-dimensional singular per­

turbation problem (1.2). Let uN denote the solution of the corresponding collocation 

problem with respect to the nodes (%i,yj) = (cos ^ , cos ^ ) ( i , j = 0, . . . ,A r ) . This 

means that 

uN GP5v = {pN: pN polynomial of degree -̂  IV in x,y and pN = 0 on dft} 
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and 
(sAuN + uNiX)(.Vi,yj) = f(xi,yj) (i, j = 1,... ,N - 1). 

The corresponding stabilized problems define functions vN, wN E P^ as follows: 

(-svNiXX - svN,yy + vN,x)(xi,yj) = ( / + (e - e)fx)(xi,yj) 

and 

(2.1) (-iivNiXX - ewN,yy + wN,x)(x.i,yi) = ( / + (e - i)fx + (e - i)eAf)(xi,yj) 

for i, j = 1 , . . . , N — 1. Since only the first a.-derivative is involved we only have to 
introduce artificial viscosity in the ^-direction. Once more we are able to estimate 
vN — uN and wN — uN. We easily obtain 

-£(vN - uN)Xx - Z(VN - uN)yy + (vN - uN)x = (i - s)e(uNjXXX + uNiyyX), 

which behaves like 0(e2s) for small e. 
By similar calculation one obtains 

-i(WN-UN)xx-S(wN-UN)yy + (wN-UN)X = (i-S)S2(uNiXXXX+2UNjXXyy + UNjyyyy), 

which behaves like 0(e2e) for small e. 

Since the modified operator is stable, it follows that 

\\vN -uN\\-2 = 0(ie) 

and 

\\wN-uNh = 0(s2i)1 

where || ||2 denotes the discrete L2-nonn in two dimensions. In practice, the deriva­
tives of / are also calculated by applying spectral collocation derivative operators. 
The previous analysis can be adopted in a straightforward manner. We apply these 
methods to some numerical examples. 

In Tables 2.1 and 2.2 we present numerical results which show the stabilization 
of our treatment. For the numerical tests we consider singular perturbed problems 
with the exact solution 

u(x) = sin(Ko:) 

in the one-dimensional case and 

u(x, y) = sin(7u;) sin(ra/) 
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in the two-dimensional case. We fix e = 10 6 . 

jN \\uN - li | |2 \\VN ~ u\\2 \\l»N ~ U>h 

4 .196-105 .194 • 10° .194-10° 

8 .122 • 102 .401 • 10~3 .401 • 10" 3 

12 .201 lO" 2 .522-10"6 .127 10-6 

14 .176 10" 4 .445 I P " 6 .145 - 10~8 

Table 2.1. Numerical results in the one-dimensional case. 

N \\uN 
- 1 i | | 2 \\VN ' -t i ib Ik.v - t i Ц a 

4 .550 ю4 .109« 10° .109 10° 

8 .649 ю1 .754 10" 2 .250 10" 3 

12 .117 ю-2 .646 10" 6 .795 ю-7 

14 .104 10" 4 .556 • ю-6 .904 ю-9 

Table 2.2. Numerical results in the two-dimensional case. 

It becomes obvious that the singular perturbed problem is unstable for small 

N. For increasing jV this effect of instability is somewhat disturbed by the high 

consistency of the spectral method. Our methods of stabilization work very well. 

The improvement of the approximation WN over VN becomes visible for N = 14 

where the spectral accuracy is sufficiently high. 

We further remark that a similar treatment is not possible if the first order terms 

in both directions, i.e. 

aux + (luy 

with a,/? G fl, a / 0, /3 J- 0 are added to the second order operator. In this 

case the above treatment always introduces the mixed derivative uxy which cannot 

be eliminated. More general problems result from a rotation of the rectangle R = 

( - 1 , l ) 2 . The rotation by an angle (D is given by 

r„ = ( C0S(p' 
\-sin<D, 

where 
sin (p' 
COS(D, 

We denote the rotated rectangle by R^. The transformed problem now reads as 

follows: 

(2.2) — ehz -f- cos<pzx - sin(pzy = f in H^, 

z = 0 on dRtp, where Az = zxx -f zyy. 
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For sucli an equation the corresponding stabilization can be determined by a rotation 

of the corresponding stabilized problems in R. It is explicitly given by 

-S(COS2 <P>WN,XX - 2 COS <p Sin <pWN,xy + Shi2 <pWN,yy) 

- £(s i l l 2 <pWN,ix + 2 COS <p Sill <piUN,xy + COS2 <pWN,yy) 

+ cos <PWN,X — sin <pWN,y 

= / + (e - i)(cos <pfc - sin <pfy) + (e + i)eAf in R^ 

vbN = 0 on dRy. 

The corresponding error \\z — WN\\-2 behaves like 0(e2i) (e -> 0). 
Finally, we numerical observed that problems like (2.2) defined on R instead of R^ 

instead of R^ are stable for all <p E [0, 2T:), <p ^ kTc/2, k G {0,1,2,3}. The solution of 
the continuous problem is denoted by z and the solution of the corresponding spectral 
problem is denoted by ZN> By ZN we further denote the spectral approximation of 
the stabilized version. 

