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Abstract. Integration by parts results concerning Stieltjes integrals for functions with
values in Banach spaces are presented. The background of the theory is the Kurzweil
approach to integration based on Riemann type integral sums, which leads to the Perron
integral.
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BILINEAR TRIPLES

Assume that X, Y and Z are Banach spaces and that there is a bilinear mapping
B: X xY — Z. We use the short notation zy = B(z,y) for the value of the bilinear
form B for z € X, y € Y and assume that

1B(z,y)llz = llzyllz < =/l xlylly-

By || - ||x the norm in the Banach space X is denoted (and similarly for the other
ones).

Triples of Banach spaces X, Y, Z with these properties are called bilinear triples
and are denoted by B = (X,Y, Z) or shortly B.

This work was supported by the grant 201/97/0218 of the Grant Agency of the Czech
Republic
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VARIATION OF FUNCTIONS WITH VALUES IN A BANACH SPACE

Assume that [a,b] C R is a bounded interval and that X is a Banach space. Given
x: [a,b] — X, the function x is of bounded variation on [a,b] if

k

>~ la(ay) ~ a1l | < o,

var® (z) = sup {
where the supremum is taken over all finite partitions
Dia=opy<a1<...<ap_1<ap=>
of the interval [a,b]. The set of all functions x: [a,b] — X with var’(z) < oo will
be denoted by BV ([a,b], X) or shortly BV ([a,b]) if it is clear which Banach space
X we have in mind.

Assume now that B = (X,Y, Z) is a bilinear triple of Banach spaces.
For z: [a,b] — X and a partition D of the interval [a, b] define

S

where the supremum is taken over all possible choices of y; € Y, j = 1,...,k with

V?(z, D) = sup {

k
> lw(ay) — @)y
j=1

lly;ll <1, and set
(B)var®(z) = sup V(z, D),

where the supremum is taken over all finite partitions
Dia=op<a1<...<ap1<ap=>

of the interval [a, b].
A function z: [a,b] — X with (B)var®(z) < oo is called a function with bounded
B-variation on [a,b] (sometimes also a function of bounded semi-variation [2], [3]).
The set of all functions z: [a,b] — X with (B)var’(z) < oo will be denoted
by (B)BV ([a,b], X) or shortly by (B)BV([a,b]) if it is clear which bilinear triple
(X,Y, Z) we have in mind.

1. Proposition. If B = (X,Y, Z) is a bilinear triple then

(1) BV ([a,0], X) C (B)BV ([a, 0], X)
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and if v € BV ([a,b], X), then
(B)var®(z) < var®(z).
Proof. For a given function z: [a,b] — X with € BV([a,b], X), a partition
D of [a,b] and arbitrary y; € Y, j =1,...,k with ||y;|| <1 we have

k

ZHf (o) = z(ey—1) I xlyjlly

k

lew o) — a(aj-1)|x < varg ().

k
§ z(a;) — z(aj-1))

Passing to the suprema corresponding to the definition of (B)var® () in this inequal-
ity we immediately obtain the inclusion as well as the inequality claimed in the
statement. O

Remark. It is easy to show that if z: [a,b] — R and B = (R, R, R) with the
multiplication of reals as the corresponding bilinear form, then « € (B)BV ([a, b]) if
and only if x € BV ([a, b]).

Indeed, in this case we have

k

VP (zx,D) —sup{ (o) — z(aj—1)

} Z\xa] — z(aj_1)|

because we can take y; = 1 if x(a;) —x(oj—1) > 0and y; = —1if z(a;)—z(a;—1) < 0.
The same is true also if z: [a,b] — X and B = (X, R, X ), where the Banach space
X is finite-dimensional.
This shows that the concept of B-variation of a function z: [a,b] — X is relevant
only for infinite-dimensional Banach spaces X.

