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STABILITY PROBLEMS FOR LINEAR DIFFERENTIAL AND
DIFFERENCE SYSTEMS

JAROSELAW MORCHALO

ABSTRACT. In this paper, there are derived sufficient conditions for exponential
and asymptotic stability of differential and difference systems.

1. INTRODUCTION

When there are considered some physical or mechanical problems described by
differential or difference equations, then there arises the problem of exponential
and asymptotical stability [I].

Our program is as follows:

First, on the basis of some transformation, we reduce the differential system

dz

(1) E:A(t)ac7 x(to) =g, t>19>0,

where A(t) is a n X n real continuous matrix function, = col(x1,...,z,), and the
difference system

(2) z(n+1)=AMm)z(n), =z(ng)=z¢, n>ng>0,

where A(n) is a m X m matrix function, = col(z1, ..., x,,), to Volterra equations

and we present then sufficient conditions for exponential stability of systems

and .

Next we study the stability of large scale functional discrete systems

3)  win+1)=Au(n)rin)+ > Ai(n)z;(n) + ZBz'j(n)xj(n =1,

J=1,i#j
(i) ONERS
where n > 0,4 =1,...,r, 1 > 0, z; = col(zy”,...,zm,), > m; = m, A;;(n),
i=1
B;j(n), (i,j =1,...,r) are m; X m; matrices.

As the definitions of exponential stability are not quite so standard, we state
them below [3].
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Definition 1. The zero solution of system is said to be exponentially stable if
there exist constants k > 0, C > 0, § > 0, independent of ¢ty > 0, such that any
solution  of ([I)), for which ||z(to)|| < &, satisfies condition

lz(®)] < Cllz(to)]| exp (= k(t = to)), t>to,
||| is the Euclidean norm of the vector x € R™.

Definition 2. The zero solution of system is said to be exponentially stable if
there exist constants a > 1, a« > 0, C' > 0, 6 > 0, independent of ng, such that any
solution  of (2), for which ||z(no)|| < 8, satisfies condition

lz(n)|| < Cllzolla= ™=, n>ng > 0.

Due to the linearity of Eq. or , if one solution is exponentially stable then
the same is true for all solutions and Eq. or is said to be exponentially
stable.

It can be easily seen that the exponential stability implies the uniform asymptotic
stability (see [3, [, [5] for the definition). Moreover, for finite order linear difference
equations also the converse is true, i.e., the exponential stability is equivalent to
the uniform asymptotic stability [3] [4, 5.

2. EXPONENTIAL STABILITY

Let in Eq. A(t) = [ai; ()], (i, = 1,2,3), where a;;(t) are real and twice
differentiable functions for ¢ > ty. Putting

21(t) = —s[y1(8) = y2(t)] cos O() ,

(4) 2a(t) = —=[y1(t) — y2(8)] sin 6(2)

w3(t) = —=[y1(t) + y2(t)]

Sl =Sl Sl

in we obtain

d
% = D11(t)y1 + D12(t)y2
d
% = D21(t)y1 + Daz(t)y2
(5)
% = [sin 0 cos 0(0,22 (t) — an(t)) + agl(t) cos? 6 — 19 (t) sin® 9]

+y1+y2(a

3(t) cos@ — aq3(t)sinf)
Y1 — Y2 2(t) 13(t) sin6)
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where
Dy (t %[(An t) + Aga(t)) + (Ar2(t) + Aoi (2 )}
Dio(t) = %[(Azz( ) — A11(t)) + (A12(t) — A (1))]
Dy (t) = %[(Am( ) = Au(t) = (Aw2(t) — A21(t))]
Das(t) = 3 [(An(t) + An(t)) — (Aralt) + An ()]
Ap1(t) = a11(t) cos® 0 + aga(t) sin? 6 + (a12(t) + azi(t)) sin 6 cos b,
A12(t) = a13(t) cos 0 + az3(t)sin b,
Agl(t) = a31(t) cosf + aso (t) sin 6 s
Aga(t) = ass(t),
and 0 = 0(t).

Remark 1. It is easy to see that the exponential stability of solution of the system
is implied by the exponential stability of the system composed of two first
equations forming the system . Really, let

ly@)) = v/ (1(1)? + (2(1)2 < Clly(to)ll exp [ — k(t —to)] ,

then

lz()] = V/(21(£))? + (22(1)) + (x3(1))?
= V1 (1)? + (2(1))? < Clla(to) || exp [ — k(t — to)] -

In the sequel we shall use the following Theorems given in [7].