N 4 8 12 14 

p - ZN\[I 0,209 • 10° 0.529 • 10"3 0,195 • 10~6 0.231 • 10~8 

\\z-zsh 0-153-10° 0,443-10~3 0.141 -10"6 0A60 - 10"8 

Table 2.3. Numerical results for <p = TC/4. 

From the numerical results in Table 2.3 it becomes obvious that the spectral 
problem is already stable. The spectral approximation from the stabilized problem 
only yields a slight improvement in accuracy. Hence for <p ^ fcrc/2, k G {0,1,2,3} 
it is not necessary to resort to the stabilized version. At the moment it is not clear 
why this phenomen of instability occurs only if the direction of flow is parallel to the 
coordinate axes. 

3. DOMAIN DECOMPOSITION IN ONE DIMENSION 

3.1. The continuous case. We once more consider the one-dimensional 
advection-diffusion equation (1.1). In particular, we are interested in the special 
equation with 

f:=Z"a + b' 

By the transform 

it = u+ in (—a, 6), 
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problem (1.1) is now equivalent to the boundary value problem 

(3.1) -euxx +ux =0 in (-a, b), 

fi(-a) = 0, u(b) = 1. 

The exact solution of (3.1) is given by 

ü(x) 
Є e - 1 

The boundary layer exhibited near x = 0 when e —>• 0 has now a width of order O(e). 

We are interested in a domain decomposition approach to this class of problems. 

If we denote by v the restriction of u to the interval (—a, 0), and by w its restriction 

to (0,b), it follows that (1.1) is equivalent to the split problem 

-evxx + vx = f in (-a, 0), 

v(-a) = 0, 

v(0) = w(0), 

vx(0) = wx(0), 

w(b) = 0, 

-eivxx +wx = f in (0,6). 

A similar statement holds for decompositions of (—a, b) into a finite number of subin-

tervals. 

In analogy to the treatment in [6] we define the following two sequences iAn), n ^ 1 

in (—a,0) and u / n ) , n ^ 1 in (0,6) which solve the problems 

(3.2) - « . i n ) + « i " ) = / i n ( - a , 0 ) , 

w< n )(-o)=0, 

f ( n ) (0) = An 

and 

(3.3) -ewinJ+w^ = f in (6,6), 

w ( n )(6) = 0, 

w^(0)=vin\0). 

Here Ai is given a number, and the An (n ^ 2) are defined by the formula 

A n + 1 =0w^(0) + (l-6)\n, n ^ l . 
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9 € [0,1] denotes the relaxation parameter. For a further study of the interface 
relaxation let us introduce the error functions 

e[n)(x) = v{n)(x) - v(n~l)(x) in ( -a ,0) 

and 
e(n)(x) = w{n)(x) - w^^x) in (0,6) 

for n ^ 2. In terms of the error functions the interface relaxation procedure now 
reads as follows: 

-eei%+ e[';l=0 in ( -« ,0) , 

e W ( - a ) = 0 , 

el">(0) = 9e£->\0) + (1 - 9)ein~1Ho), 

-eel% + e^=0 in (0,6), 

e l n ) W = 0 , 

elni(0)=e(»2(0). 

Convergence analysis of this relaxation procedure yields the following result: 

Proposition 3.1. The interface relaxation (3.2), (3.3) converges provided 6 sat­

isfies 

O<0<0*(s), 

where 

0*(e) = 2(l + Q(e))-1 

with 
n * e * - l 

Q(e )=e£——7-e^r — 1 

The optimal choice for 0 is given by 0Opt = 2^*(£r)- Wifcii this choice the procedure 
(3.2), (3.3) converges after two steps. 

P r o o f . The error functions ej,n), e™ can explicitly be written as 

e i " > ( a ) = e W ( 0 ) ^ - l i , 
e* — 1 

e ! : i ) W = e W ( 0 ) £ e T ( e ^ - l ) . 

Using 

el',l)(0) = e $ ( 0 ) £ e ? ( e - £ - l ) , 

ein2(0) = e(»)(0)ie?--------
e e« — 1 
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we derive 

Hence 

e(Л0)=e^Ç^-e[rЧ0). 
Єf — 1 

ein+1)(O)=0e£>(O) + (l-0)e\r\O) 

= [l-e(l + B(e))]e[r)(0) 

= [l-2r(£)-^H'l)(0). 

Tlierefore the necessary and sufficient condition for convergence is 

\\-20*(e)-l0\ < 1, 

which yields 0 < 9 < 0*(e). Furthermore, it can be seen that v^ = v^ = u in 

( -a , 0) and w<3> = w<2> = u in (0, b) if 9 = 0opt. • 

This means that with the choice 9 = 0opt we can always guarantee convergence 

in 2 steps. Nevertheless it is interesting to see what happens to the interval of 

convergence (in 9) when e tends to zero. For e —•> 0 we obtain 

0*(e)~2e-b/£ ^0. 

