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GENERAL IMPLICIT VARIATIONAL INCLUSION PROBLEMS
INVOLVING A-MAXIMAL RELAXED ACCRETIVE MAPPINGS

IN BANACH SPACES

Ram U. Verma

Abstract. A class of existence theorems in the context of solving a ge-
neral class of nonlinear implicit inclusion problems are examined based on
A-maximal relaxed accretive mappings in a real Banach space setting.

1. Introduction

We consider a real Banach space X with X∗, its dual space. Let ‖ · ‖ denote the
norm on X and X∗, and let 〈·, ·〉 denote the duality pairing between X and X∗.
We consider the implicit inclusion problem: determine a solution u ∈ X such that
(1) 0 ∈ A(u) +M

(
g(u)

)
,

where A, g : X → X are single-valued mappings, and M : X → 2X is a set-valued
mapping on X such that range(g) ∩ dom(M) 6= ∅.

Recently, Huang, Fang and Cho [4] applied a three-step algorithmic process to
approximating the solution of a class of implicit variational inclusion problems
of the form (1) in a Hilbert space. In their investigation, they used the resolvent
operator of the form JMρ = (I + ρM)−1 for ρ > 0, in a Hilbert space setting.
Here we generalize the existence results to the case of A-maximal relaxed accretive
mappings in a real uniformly smooth Banach space setting. As matter of fact, the
obtained results generalize their investigation to the case of H-maximal accretive
mappings as well. For more literature, we refer the reader to [2]–[20].

2. A-maximal relaxed accretiveness

In this section we discuss some basic properties and auxiliary results onA-maximal
relaxed accretiveness. Let X be a real Banach space and X∗ be the dual space of
X. Let ‖ · ‖ denote the norm on X and X∗ and let 〈·, ·〉 denote the duality pairing
between X and X∗. Let M : X → 2X be a multivalued mapping on X. We shall
denote both the map M and its graph by M , that is, the set

{
(x, y) : y ∈M(x)

}
.

This is equivalent to stating that a mapping is any subset M of X × X, and
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M(x) =
{
y : (x, y) ∈M

}
. If M is single-valued, we shall still use M(x) to represent

the unique y such that (x, y) ∈M rather than the singleton set {y}. This interpre-
tation shall much depend on the context. The domain of a map M is defined (as
its projection onto the first argument) by

D(M) =
{
x ∈ X : ∃ y ∈ X : (x, y) ∈M

}
=
{
x ∈ X : M(x) 6= ∅

}
.

D(M) = X, shall denote the full domain of M , and the range of M is defined by
R(M) =

{
y ∈ X : ∃x ∈ X : (x, y) ∈M

}
.

The inverse M−1 of M is
{

(y, x) : (x, y) ∈M
}

. For a real number ρ and a mapping
M , let ρM = {x, ρy) : (x, y) ∈M}. If L and M are any mappings, we define

L+M =
{

(x, y + z) : (x, y) ∈ L, (x, z) ∈M
}
.

As we prepare for basic notions, we start with the generalized duality mapping
Jq : X → 2X∗ , that is defined by

Jq(x) =
{
f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1} ∀ x ∈ X ,

where q > 1. As a special case, J2 is the normalized duality mapping, and Jq(x) =
‖x‖q−2J2(x) for x 6= 0. Next, as we are heading to uniformly smooth Banach spaces,
we define the modulus of smoothness ρX : [0,∞)→ [0,∞) by

ρX(t) = sup
{1

2(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t
}
.

A Banach space X is uniformly smooth if

lim
t→0

ρX(t)
t

= 0 ,

and X is q−uniformly smooth if there is a positive constant c such that
ρX(t) ≤ ctq , q > 1 .

Note that Jq is single-valued if X is uniformly smooth. In this context, we state
the following Lemma from Xu [17].

Lemma 2.1 ([17]). Let X be a uniformly smooth Banach space. Then X is
q-uniformly smooth if there exists a positive constant cq such that

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q .

Lemma 2.2. For any two nonnegative real numbers a and b, we have
(a+ b)q ≤ 2q(aq + bq) .

Definition 2.1. Let M : X → 2X be a multivalued mapping on X. The map M
is said to be:

(i) (r)− strongly accretive if there exists a positive constant r such that
〈u∗ − v∗, Jq(u− v)〉 ≥ r‖u− v‖q ∀ (u, u∗), (v, v∗) ∈ graph (M) .

(ii) (m)−relaxed accretive if there exists a positive constant m such that
〈u∗ − v∗, Jq(u− v)〉 ≥ (−m)‖u− v‖q ∀ (u, u∗), (v, v∗) ∈ graph (M) .
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Definition 2.2 ([5]). Let A : X → X be a single-valued mapping. The map
M : X → 2X is said to be A- maximal (m)-relaxed accretive if:

(i) M is (m)-relaxed accretive for m > 0.
(ii) R(A+ ρM) = X for ρ > 0.