Proposition ([7]). Suppose that in the interval (xo,T), T < 0o, there exist R” (z),
aq(z), a) (x), ag(z) and B'(x), and that R(z) # 0, as(x) # 0. Moreover, suppose
that there exists a solution y(x) of the integral equation

(6) /th ro<x<T,
where
o 1 o,
f(x) C+M+MLOg (O B() dt
Todt
g(x):eXp(/Lo m)’
g
Kot = L5000 - ().
oa) = R (2) + B {vi0) - 20} 41,
= : X) — al(x) X , (10(36) X are constants
U@ = R'(0) = [(LOR@)| + 2 RE), € G tants.
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Then G(x) satisfies the differential equation
(7) as(z)y” +a1(x)y +ao(z)y =bx), =€ (x0,T),

where

Theorem A ([7]). Suppose that for x > xg
1) there exist continuous R (z), ay (), a) (z), ag(x) and b(x) (x> x0),

2) R(z) #0, ax(z) #0, (z = x0),

3) [ it = o0,
zo

D) lim o) =
5a) IILH;O f ‘R(t MO\ gt = m < oo
or
5b) IRL(IZ)&()t)dt =3, (]s| < 00),
6 J @) dr < oc,
where (;5(0) Y(x) are defined as in proposition.

Then the differential equation @ for T =00 has an integral y(x) bounded for
x — 00 in case ba), and convergent in case 5b).

We now consider conditions under which the system is exponentially stable.

Theorem 1. Suppose that
1) Di](t) € 03<0,OO), (17] = 172)7 Dz](t) # O) 7’# j7 te <0,00),

2) R(t) € C*(0,00), [ gy = 00, to >0,
to

f |CQ ‘ dS < Ky < o, Cg( ) Dgl(t) exp (f(DH(S) — DQQ(S)) dS),

to

4) Ks Z eXp(fD” ) ds) < r(t—to), r(t) € Ctg, 00), tir;gr(t) <1,
=1 =
K3 — constant >0,

5) Jim 6(1) =0, 6(1) = (1) + RO[() + Co)Ci (0] + 1,
d(t) = R (1) + (Cs (tZC TUOR(D) ~ Dio(t) Do (HR(),
C ( ) D12 exp(f (D22 D11(8)) ds),

to

) tj‘o|¢(t)| dt < .
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Then the zero solution of the system

d

% = D11(t)y1 + D12(t)y2,
(8)

d

% = Doy (t)y1 + Daa(t)y2,

consisting of the first two equations forming the system , is exponentially stable.

Proof. The substitutions

y1(t) = u(t) exp ( t D11(s) ds) ,

to

©) t
ya(t) = v(t) exp ( /t Das(s) ds),

where u(t), v(t) € C?(ty,00), transform the system of differential equations
into the system of equations

du dv
(10) E — Cg(t)’l}, a - 02(t)u7

where

Cs(t) = Do (t) exp (/t (D11(s) — Da2a(s)) ds) ,

to

Cs3(t) = Dya(t) exp ( / t (Das(s) — Dy (s)) ds) .

to
Hence, we obtain
d*u / _ du
(11) o C5(t)C; 1(t)E — D15(t) Doy (t)u = 0.
Applying the substitution
Cs(t)
u(t) = ’ ’w t
®) Cs(to) )
we obtain
d*w
(12) a2 T (e (t) — Dia(t) Do (t))w =0,
where
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Let
as(t) =
ai(t) = *03( )C3 (),
ag(t) = —D12(t) D21 (t) ,
$(t) = R (t) + R(){(t) — a1 (t)} +1,
U(t) = R'(t) — (a1 () R(t)) + ao(t)R(t),
b(#) = 0.

Then under our hypothesis, in virtue of Theorem [A] the differential equation
has an integral u(¢) bounded for ¢ — oo, i.e., there exists a constant K7 > 0 such
that

[u(t)] < Killys(to)]| for t>to.

Next, by integrating the second equation in , we obtain the estimation
()] < (1 + KiK)|ly(to)]l -
Now, from @D we get
2

ly(®)] < Kally(to)| Y exp ([ Dils)ds).

i=1 to
where max (K%,(l—f—KlKQ)Q) = K2. ]
In the next part we will need the following lemma.

Lemma 1 (Massera—Schaffer [2]). Assume that

1) 9(t), p(t) are continuous and positive functions for ¢t > 0,

2) infp(¢t) <1 fort >0,

3) ¥(t) < p(t —to)w(to) for every t >ty > 0.
Then there exist constants «, 8 > 0 such that

w(b) < BTy t)

for allt >ty > 0.