This means that the interval length 6*(e) tends exponencially fast to zero. 

Now we fix a independent of e and take b = 0(e), say 6 = as (a > 0, constant). 

For e -> 0 we then obtain 

0*(e)~2e-(T. 

This means that now the interval length is fixed independently of e. Hence we 

observe that a large interval of convergence is obtained if the interface lies near the 

boundary layer. This results is very satisfactory since this is just the case one is 

mainly interested in. 

We are also interested in an automatic generation of the relaxation parameter. 

Now we allow 9 to change as n changes. As introduced in [6] an effective way to 

update 6 is to take 9 = 0n with 

9n = (An - A..-0 -n(V»)n(0) - «;<»-i>(0))' n ^ 2 ' 

The value 9\ is a given parameter. By this automatic choice one gets 9>i — 9opt and 

therefore convergence after 3 steps, no matter how 9\ is chosen. 
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3.2. Spectral collocation method. A spectral collocation approximation to 
the split problem is defined as follows: Let JV, M denote positive integers and let 
denote by P \ the space of polynomials of degree < N. We look for two polynomials 
vN G PN and wM G $*M such that 

(3.4) (svNjXX + vN,x)(xf]) = / ( 4 1 } ) for 1 ̂  j ^ N - 1, 

vN(-a) = 0 , 

vN(0) =wM(0), 

vN,x(0) =WM,X(0), 

wM(b) = 0, 

(~ewMtXX + wM,x)(x?]) = f(xf]) for 1 < j ^ M - 1. 

Here we use the nodes 

-}1}--føw-->. 

4 2 ) = | ( ^ + D. where tf = cos £ . 

This type of approximation was first introduced by Orszag [11]. There it was called 
the patching-collocation method. The interface relaxation procedure for (3.4) is now 
defined as follows: Let Ai be a given number. We define two sequences v^ € P/v 

In) 

and wM G P/v_, 7i ̂  1, such that 

(3.5) (-_.<&_ + v™x)(xf) = f(xf) for 1 ̂  j < N - 1, 

<4n)(-«) = o. 
^ ( O ) = An 

and 

(3.6) ( - ^ g . . + < l ) ( 4 2 ) ) = /(42)) f o r l ^ j ^ M - 1 , 
™j/>)=0, 

4">)=<4">)-
The A;i (.1 ̂  2) are defined by the following formula: 

An+1 = 0w^l)(0) + (1 - 0)An, n ^ 1. 

Here 9 G [0,1] denotes the relaxation parameter. If 6 = 1 there is no relaxation. The 
choice of the dynamic parameter is given by 

n _ — An — An_i  

" " (An - An_.) - ( < l ) ( 0 ) - - . ^ ( O ) ) ' 

171 



Now we are interested in an analysis of convergence of the interface relaxation pro­
cedure (3.5), (3.6). For this purpose we introduce error functions 

c(n) - v (n) _ (n-1) 
ev — VN VN 

and 

d n ) =« 'J i B ) -« ' j n " 1 ) forn>2. 

We deduce that e„ € P#, e|„ € 9 M, and consequently 

(-eei% + ^ jXiJ 1 ' ) = 0 for 1 < j < AT - 1, 

e<">(-a) = 0, 

ein)(0) = <5„ 

and 

( - « . £ _ + et%)(xf]) = 0 for 1 < j < Af - 1, 

eln)W = 0, 

elnL(0) = eW(0), 

where we have set Sn = An — An_i for 71 ^ 2. For fixed 6 we have the relation 

6n+1 = $e™ (0) + (1 - J)e(») (0) for n > 2. 

Let us further define error functions e„, e„, defined on (—a,0), (0,b) and e„, e„, 
defined on (—1,1). ev, ew result from ev, ew by the coordinate transform 

ev(x) = e„(-x + l ) , ew(x) = ew(--x + lj. 

ev is defined by 

( - e^e„,a + e ^ ) ^ ) =0 , 1 < j ^ N - 1, 

e„(-l) = 0, 

e„(l) = 1; 

ew is defined by 

( - epwM + e^itf) =0 , 1 < j ^ M - 1, 
2 . 

êw(-i) = o, 

é--í(l) = —cWfí(l). 
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Furthermore, for 6n we have the recurrence relation 

*n + 1 = (9ew(0) + l-0)6n 

= (9ew(l) + 1 - 0)6n. 

This means that the iterative procedure converges iff 

\9ew(l) + l-0\<l. 

In order to give a more precise criterion for convergence we have to determine the 
functions ev, ew. This can be accomplished by a technique introduced by Canuto [1]. 
We set ea = \e and obtain from [1, (3.11)] 

(3.7) 

where 

with 

M 0 = A + A«í>(0» 

N 

w(0 = ^2 wmTm(0, -Tm(0 = cos(marccos£) 
m=l 

( wN = 1, 

w 
2ea - ^ A 2Nea 

= 2^ KWk + — 
cm 0m,N 

fc^m+1 
|/c—m| odd 

1 < m £ Л Г - l 

and 

í1' 
f 2, m = 0, 

( 1, m > 0 . 