REGULATED FUNCTIONS AND STEP FUNCTIONS WITH VALUES IN A BANACH SPACE

Assume that [a,b] C R is a bounded interval and that X is a Banach space. Given
x: [a,b] — X, the function z is called regulated on [a,b] if it has one-sided limits at
every point of [a,b], i.e.if for every s € [a,b) there is a value x(s+) € X such that

hm lz(t) — z(s+)||lx =0

t—s
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and if for every s € (a, b] there is a value z(s—) € X such that
Jim [a(t) = a(s)x = 0.

The set of all regulated functions z: [a,b] — X will be denoted by G([a,b], X) or
shortly G([a, b]) if it is clear which Banach space X we have in mind.
If C([a,b], X) is the set of continuous functions z: [a,b] — X then evidently

(2) C([a,b],X) C G([a,b], X).

Assume now that B = (X, Y, Z) is a bilinear triple of Banach spaces.

A function z: [a,b] — X is called B-regulated on [a, b] if for every y € Y, ||y|ly < 1
the function zy: [a,b] — Z given by t +— xz(t)y € Z for t € [a,b] is regulated,
ie.zy € G([a,b],Z) for every y € Y, |lylly < 1.

Similarly y: [a,b] — Y is called B-regulated on [a,b] if for every z € X, ||z]|x <1
the function zy: [a,b] — Z given by t +— zy(t) € Z for t € [a,b] is regulated,
ie.zy € G([a,b], Z) for every z € X, ||z||x < 1.

For a given bilinear triple B = (X,Y, Z) the set of all B-regulated functions x:
[a,b] — X will be denoted by (B)G([a,b], X) or shortly by (B)G([a,b]) if it is clear
which bilinear triple (X,Y, Z) we have in mind.

A function z: [a,b] — X is called a (finite) step function on [a, b] if there exists a
finite partition

Dia=opy<a1<...<ap_1<ap=>

of the interval [a,b] such that = has a constant value on (a;_1,a;) for every j =

1,...,k.
The following results are well known for regulated functions.

2. Proposition. z € G([a,b],X) if and only if x is the uniform limit of step
functions. (See e.g.[2, Theorem 3.1, p. 16].)

If x € G([a,b], X) then:

a) x is bounded, i.e. there exists K > 0 such that ||z(s)||x < K for every s € [a, b],

b) for every € > 0 the sets

{s€la,b);llz(s+) —a(s)| = e}, {s € (a,b];[lz(s) —x(s—)l| = e}

are finite,
c) the set

S = {s € [a,b;a(s) £ a(s+) or a(s) # x(s-)}
is at most countable (see e.g.[2, Corollary 3.2, p.17]),
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d) G([a,b], X) equipped with the norm ||z|G(a,x) = sup [z(s)||x for x €
s€la,b]

G([a,b], X) is a Banach space.

3. Proposition. If B = (X,Y,Z) is a bilinear triple and x € G([a,b], X) then
z € (B)G(la,b], X), i.e. G([a,b], X) C (B)G([a,b], X).

Proof. Forany y €Y with ||y|ly <1 and s,t € [a, b] we have
@)y —2(s)yllz < |z(t) — 2(s)l[x[lylly < [l2(t) —=(s)]x

and this implies the statement (e.g. by the Bolzano-Cauchy condition for the existence
of onesided limits of the function x). O

In addition to this we also have
4. Proposition. Ifz € BV ([a,b], X) then z € G([a,b], X), i.e.

(3) BV ([a,], X) € G([a,b], X) € (B)G([a, ], X).

Proof. For s, t € [a,b], s <t we have
Ja(t) — 2(5) 1 x < var(s (2) = vary () — varj, ()

and this implies (e.g. by the Bolzano-Cauchy condition for the existence of onesided
limits of the nondecreasing bounded real function var, 4 ()) that the onesided limits
of the function z: [a,b] — X exist at any point of [a, b], i.e. that A € G([a,b],X). O

Remark. If the Banach space X is finite dimensional, then it is easy to check
that a function x: [a,b] — X is B-regulated if and only if it is regulated.