Definition 2.3 ([5]). Let A : X → X be an (r)-strongly accretive mapping and let
M : X → 2X be an A-maximal accretive mapping. Then the generalized resolvent
operator JMρ,A : X → X is defined by

JMρ,A(u) = (A+ ρM)−1(u) .

Definition 2.4 ([2]). Let H : X → X be (r)-strongly accretive. The map M : X →
2X is said to be to H-maximal accretive if

(i) M is accretive,
(ii) R(H + ρM) = X for ρ > 0.

Definition 2.5. Let H : X → X be an (r)-strongly accretive mapping and let
M : X → 2X be an H-accretive mapping. Then the generalized resolvent operator
JMρ,H : X → X is defined by

JMρ,H (u) = (H + ρM)−1(u) .

Proposition 2.1 ([5]). Let A : X → X be an (r)-strongly accretive single-valued
mapping and let M : X → 2X be an A-maximal (m)-relaxed accretive mapping.
Then (A+ ρM) is maximal accretive for ρ > 0.

Proposition 2.2 ([5]). Let A : X → X be an (r)-strongly accretive mapping and
let M : X → 2X be an A-maximal relaxed accretive mapping. Then the operator
(A+ ρM)−1 is single-valued.

Proposition 2.3 ([2]). Let H : X → X be a (r)-strongly accretive single-valued
mapping and let M : X → 2X be an H-maximal accretive mapping. Then (H+ρM)
is maximal accretive for ρ > 0.

Proposition 2.4 ([2]). Let H : X → X be an (r)-strongly accretive mapping
and let M : X → 2X be an H-maximal accretive mapping. Then the operator
(H + ρM)−1 is single-valued.

3. Existence theorems

This section deals with the existence theorems on solving the implicit inclusion
problem (1) based on the A− maximal relaxed accretiveness.

Lemma 3.1 ([5]). Let X be a real Banach space, let A : X → X be (r)-strongly
accretive, and let M : X → 2X be A-maximal relaxed accretive. Then the generalized
resolvent operator associated with M and defined by

JMρ,A(u) = (A+ ρM)−1(u)∀u ∈ X ,

is
( 1
r−ρm

)
-Lipschitz continuous for r − ρm > 0.
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Lemma 3.2. Let X be a real Banach space, let A : X → X be (r)-strongly accretive,
and let M : X → 2X be A-maximal (m)-relaxed accretive. In addition, let g : X → X
be a (β)-Lipschitz continuous mapping on X. Then the generalized resolvent operator
associated with M and defined by

JMρ,A(u) = (A+ ρM)−1(u)∀u ∈ X ,

satisfies

‖JMρ,A(g(u))− JMρ,A(g(v))‖ ≤ β

r − ρm
‖u− v‖ ,

where r − ρm > 0.

Furthermore, we have

〈Jq(JMρ,A(g(u))− JMρ,A(g(v))), g(u)− g(v)〉 ≥ (r − ρm)‖JMρ,A(g(u))− JMρ,A(g(v))‖q ,

where r − ρm > 0.
Proof. For any elements u, v ∈ X (and hence g(u), g(v) ∈ X), we have from the
definition of the resolvent operator JMρ,A that

1
ρ

[
g(u)−A

(
JMρ,A(g(u))

)]
∈M

(
JMρ,A(g(u))

)
,

and
1
ρ

[
g(v)−A

(
JMρ,A(g(v))

)]
∈M

(
JMρ,A(g(v))

)
.

Since M is A-maximal (m)-relaxed accretive, it implies that

(2)
〈
g(u)− g(v)−

[
A
(
JMρ,A(g(u))

)
−A

(
JMρ,A(g(v))

)]
, Jq
(
JMρ,A(g(u))− JMρ,A(g(v))

)〉
≥ (−ρm)

∥∥JMρ,A(g(u))− JMρ,A(g(v))
∥∥q .

Based on (2), using the (r)-strong accretiveness of A, we get〈
g(u) − g(v), Jq

(
JMρ,A(g(u))− JMρ,A(g(v))

)〉
≥
〈
A
(
JMρ,A(g(u))

)
−A

(
JMρ,A(g(v))

)
, Jq
(
JMρ,A(g(u))− JMρ,A(g(v))

)〉
− ρm

∥∥JMρ,A(g(u))− JMρ,A(g(v))
∥∥q

≥(r − ρm)
∥∥JMρ,A(g(u))− JMρ,A(g(v))

∥∥q .
Therefore,〈
g(u)− g(v), Jq

(
JMρ,A(g(u))− JMρ,A(g(v))

)〉
≥ (r− ρm)

∥∥JMρ,A(g(u))− JMρ,A(g(v))
∥∥q .