\m - iV| odd, 

else, 

A, /i are determined by the boundary conditions. One obtains 

K Leven k^O Wk 4 1 -
^Efcodd^ . 

2E/kodd^fe 

From (3.7) and by using again the equality Tm(l) = m2 we derive 

N N 

ev,*(l) = /«i>*(l) = /* 5Z ^^mC 1) = ^ $ 3 ^mm2 

m=l m= l 

_ i E m = i ^ f l > 2 - r . A - -, 
- 5 " " = 3 — : — — Gw(e«). 
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By a similar treatment we can calculate ew. Setting €b = f £ we obtain 

ew(0 = Q + <TZ(QI 

where 

with 

м 
m = £ ѓmтnl(o 

7 П = 1 

îм = 1, 

2єh - ^ ł A 2Mєь 
ZJП — 

^b v ^ i - twist 
-— 2.V kzk <*m,N, 1 < m < M - 1. 

%m Cm 
k^m+1 

| A: —77i | o d d 

The parameters g and a are determined so that the boundary conditions are fulfilled. 

This means: 

M 

ew(-l) = Q + a ~~\ Žm(-l)m = 0, 
m = l 

M 

This implies 

êwći1) = í? J ľ *™w2 = --Glv(^tt). 
m = l 

a = _Ъ GN(єa) 

« У " M - ?712 ' Z./m=l ~nг,n 

>M 
л — L*m=\ "m\ l) é^ (e \ Q " 7,~^—: —GN{єa). 

a E m = l ^ Ш 2 

By these formulas we obtain 

M 

ěw(\) = Q + G^Z-n 

Ъ í Z__-m=l zm( I ) Zw>7І=1 

«V EÍLi-wm- E 

Ъ 2 Xsm odd Z™ n (г \ 

~YM z m- ( ] 

Z^m=l "тnIIL 

Ъ GN(Єg) 

aGм(єь)' 

—\M * \ 

jř^Ҷ)GN(ea) 
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r^M £ m 2 

where we have set G M ^ ) = rfflfi* "'. . Let us further define 
-* 2 _ , m w.l.l Z»-

6G N (g a ) 
QN,M(£) - ~7T-77T-

From the above consideration we now derive the following proposition: 

Proposition 3.2. The interface relaxation procedure (3.5), (3.6) converges pro­

vided 0 satisfies 

O<0<O*N^(eh 

where 

#N,M(£) = 2 ( ! + QN,M(£))~ • 

The optimal relaxation parameter is given by 

#opt = 2S*N,M(£>>' 

With this choice the procedure (3.5), (3.6) converges after two steps. 

R e m a r k 3.1. If there is no relaxation (0=1) the interface relaxation procedure 
converges iff 

b a 
< GM(£b) Gs(sa) 

For the automatic parameter choice we obtain 82 = 0Opt and hence convergence after 
3 steps, no matter how Ai is chosen. 

R e m a r k 3.2. Obviously, for increasing IV, M the function QN,M(£) approxi­
mates g(e). Hence we also obtain 

0*(e) = lim 0NM(e) for all e > 0. 
A/,M-*oo 

Therefore, in general (if IV and M are not too small), the—easily available— 
relaxation parameter from the continuous case can be adopted. 
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4. DOMAIN DECOMPOSITION IN TWO DIMENSIONS 

4 .1. The continuous case. We now consider the two-dimensional singular per­
turbed problem (1.2). We are interested in a decomposition of problem (1.2) into 
two subdomains, say fitt = (—a,0) x (-1,1) and fi/, = (0,6) x (-1,1) . Let V denote 
the interface between Qa and fi&, i.e. V = {0} x (-1,1) . If we further denote by v 
the restriction of u to fitt and by w the restriction of u to fi^, it follows that (1.2) is 
equivalent to the split problem 

—eAv + vx= g in fla, 

v = 0 on<9fi t t \r , 

v = w on T, 

vx = wx on T, 

w = 0 on <9fi6 \ V, 

—eAw + wx=g in fit. 

The interface relaxation procedure now reads as follows: Ai is a given function defined 

on T. We define sequences of functions v{n) on fift and w{n) on fi&, n ^ 1, by the 

iteration 

(4.1) -eAv{ll)+vx
n)=g in fitt, 

v{n) = 0 on dQa \ r , 

v{n) = An on V 

and 

(4.2) -eAw{n) +wx
1l) =g in fi/„ 

w{n) = 0 on dfi6 \ V, 

w(») = v
{n) on V. 

An (?i ^ 2) are defined by the recursive formula 

An+1 = 6w{ll) + (1 - 0)Xn on V, n > 1. 