STIELTJES INTEGRATION OF VECTOR VALUED FUNCTIONS
A finite system of points
{ao, 71,00, T2, ..y 1, They Otk }

such that
a=qp <o <...<aqp_1<ap=2»b

and
TjE[Oéj_l,Ozj} forj=1,... )k

is called a P-partition of the interval [a, b].
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A function §: [a,b] — (0,00) is called a gauge on [a,b].
For a given gauge ¢ on [a, b] a P-partition {«g, 71, 1,72, ..., Qk—1, Tk, i } Of [a, D]
is called d-fine if

[Oéjfl,Oéj]C(ijé(Tj),Tj +5(TJ)) fOI'j:].,...,k.
5. Cousin’s Lemma. Given an arbitrary gauge § on [a,b] there is a d-fine
P-partition of [a, b].
(See e.g. [4] and many other books on Henstock-Kurzweil integration.)

6. Definition.  Assume that B = (X,Y, Z) is a bilinear triple and that functions
z: [a,b] = X and y: [a,b] — Y are given.

We say that the Stieltjes integral f; dfz(s)]y(s) exists if there is an element I € Z
such that for every € > 0 there is a gauge ¢ on [a, b] such that for

M”

S(dz,y, D ) — x(ay— 1)]9(7'1')

]=1

we have

|S(dz,y, D) —I||, <e

provided D is a é-fine P-partition of [a,b]. We denote I = fab dfz(s)]y(s). For the
case @ = b it is convenient to set fab dfz(s)]y(s) = 0and if b < a, then fab dlz(s)]y(s) =

= Jy dlz(s)ly(s)
Similarly we can define the Stieltjes integral fab x(s)d[y(s)] using Stieltjes integral
sums of the form

k
S(z,dy, D Zw ) [y(ey) — y(oy—1)].
Jj=1

Remark. Note that Cousin’s Lemma 5 is essential for this definition. The Stielt-
jes integral introduced in this way is determined uniquely and has all the necessary
elementary properties, see [5].

7. Proposition. Assume that B = (X,Y, Z) is a bilinear triple, that
z € (B)G([a,b], X) N (B)BV ([a,b], X)

and y € G([a,b],Y).
Then the integral ffd[x(s)]y(s) exists.
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Symmetrically, if € G([a,b], X) and
y € (B)G([a,0],Y) N (B)BV ([a, b, Y)

then the integral fab x(s)d[y(s)] exists.

See [5, Proposition 15].
Taking into account Proposition 3 we obtain the following

8. Corollary. IfB = (X,Y,Z) is a bilinear triple such that
z € G([a,b], X)N (B)BV([a,b],X) and y € G([a,b],Y)N (B)BV([a,b],Y)
then both integrals

b b
/ dx(s)ly(s) and / d[a(s)]y(s)

exist.

INTEGRATION BY PARTS

Assume that B = (X,Y, 7) is a bilinear triple and that x: [a,b] — X, y: [a,b] —
Y. For a P-partition D = {ag, 71,01, T2, ..., Qk_1, Tk, & } of the interval [a, b] define

k
Az, y, D) = Z[(w(aj) — (7)) (y(ey) = y(75)) = (@(ej-1) = (7)) (y(@j-1) = y(73))]-

9. Definition. We say that AP (z,y) exists if there is an element J € Z such
that for every € > 0 there is a gauge ¢ on [a, b] such that

|1A(z,y, D) = Jllz <

if D is a d-fine P-partition of [a,b]. We then denote J = Al (z,y).

Remark. The definition of the quantity AY(x,y) is an integral-like definition
when compared with the Definition 6.

The basic result is the following.

10. Theorem (Integration by parts). Assume that B = (X,Y,Z) is a bilinear
triple and that z: [a,b] — X, y: [a,0] = Y.
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If two of the quantities

[ o). [ a@dye). Al

exist then the third exists as well and the equality

@ " de()y(s) + / " H($)dly()] = 2B)u(b) — a(a)y(@) — Ab(e.y)
holds.
Proof. First of all let us show that for every P-partition
D ={ao,11,01,7T2, .., Q—1, Tk, Ok }
of the interval [a, b] we have
(5) S(dz,y, D) + S(z,dy, D) + A(z,y, D) = x(b)y(b) — z(a)y(a).