Now, using assumption 4) of Theorem and Lemma [I] (Massera-Schaffer [2]) we
obtain

ly(@)Il < Blly(to)[|e™* ).
This completes the proof.

Remark 2. The condition 3) of theorem will be satisfied if

s . 3
| [ )]+ lara) + an(®)]+ lana(®) = asn (O] + lazs (1) = asa(0)]

X exp (/t {|a13(s) + az1(s)] + |azs(s) + a32(5)|} ds) dt

to

< Ky < .
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Using the method given above we can study the following system
(13) z(n+1)=A(n)z(n),

where n € N(ng) = {no,no+1,...}, no € N or ng =0, A(n) = [a;;(n)]3x3-
We substitute

1(n) = %[m() ya(n)] cosB(n)
(14) 22(n) = %[m( n) — ya(n)] sin 6(n)
r3(n) = %[yl(n) + y(n)

where 0: N(ng) — R, into and we obtain relations

[y1(n+1) —y2(n + 1)] cos 9(” +1)= a11( )(y1(n) — ya(n)) cos (n)
+ a12(n) (y1( (n)) sinB(n) + aiz(n)(y1(n) + y2(n)),

[y1(n+1) —y2(n+ 1)]sinf(n + 1) = ag1(n) (y1 (n) — yg(n)) cos 6(n)
+ az2(n) (y1(n) — y2(n)) sin 0(n) + azs(n) (y1(n) + y2(n)) ,

yi(n+1) +ya(n + 1) = azi1(n) (y1(n) — ya(n)) cos 6(n)
+ as2(n) (y1(n) — y2(n)) sin O(n) + ass(n)(y1(n) + y2(n)) .

In the formal way we obtain from this
(15)

where

{(a11(n) cosB(n) + ar2(n) sin f(n) + ai3(n)) cos O(n + 1)
(az1(n) cos8(n) + asz(n) sin6(n) + azz(n)) sinf(n + 1)
(az1(n)cosf(n) + asz2(n)sin6(n) — ass(n))},

{(a11(n) cosB(n) + ar2(n) sinf(n) — ai3(n)) cos O(n + 1)
(az1(n) cos8(n) + asz(n) sin6(n) — azz(n)) sinf(n + 1)
( )

az1(n) cosB(n) + asz(n)sinf(n) — ass(n))},
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Dy (n) = %{( — a11(n) cosB(n) — ai2(n)sinf(n) — arz(n)) cos O(n + 1)
+ (= a21(n) cos(n) — aze(n) sinf(n) — azz(n)) sinf(n + 1)
+ (az1(n) cosB(n) + asza(n)sinf(n) + asz(n))} ,

Doy(n) = %{ (a11(n) cos8(n) + ai2(n) sin6(n) — ay3(n)) cosf(n + 1)
+ (a21(n) cos B(n) + asz(n)sinB(n) — ass(n)) sinf(n + 1)
+ (= as1(n) cosf(n) — azz(n) sinf(n) + asz(n)) } .
Substituting into (15

(16) (n) z Z((n)w(n),

yi(n
ya(n) =v(n)z(n), n=ne=0,
where the functions w(n) and z(n) will be defined later, we obtain the system

u(n 4+ Dw(n 4+ 1) = Di1(n)u(n)w(n) — Diz(n)v(n)z(n),

(17) v(n+1)z(n+ 1) = Dor(n)u(n)w(n) + Doz (n)v(n)z(n)
g DA = Du(uln) e D)utn) - Dis(m)e(=o),

z(n 4+ 1)Av(n) = (Daz(n)z(n) — z(n + 1))v(n) + Doy (n)u(n)w(n) .
Now the functions w(n) and z(n) we define as follows:
w(n+ 1) = Di1(n)w(n),
and
“(n+ 1) = Don(n)=(n).
Starting with the initial values w(ng) = 1, z(ng) = 1 it gives

w(n) = 1:[ Di1(s),

S=ngo

z(n) = ]j DQQ(S) .

S=ngo

(19)

Hence system may be written as

Bun) = =20 .
Av(n) = Doy (n)w(n) (n).
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Let

n—1
—Dia(n) T] Daafs)
Ci(n) = T #0, n>ng >0,
[T Dii(s)
n—1
Doi(n) I Du(s)
Cw'g(n) = 270 #0, n>mny>0.
[T D2a(s)

S=ngo

Then the system gives

Au(n) = Cy(n)o(n),

20 —
2 Av(n) = Ca(n)u(n),
hence
2 —La(n) u(n) — Cy(n)Ch(n u(n) =
(21) Au(n) Gr(n) Au(n) — C2(n)Cr(n + 1u(n) =0.