Here 0 G (0,1] denotes the relaxation parameter. Following the analysis in one 

dimension we once more introduce error functions 

e(n) = v(n) _ v(n-l)^ e(n) = ^(n) _ ^(n-1) ^ R ^ 2 
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By using the error functions the interface relaxation procedure can now equivalently 

be written as 

(4.3) - e _ 4 n > + eW = 0 in fiOJ 

eln> = o onan„\r, 

e<B)=<Jn o n T 

and 

(4.4) -eAe£>+eM=0 in n6, 

ê i> = o on onb \ r, 
<&.L = e $ onT. 

6n are defined by the recursive formula 

<Wi = &iB ) + (1 - 0)e<"> on T, n 2 2. 

By means of the representation with the error functions it is possible to derive a 

convergence result. 

Proposition 4.1. The interface relaxation procedure (4.1), (4.2) converges pro­

vided 0 satisfies 

O<0<O*{e), 

where 

and 

with 

*(є)=2Jnî{ßk(є)}. 

Qk{є) = 1 
Q+e/fr-" - q~ e ^ 6 - 1 

e0„a _ 1 a-Qpkb _ a + 

аţ = ì e - 1 ± y/Le-2 + ЏW, 

Ph = a + - ak . 

P r o o f . We solve the problem (4.3), (4.4) by separation of variables. Let 

{i/>k, k ^ 1} be the eigensystem of the eigenvalue problem 

'fcit\-
- K ( » ) -= ( y ) My), - 1 < » < 1, 

^fc(-l) = 0fc(l)=O. 
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Let us further denote by {(D/c, k ^ 1} and {\k, k ^ 1} the eigensystems to the 

problems 

- e<p'k(x) + <pk(x) = ~£(Y) ^ ^ ' 

^ ( - a ) = 0 , ipk{0) = l 

and 

'kn\'2 

-exí(x)+x'k(x) = -s(ү) Xk(x), 

Xk(b)=0, \fc(0) = l. 

Tlie eigenfunctions are explicitly given by 

and 

Vfc(y) = siu---(y + l), fc^l 

, _ / v \ tлa, x — a , a _a, x' —л, a\ 
<Pfc(Я = = 1—(Є A: *•• - Є * * ) 

e - a b a - e _ c v A . r t 

Xk(x) = + _, l -(eot***^ - e°* * + °* 6 ) . 
o£eQ*6 - a~ea* /J 

Now ev
n , eî  can be expanded as follows: 

oo 

4n) = £0fc
nW)iMy). 

A ; = l 

where 

and 

where 

^ i n ) = / ín(y)V*(y)dy, fc^l 

#> = f>„n)Ы-0lЫy), 
fc = l 

7І n ) = /_ e^(0,y)V^(y)dy. 

By the interface condition on the x—derivative we immediately obtain 

7fcn,=¥4(0)/f • 
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This leads to the recurence relation 

PTl ~ (V*(0)\'*(0) + (1 " 0te*(O))/Jl? for k >\,n> 2. 

We have <pk (0) — 1 and an explicit calculation yields 

vL(o)xfc(o) = 
e « ^ _ e « ^ a+e~ a ^ a -a~e-at( 

e" a ^ a - e~ a í a a^ea*T6 - a^eottb 

By simple transforms one finally obtains 

/%+1 = {l-e0k(e))ft. 

Hence the interface relaxation procedure converges iff 

\l-0gk(e)\ < 1 for all k^ 1. 

This leads to the convergence criterion stated in the proposition. • 

Now let us discuss the behaviour of Qk{z) and the resulting restriction on the 
relaxation parameter 0. In particular, we are interested in situations with small e. 

Because of the exponencial terms we approximately obtain 

<?*(£) ~ l - % 

Since ot^c\k — —^j- we further derive 

4 ' +\2 

This implies 

For fixed k and e —> 0 we obtain 

gk(e) ~ o ( e - 2 ) (e-fO). 

On the other hand, for fixed e and A; —> oo we derive 

Qk(e)~2. 
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Altogether, we obtain 

2<Qk(e)<0(e-'2). 

This bound on Qk(s) leads to a qualitative bound in 0 of the form 

0 < 0 < 0(e2). 

Once more we are especially interested in the case when the interface lies near the 

boundary layer. We consider the case when b = 0(e), say b = as, a > 0. For e —> 0 

we obtain 

Qk(s) ~ 1 - at _ 6 < T ~ 1 • ~ e". 

This means that now Qk(z) becomes independent of e. The corresponding optimal 

relaxation parameter is 0opt = e"*. With this choice one should get convergence of 

the interface relaxation procedure in a few steps (see also Table 4.1). 

For a definition of the dynamical parameter choice we introduce the inner product 

of the space L2(T) 

(u,v) = / u(0,y)v(0,y)áy 

and its associated norm \\u\\ = (w, ix)1/2. As was already mentioned in [6] the auto­
matic parameters are given by 

(P(n) pM _ J n h 
Q (ev ev ew ) ; 

||eiw)-eln)P 

The first relaxation parameter 6\ should be prescribed. A geometric interpretation 
of this choice is given in [6]. 