Indeed, by a simple algebraic manipulation we have

[2(v) — @(aj—1)]y(my) + 4 z(7;)[y(ay) — y(e-1)]

k
J=

k
+ > _l(@(ag) = 2(m))ylay) = y(73)) = (@(aj-1) = 2(m)(y(a-1) = y(7;))]

j=1

I
'M’T

[2()y(75) — (aj—1)y(1y) + 2(75)y(e) — 2(m5)y(e—1) + x(a;)y(ey)

~
Il
-

—a(r)y(ay) — z(a;)y(ry) + 2(7)y(75) — 2(aj—1)y(aj—1) + z(75)y(a;j-1)
+ 2 (j—1)y(75) — x(75)y(7;)]
k
Z[x(aj)y(aj) — z(aj-1)y(aj-1)]
z(ar)y(ar) — z(ao)y(ao) = 2(b)y(b) — z(a)y(a)

|
N

because a = b and ag = a for the P-partition D.

Suppose e.g.that the integrals f;d[w(s)]y(s), f; x(s)d[y(s)] exist. Then by their
definition for every € > 0 there is a gauge J on [a,b] such that for any d-fine P-
partition D of [a,b] we have

b
©) ] [ e )uts) - Stz .0

<s
z 2
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and

<<
0%

) H / " e()dly(s)] — S(a.dy. D)

z
Then for any d-fine P-partition D of [a, b] we have by (5), (6) and (7)
b

HAZ(:E, y) — z(b)y(b) + z(a)y(a) + /

a a

<AL (= )+5(dx y, D) + S(x,dy, D) — x(b)y(b) + z(a)y(a)] z

H JR

- S(dz,y,D

zZ
<3t f‘f

and this inequality shows that by definition A% (z,y) exists and its value is

Al (a,y) = a(by(t) - s(@y(@) ~ [ da(@lus) ~ [ o)y,

i.e. that (4) is satisfied.
The remaining cases when A (z,y), f; d[z(s)]y(s) or Ab(z,y), f; x(s)d[y(s)] exist
can be proved similarly. O

Remark. The proof of Theorem is based on purely algebraic manipulation of
integral sums for the integral. This approach to integration by parts goes back to
the paper [3] of J. Kurzweil.

If x € G([a, b], X) then define
Ata(r) = 2(t+) —2(7) = lim 2(0) — 2(7)

and
A7 z(r) =2(r) —z(1—) = z(1) — Ul_i)rg_x(a).

Now our aim is to give some corollaries to Theorem 10 which will present the
Stieltjes form of integration by parts formula in a more conventional form.

If B=(X,Y,Z) is a bilinear triple such that z € G([a,b], X) N (B)BV([a,b], X)
and y € G([a,b],Y) N (B)BV ([a,b],Y) then both integrals

b b
[ @) ad [ dals)
exist as was stated in Corollary 8.
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First of all let us prove some auxiliary statements.
11. Lemma. IfB= (X,Y,Z) is a bilinear triple,
z € G([a,b], X) N (B)BV([a,b],X) and y € G([a,b],Y)
or
z € G([a,b],X) and y € G([a,b],Y) N (B)BV([a,b],Y)
then the series
Yo ATa(mAty(n), Y ATa(r)ATy(r)
T€[a,b) T€(ab]

converge in Z.

Proof. Let us consider the first possibility.