This completes the proof. �

Theorem 3.1. Let X be a real Banach space, let A : X → X be (r)-strongly
accretive, and let M : X → 2X be A-maximal (m)-relaxed accretive. Let g : X → X
be a map on X. Then the following statements are equivalent:

(i) An element u ∈ X is a solution to (1).
(ii) For an u ∈ X, we have

g(u) = JMρ,A
(
A(g(u))− ρA(u)

)
,
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where
JMρ,A(u) = (A+ ρM)−1(u) .

Proof. It follows from the definition of the resolvent operator JMρ,A. �

Theorem 3.2. Let X be a real Banach space, let H : X → X be (r)-strongly
accretive, and let M : X → 2X be H-maximal accretive. Let g : X → X be a map
on X. Then the following statements are equivalent:

(i) An element u ∈ X is a solution to (1).
(ii) For an u ∈ X, we have

g(u) = JMρ,H
(
H(g(u))− ρH(u)

)
,

where
JMρ,H(u) = (H + ρM)−1(u) .

Theorem 3.3. Let X be a real q-uniformly smooth Banach space, let A : X → X
be (r)-strongly accretive and (s)-Lipschitz continuous, and let M : X → 2X be
A-maximal (m)-relaxed accretive. Let g : X → X be (t)-strongly accretive and
(β)-Lipschitz continuous. Then there exists a unique solution x∗ ∈ X to (1) for

(3)
θ =
(

1 + 1
r − ρm

)
q
√

1− qt+ cqβq + 1
r − ρm

q
√
βq − qrtq + cqsqβq

+ 1
r − ρm

q
√

1− qrρ+ cqρqsq < 1 ,

for r − ρm > 1 and cq > 0.
Proof. First we define a function F : X → X by

F (u) = u− g(u) + JMρ,A
(
A(g(u))− ρA(u)

)
,

and then prove that F is contractive. Applying Lemma 3.1, we estimate

(4)

‖F (u)− F (v)‖ =
∥∥u− v − (g(u)− g(v)) + JMρ,A

(
A(g(u))− ρA(u)

)
− JMρ,A(A(g(v))− ρA(v))

∥∥
≤
∥∥u− v − (g(u)− g(v))

∥∥+ 1
r − ρm

∥∥A(g(u))

−A(g(v))− ρ(A(u)−A(v))
∥∥

≤
(

1 + 1
r − ρm

)∥∥u− v − (g(u)− g(v))
∥∥

+ 1
r − ρm

∥∥A(g(u))−A(g(v))− (g(u)− g(v))
∥∥

+ 1
r − ρm

∥∥u− v − ρ(A(u)−A(v))
∥∥ .

Since g is (t)-strongly accretive and (β)-Lipschitz continuous, we have∥∥u− v − (g(u)− g(v))
∥∥q = ‖u− v‖q − q

〈
g(u)− g(v), Jq(u− v)

〉
+ cq‖g(u)− g(v)‖q

≤ ‖u− v‖q − qt‖u− v‖q + cqβ
q‖u− v‖q

= (1− qt+ cqβ
q)‖u− v‖q .
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Therefore, we have
(5)

∥∥u− v − (g(u)− g(v))
∥∥ ≤ q

√
1− qt+ cqβq .

Similarly, based on the strong accretiveness and Lipschitz continuity of A and g,
we get
(6)

∥∥A(g(u))−A(g(v))− (g(u)− g(v))
∥∥ ≤ q

√
βq − qrtq + cqsqβq ,

and
(7)

∥∥u− v − ρ(A(u)−A(v))
∥∥ ≤ q

√
1− qrρ+ cqρqsq .

In light of above arguments, we have
(8) ‖F (u)− F (v)‖ ≤ θ‖u− v‖ ,
where

(9)
θ =

(
1 + 1

r − ρm

)
q
√

1− qt+ cqβq + 1
r − ρm

q
√
βq − qrtq + cqsqβq

+ 1
r − ρm

q
√

1− qrρ+ cqρqsq < 1 ,

for r − ρm > 1. �

Corollary 3.1. Let X be a real q− uniformly smooth Banach space, let H : X → X
be (r)- strongly accretive and (s)-Lipschitz continuous, and let M : X → 2X be
H-maximal accretive. Let g : X → X be (t)-strongly accretive and (β)-Lipschitz
continuous. Then there exists a unique solution x∗ ∈ X to (1) for

(10)
θ =

(
1 + 1

r

)
q
√

1− qt+ cqβq + 1
r
q
√
βq − qrtq + cqsqβq

+ 1
r
q
√

1− qrρ+ cqρqsq < 1 ,

for r > 1.
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