A similar treatment can be applied if the singular perturbed operator is of the 
"stabilized" form (see (2.1)) 

where i » e > 0. The statement of Proposition 4.1 still holds with af replaced by 
af, where 

Hence we obtain convergence iff 

0<9<fr(e), 
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where 

*(є)^2-k=mî Шє)}-

Here Qk(e) is constructed in the same way as £fc(e) with a^ replaced by d^ . A study 

of the qualitative behaviour of Qk(s) for e -> 0 yields 

ek(e)~l + j^(ee)-\ 

which implies 

0 < 9 < 0(ei)-1 for e -> 0. 

If we allow b to depend on e, say b = ae (a > 0), then we obtain 

£*(e) ~ * 

and therefore the optimal relaxation parameter becomes 6opt = 1 (no relaxation). 

The numerical results in Section 4.3 confirm our theoretical considerations. 

4.2. Spectra l collocation me thod . For an introduction of the spectral collo­

cation method we define a subspace of polynomials 

P/v,L = {Pk(x)pe(y): Pk,Pi are polynomials of degree ^ k and 

^ e, respectively, for 0 ^ fc ^ N, O^e^L}. 

Let the nodes xf] (j = 0 , . . . , N), xf] (j = 0 , . . . , M) be defined as in Section 3.2. 

In (—1,1) we further define nodes yt = cos | , f = 0 , . . . ,L . The spectral collocation 

method corresponding to our split problem now reads as follows: Find VN € Pjv,L, 

WM € PM,L such that 

(-eAvN+vN,x)(x
{/\yt) = g(x(jl\yt) f o r l ^ j ^ N - 1 , 1 ^ / ^ L - l , 

vN(xV\yt) = 0 for j = N, 0 ^ e ^ L, I = 0,L , 0 -<: j ^ N, 

VN(0,ye) = wM(0,yt) for 1 -$ e < L - 1, 

VN,x(0,yt) = WM,x(0,yt) for 1 ^ e ^ L - 1, 

wM(x{?\yt) = 0 for j = 0, 0 ^ I ^ L, e = 0,L, 0 ^ j ^ M, 

(-eAwM+wMiX)(xf\tje)=g(xf\yt) f o r l ^ j ^ M - 1 , l ^ t ^ L - 1 . 

The corresponding interface relaxation procedure now reads as follows: Find two 

sequences, vJJV G P/v,L and w)£ € PM,L» for n ^ 1, by solving the collocation 
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problems 

(sAv^x + v{^x)(x
{/\yi) = g(xf\yi) for 1 ^ j ^ N - 1, 1 ^ £ < L - 1, 

Din>(xf >,^) = 0 for j = N, 0 ̂  « < L, 6 = 0,L , 0 ̂  j ^ N, 

vn
n)(0,2/«) = Xn(m) for 1 ̂  (<: L - 1, 

and 

( - eAi t -^ . + ^ 0 x ) ( 4 2 ) ' ^ ) = j K - f ^ ) for 1 ^ j < M - 1, 1 < ^ L - 1, 

^ M ( 4 2 ) ' ^ ) = ° for j = 0, 0 < £ t$ L, i? = 0, L, 0 < j ^ M, 

™$*(0> ̂ ) = »/J>(0* 2//) for 1 ̂  ^ L - 1. 

Here Ai is a polynomial of degree ^ L which is defined on the interface T. The An 

(71 ^ 2) are recursively defined by the formula 

An+i = 0w$ + (1 - 0)Xn on V, n ^ 1. 

Here 6 E (0,1] is a fixed relaxation parameter. In order to give a definition of the 
dynamical parameter choice we once more introduce the error functions 

Jn) _ Jn) _ ( n - l ) p (n) _ (n) (n-1) p p 

The discrete inner product in L2(V) is given by 

(u,v)2 = ^Tu(Q,yi)v(0,yi)u;i, 
£=0 

where uje (( = 0 , . . . , L) denote the Chebyshev-Gauss-Lobatto weights. Now, let Ai 
be a given parameter. Then 0n (n ̂  2) are automatically given by 

(M) P(n) _ Jn) v, 
(A r\ / . \Cv,NiCv,N ew,M)2 (4-5) 0n - — ' ' -r— , 

llp(n) - P(n) II2 

where ||u||2 — (^,11)2- The error function e^N can be expanded as follows: 

e{A(x,y) = _0{
k

n)'P^)My)-
k=l 
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Here <pk (fc = 1 , . . . , L — 1) is a polynomial of degree N and ipk (k = 1 , . . . , L — 1) is a 
polynomial of degree L. The polynomials i/)k are solutions of the discrete eigenvalue 
problem 

*l>Uyi) = i*kMyi), c = i , . . . , £ - i , 
^fc(-l) = ^fc( l )=0. 