Proposition ([6]). Suppose that there exist R(n) > 1, ag(n), a1(n), az(n) # 0,
B(n) for n > ng > 0. Moreover, suppose that there exists a solution G(n) of the
equation

n—1
y(n) = f(n)+ Y K(n,s)y(s),

where -
DGR N -
fm) =0+ o5 + o S;OB( )Ag(s),
n—1
o) =TT (14 =)+ K009 = 2205 005) — u).

ai(n—1)
6(n) = Bn) ((n) = 200 ) + 1+ AR — 1),
9 ap(n) ai(n—1)
b(n) = A R(n—1)+R(n+1)aZ(n) —A(R(n)@(n_l)),

C, Cy are constants.
Then g(n) satisfies the difference equation

az(n)A%y(n) + a1 (n) Ay(n) + ao(n)y(n) = b(n),

where b(n) = 02(71)%‘
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Theorem 2 ([0, Theorem 4]). Let R, as # 0, a1, ag be defined for n > ng > 0.
Suppose that

I ypeam

n=no

2) lim ¢(n) =

n—oo

3)§wwxm,

where R(n) > 1, ¢(n) = R(n)(¢(n) —ai(n—1)) + 14+ AR(n — 1),
¥(n) = A%R(n — 1) + R(n + 1)ag(n) — A(R(n)ai(n —1)).
Then the difference equation
(22) az(n)A%u(n) + ai(n)Au(n) + ag(n)u(n) = 0
has a solution u(n) bounded for n — oo.
In the next theorem we show that the zero solution of system is exponentially

stable.
We set
az(n) =1, ai(n)= M7 ag(n) = —Ca(n)Cy(n+1).
Ci(n)
Theorem 3. Assume that
1) the assumptions of [6, Theorem 4] hold,

2) 3 (Calm)| < Br < v,

3) there exzst constants a > 0, a > 1 and Az > 0 such that
Z ( H Dii(s)]) < Aza=*""™) n > ng > 0.

s=ng

Then the zero solution of is exponentially stable.

Proof. From [6] Theorem 4] there exists a positive constant A; such that
lu(n)| < A1||y0|| for n>ng>0.

Similarly, from the second equation in , we have

v(n) = v(ng) ZCQ

s=ng
Hence by assumption 2) and the estimation |u(n)| < Ap||yo||, we have
lv(n)| < (1 + A1B1)llyoll, n>no > 0.
Using the above inequalities, equations , and the assumption 3) we have

ly(n)l| = \/y3(n) +y3(n)

2 n—1
< ol max(As, (1L + 4180) 3 ( TT 1Du(s)l) < Bllyolla==",

=1 s=ng
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where B = A3 max (Al, (1+ AlBl)).
This completes the proof of Theorem O
From Remark [2| and the above results we conclude about exponential stability

of solution of (13]).
3. ASYMPTOTIC STABILITY

Now we consider the system

(23) zi(n+1) = Au(n)ai(n) + Y Aij(n)a;(n) + ) Bijzi(n—1),

J=1 i i=1

. . T
where i = 1,...,r, n € Ng = {0,1,2,...}, z; = col(xgl),...,x%)j), > m; =m,
i=1

oT = (2T,...,2T), Aij(n), Bij(n), (i,j = 1,...,r) are m; x m; real matrix
functions on Ny, I — is a nonnegative integer. The initial condition is
(24) xl(n):¢l(n)a _ZS’I’L§O7 ’i:l,...,T‘,

where ¢;(n) are defined on (—I,0).

Assumption A. Suppose that ||A;;(n)|| < aij, (0 # 4, 4,7=1,2,...,7), || Bi(n)]| <
bij, (1,7 =1,2,...,7), where a;;,b;; are constants, || - || is a vector or matriz norm
in the real Euclidean space. Define ||¢;]| = sup |¢:(n)|, (i=1,...,7).

1<n<0

We regard as a perturbed system of the system
(25) zin+1)=A;(n)z;(n), (G=1,...,7r),
in order to obtain some new results on the asymptotic behaviour of solutions of
using a fundamental matrix X;(n) of (25).

The main tool in our analysis is the variation of constants formula, then the
solution of with the initial function ¢; on [, 0] is given by

n—1

z;(n) = Y;(n,0)¢;(0) + Z Yi(n,s +1)
s=0

{37 Aye)ei(9) + > By()ais -},
=L it i=1
where n € Ny, Yi(n,s) = X;(n)X; !(s).
We give some definitions of stability of zero solution of . Since now we
assume that z(n) = 0 is a solution of (23).