The eigenvalues (ik (fc = 1, -. •, L — 1) are real and positive. The polynomials </?/< are 
the solutions to the collocation problem 

- eVl{xf) + <p'k{xf) = -e[ik<pk{*f), j = l,..-,N-l, 

<pk{-a)=0, <pk{0) = l. 

The coefficients /3k
n' are determined by the relation 

L-\ 

J2fjkl)My)=e[::)
N{0,y), n>2. 

k=l 

In the same manner e^'M can be expanded as follows: 

e£!v(̂ v) = E7j.nW)^(v)-
fc=l 

The functions \k arc polynomials of degree ^ M and eigenfunctions of the discrete 
eigenvalue problem 

- ex'faf) + X'kfrf) = -WkXk(xf), j = 1 , . . . , M - 1, 

Xk{b) = 0, x'k{0) = l. 

The coefficients j k are determined by the relation 

E (u) , ( v ucw,M rn v 

Tk Vfc(l/) = - ^ - ( 0 , y ) . 

Hence one obtains the recurrence relation 

/?[n+1) = [1 - 0(1 - <p'k(0)Xk(0))]fiin) for 1 < fc < L - 1, n > 2 

and convergence is achieved iff 

|1 - 6(1 - ^fc(0)xfc(0)) | < 1 for all fc = 1,2,.. . . 
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By means of the polynomials ip^ and \k it is now possible to derive explicit conditions 

on convergence (compare the one-dimensional case). For the sake of brevity we leave 

this out. For increasing IV, M the polynomials (fk, \k approximate the corresponding 

continuous eigenfunctions. Then the more practical criterion from the continuous 

case can be adopted. 

4.3. Numerical results. We consider problem (1.2) with 

9{x,y) = 
, e «• — e 

sк a + b 
sin(тtu). 

Hence the exact solution is given by 

u(x,y) = e e - e * 
L ì - e ^ 

x + a 
b + a 

SІll(lИd). 

u has a boundary layer of width e near x = b. We examine the interface relaxation 

procedure for a = 1 and b = 1 or b = e. We fixN = M = L = 12 and study the 

stable method with e — l/N. Different kinds of relaxation parameters are examined: 

- fixed relaxation parameter with 

6 = s2 for 6 = 1 , 

0 = e _ 1 for b = e\ 

- dynamical parameter choice (4.5). 

We further measure the discretization errors ERV and ERW on Q,a and f̂ , respec­

tively: 

ERV = \\vN - v | | 2 t a i ERW = \\wM - H k * . 

Here || | | 2, a and || ||2,6 denote respectively the discrete L2 norms on Q,a and Qb, i-e., 

in particular, 
r IV -j 1/2 

|M|2,„= Y, u(x<?\yi)
2 /N. 

In Table 4.1 we present numerical results for different values of b and different re­

laxation parameters. We give the number NIT of interface relaxations which is 

necessary to reach an accuracy of at least 10 digits. As already results from the 

numerical analysis, the choice b = 1 requires many more relaxations than the choice 

b = e. For b = e we always obtain convergence after 9 steps. 
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NIT ERV ERW 

1 1 є2 
557 .28- 10~

5 
.50- ІO"

5 

1 1 (4.5) 44 .28- 10~
5 

.50- 10"
5 

1 s e
- 1 

9 .75 ІO"
6 

.12- ю-
5 

1 є (4.5) 9 .75- 10~
6 

.12- 1 0
- 5 

Table 4.L Interface relaxation for problem (1.2). 

Now, wc consider the two-dimensional example introduced in Section 2. We apply 

the domain decomposition technique to the stabilized problem with the right hand 

side / 2\/. We o n c e m o r e compare the dynamical parameter choice with the fixed 

relaxation parameters from the theoretical analysis. We fix a = 1 and choose b = 1 or 

b = e. In the case b = 1 the fixed relaxation parameter is given by 6 = ee and in the 

case b = s the fixed relaxation parameter is 9 = 1. In order to reduce the computing 

time we fix N = 8, e = 10" 2, i = 1/N. In Table 4.2 we collect the numerical results 

for this example. If a = b = 1 the number of iterations is dramatically reduced by 

the parameter choice (4.5). Furthermore, for b = e the number of iterations 3 or 4, 

respectively. The relaxation parameter generated by (4.5) is approximately equal to 

that which analytically turned out to be the optimal choice. 

a b 6 NIT 

1 1 si 1830 

1 1 (4.5) 133 

l e i 3 

1 e (4.5) 4 

Table 4.2. Interface relaxation for the example in Section 2. 

5. ITERATIVE SOLVER AND MULTIGRID METHOD 

We consider the two-dimensional singular perturbation problem (1.2) and the sta­

bilized version (2.1). Wc fix i = l/N and e = 10 - 6 . We intend to solve the spectral 

problems by an iterative method. In this context the Richardson relaxation (see [8, 

9, 13, 14] is an appropriate scheme. Iterative methods for spectral problems are only 

efficient if fast (Fourier) transform are available. For this purpose the Richardson 

method is very well suited in contrast to other methods used for finite difference 

of finite element methods. Because of the high condition number of the spectral 

operators some kind of preconditioning is necessary. In order to make the precondi­

tioning not too expensive one prefers finite difference of finite element discretizations. 
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These low order problems themselves are not solved exactly but by a few steps of an 

appropriate iterative solver. 

Here we consider finite difference preconditioning. For the second order derivatives 

we employ the standard central differences (see [8]). For the first order derivative we 

also use a central finite difference formula, i.e. 

u'(xi) - 7T( zu(xi-i) - - ( )u(xi) 
2(xi-i - x{) 2 \Xi-i - x{ Xi - Xi+i J 

-u(xi+i) in Xi = cos —, i = 1 , . . . , N - 1. 
2(xi-xi+l)

 v ^ l iV' 

Unfortunately, upwind finite differences have very poor preconditioning properties 

(see [5]). 

For preconditioning of problem (1.2) we employ one step of the alternating zebra 

line relaxation (ZLR) method (see [8, 9]). It consists of relaxing along lines of con­

stant x and y in an alternating manner. Vectorization is achieved by solving first for 

the odd and then for the even lines. The resulting systems are tridiagonal and sym­

metric. Hence they can efficiently be solved by means of a Cholesky decomposition. 

An alternative to this method results from an incomplete LU (ILU)-decomposition. 

This approach yields similar preconditioning properties as the ZLR. Since the alter­

nating ILU needs twice as much work for the decomposition (see [8]) wre prefer the 

alternating ZLR. 

For preconditioning of problem (2.1) we employ one step of ZLR only in the x-

direction. Another step in the ^-direction is not needed since the coefficient e is 

much smaller than e. In Tables 5.1 and 5.2 we present the minimal and maximal 

eigenvalues of the preconditioned spectral operators. It becomes obvious that our 

technique of preconditioning works very well also for increasing JV. For the stationary 

Richardson relaxation with optimal relaxation parameter u0pt = A„.HX+Altlhl
 w e obtain 

a convergence factor £opt = A^^+A,"'!,1' • W e a l s o P r e s e n t ^opt, £oPt for different N. It 

becomes obvious that preconditioning is very effective for problem (2.1). For problem 

(1.2) the convergence factors are not satisfactory. 

ЛГ ^ m i n ^ m a x ^ o p t Øopt 

4 1.18 7.31 0.2356 0.7220 

8 0.65 17.1 0.П27 0.9268 

16 0.58 G5.8 0.0301 0.9825 

Table 5.1. Amil l, Am a x, a>opt, gopt for the problem (1.2). 
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N Amin Am ax ^opt t0opt 

4 1.10 1.87 0.6734 0.2593 
8 1.03 2.20 0.6192 0.3622 

16 0.90 2.47 0.5935 0.4659 
32 0.42 2.85 0.6116 0.7431 

Table 5.2. A,„i„, Alliax, i/Jopt, Qopt for the problem (2.1). 

Finally, we have found suitable components for a multigrid method. For the 
construction of an effective multigrid method we have to consider the stabilized 
problem (2.1). For relaxation we chose the iterative method which has already been 
described. The transfer operators for restriction and interpolation are chosen in a 
standard way (see [8, 13]). The most important aspect for the multigrid method is 
the construction of the coarse grid problems. Here we tried a lot of different variants 
but only one gave satisfying results. Here we choose e — 1 on all levels. On the 
coarse grids the right hand side is not perturbed by adding derivatives. It is exactly 
the restricted residual. Hence on the fine grid we obtain on 0(e2) perturbation of 
the exact solution whereas on the coarse grids we only have an 0(1) approximation 
of the solution. Also different f, for instance e = 1/N, result in bad convergence 
results (with factors of about 0.9 — 1.0). 

In order to estimate the convergence properties of the spectral multigrid method 
we compute the spectral radius Q of the multigrid operator by means of the power 
method. By QW — QX^W we define the convergence factor per work unit (see [8]). 
The standard work unit is the amount of work involved in one relaxation sweep on 
the finest grid. We compare stationary and nonstationary Richardson (SR and NSR) 
relaxation. In NSR we allow the parameter to change in each step. For SR relaxation 
we employ one relaxation before coarse grid correction. For NSR relaxation we 
employ three relaxation steps before coarse grid correction. The optimal parameters 
are given in [8]. 

In the numerical computations we have use a V-cycle with four grids, i.e. N = 4, 
8, 16 and 32. The convergence factors Qw (see Table 5.3) are acceptable and quite 
close to the values we obtained for the Laplace operator. We finally remark that a 
similar treatment is possible for the more general problem (2.2). Here one also has 
to resort to the corresponding stabilized version. 

Relaxation Q QW 
SR (1 Relax.) 0.4230 0.5232 
NSR (3 Relax.) 0.0217 0.3823 

Table 5.3. Q, QW for the V-cycle. 
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