Definition 3. The zero solution of is stable, if for every € > 0 and any
ng € Ny there exists § = d(e,n9) > 0 such that ||¢]] < § and n € Ny imply
[z(n)] <e.

(26)

Definition 4. The zero solution of is asymptotically stable if it is stable and
for any n € Ny there exists dp(ng) > 0 such that ||¢|| < o implies ||z(n)|| — 0 as
n — 0o.
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Theorem 4. If the system satisfies the following conditions:
1) ||Yi(n,s)|| < Lip; ™™, where L; > 1, 0 < p; <1,

T —
2) there exist constants o;; > 0, k > 1 such that Y o;(@;; + kbi;) < 0, where
i=1
;i = ai; = p; — 1, by = Libyj,
then the zero solution of is asymptotically stable.

Proof. From assumptions and , we have

n—1
sl < s Lapf + Le S p2 7!
s=0

X[ > aijllzi () + D bijllai(s = D] -
=1, i#j j=1
Let
llpil| for —1<n<0,

7 n—1 n—s— r r
ol Zip + L S0 0 s,y sl () + Sy bl s = D)1

for n € Ny. Then ||z;(n)|| < Pi(n), n € (=l,00), i=1,...,7.
Moreover,

APi(n) <> @i Pi(n) + Y b Pi(n—1),
j=1 =1

Where Qi = E“v =Di — 1, Eij = Liaij, Eij = Libij7 7 7& j
Let

V(n) =Y S | iln) + > (S5,5)] ¢ -
i=1 s=n—1 j=1

where «;, k — some positive constants.
Then

T

AV(n) =Y ai[Pi(n+1)+k zn: (i@jpj(s))}

i=1 s=n+1-1 j=1

_i o[ Pi(n) + & Til (i%%N

s=n—1l j=1
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= ZQZAP JrZalkZb” (nfl))

< Z (Z(a@-j + aikBl-j))Pj(n)
+Z (Z( . alkbw))P (n—1)
(27) < —ﬂZ_j Pj(n)

where —3 = max Z a;(@;j + kbij), B> 0.

1<j<r ;=1

From it follows that

n—1 r
(28) Vi) +8Y (D Pis)) < V(0)
s=0 j=1

Notice that

i=1 i=1
+ ko) Y ol
i=1

where a = 1121?<XT(041) b= 123§r(b”)'

Since

aZIIx < Vin) <V(0) < a+kbrlZ||¢ZII

=1
T+ kbrl <&
lex N < ——— ZH@II,
Q

=1

so the zero solution of is stable.

201
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From

ay Pin) < V(0)
i=1

it follows that > P;(n) is bounded for all n € Ny.

i=1
From we see that > [ Y Pj(n) | is convergent.
n=0 \j=1
Then .
ZPi(n) —0 as n— o
i=1
and

T
Z||ml(n)||—>0 as n — o0o.
i=1

Thus the zero solution of is asymptotically stable and the proof is completed.
O

Remark 3. Analogously we can study the following nonlinear large scale system
zi(n+1) = A;(n)z;(n) + fi(n,z(n),z(n —1)), i=1,...,r,
where f;(n,0,0) =0 and

| fi(n,z(n), z(n —1)| < Zaijllxj(n)ll + Z%H%‘(n sl

foraijZO, bijz(), (i,jil,...,’f').

Remark 4. The method used above can be adapted to establish criteria for
stability with respect to a part of variables involved in difference equations.

REFERENCES

[1] Barabashin, E. A., Automatic and Telemechanic, Science 21 (1960), 10.

[2] Barabashin, E. A., Introduction to the theory of stability, Noordhoff Publishing, Groningen,
1970, translanted from the Russian by Transcripta Service, London.

Elaydi, S. N., An Introduction to Difference Equations, Springer - Verlag New York, 1999.
Halanay, A., Differential Equations, Stability, Oscillations, Time Lags, Academic Press, New
York-London, 1966.

[5] Lakshmikantham, V., Trigiante, D., Theory of Difference Equations: Numerical Methods and
Applications, Academic Press, New York, 1998.

3
[4

[6] Morchato, J., Asymptotic properties of solutions of some Volterra difference equations and
second order difference equations, Nonlinear Anal. 63 (2005), 801-811.

[7] Polniakowski, Z., Asymptotic properties of solutions of some integral equations and second
order differential equations, Ann. Polon. Math. 16 (1965), 169-183.

PozNAN UNIVERSITY OF TECHNOLOGY, POLAND
E-mail: jaroslaw.morchalo@put.poznan.pl


mailto:jaroslaw.morchalo@put.poznan.pl

		webmaster@dml.cz
	2013-09-19T15:25:14+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