Since z € G([a,b], X) the set S of 7 € [a,b) for which Atz(7) # 0 is at most
countable by c¢) in Proposition 2, i.e. S = {0} € [a,b); k € N} and therefore we can
write

oo
Z Atz(r)ATy(r) = ZA+x(ak)A+y(Uk).
T€[a,b) k=1
Denote m
> Ata(or)ATy(or) = Sm € Z
k=1
for m € N and assume that € > 0 is given.
Since the sets

{s € [a,0); [|1AT2(s)]| = [[a(s+) — 2(s)]| >
{s € la, )i [ATy(s)] = lly(s+) —y(s)l| > &}

are finite by b) from Proposition 2, there exists M. € N such that for k € N, k > M,
we have [[ATz (o)) < € and ||[Aty(or)|| < e
Assume that m >n > M., m,n € N. Then

Spm=Su= > Ataz(op)ATy(ow).
k=n+1

Since the limits z(oi+) € X exist for every &k = n + 1,...,m, there exist values
a € [a,b), k=n+1,...,m such that

[0k, 0k +ak]) N {ont1,-.,0m} = {oK}
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and

5
lz(ok + ar) — z(or+)]| < -
Using this we get
1Sm = Sullz = || D> Ata(or)ATy(ow)
k=n-+1 zZ
< Y0 [w(ont) — 2ok + ar)] AT y(ow)
k=n+1 Z
D ok + ar) — z(ok)] AV y(ow)
k=n+1 Z
- Aty(o
<el| > [wlow+ar) — :g(ak)]M
k=n+1 < z
+ > lwlont) — 2(ok + ar)llx ATy (o) |y
k=n+1
b - €
< eg(B)varjx + ¢ Z p—
k=n+1
= e(B)varbz + &2 mon e(B)varbx + £2.
m-—n

Hence S,, € Z, m € N is a Cauchy sequence in the Banach space Z and therefore
(oo}
the series > ATz(ox)ATy(or) = Y. ATx(r)A'y(r) converges in Z.

k=1 T€(a,b)
The convergence of Y. A~ x(7)A~y(7) can be shown analogously.
T€(a,b]
The second possibility when « € G([a,b], X) and y € G([a,b],Y)N(B)BV ([a,b],Y)
is symmetric and can be treated in the same way as the former. O

12. Lemma. If B = (X,Y,Z) is a bilinear triple, x € G([a,b],X) N
(B)BV ([a,b],X) and y € G([a,b],Y) N (B)BV([a,b],Y) then

®) Aj(z,y) = Y Ata(n)Aty(r) = Y ATa(r)ATy(r).

T€la,b) 7€ (a,b]

Proof. By Corollary 8 both the integrals f;x(s)d[y(s)], f; d[z(s)]y(s) exist
and therefore by Theorem 10 A (x,y) € Z also exists.
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Since = € G([a,b], X) the set S of 7 € [a,b) for which ATz(7) # 0 or A~z(7) # 0
is at most countable by ¢) in Proposition 2, i.e. S = {0} € [a,b); k € N} and

9) Y Ate(mAty(rn) = Y ATa(r)ATy(r)

T€[a,b) T€(a,b]
oo
Z x(ok) Aty( ZA z(ok)A” y(ok).
k=1 k=1

Assume that € > 0 is given.
Since the series Z Atz(og)ATy(ok), Z A~ z(ok)A~y(ok) converge in Z by
Lemma 11, there ex1sts L. € N such that

(10) > Ataor)ATy(on)| <e. > Ara(or)ATy(on)|| <e.
k=Lc+1 z k=L.+1 Z

By Definition 9 there exists a gauge dp on [a, b] such that
(11) 1AG(z,y) = Alz,y, D)l|lz < ¢

for any dop-fine P-partition D of [a, b].
Further, for every 7 € [a, b] there is 61(7) > 0 such that

lz(s) — x(74)| < e, |y(s) —y(t+)| <e for s € (1,7 + d1(7)),

(12)
|z(s) —x(7—)| < e,|y(s) —y(r—)| <e for s € (1 —01(7), 7).

This is clear because x, y being regulated, the onesided limits for the functions x,
y exist at every point in [a,b] (at the endpoints only the corresponding ones). The
function d; evidently represents a gauge on [a, b].
Finally, let us define
02(1) = dist(7, {o1,...,0L_})

for 7 ¢ {o1,...,0r.} (dist(r, M) denotes the distance of the point 7 from the set
M) and é2(7) > 0 for 7 € {01,...,0L_}.
Let us put
d(7) = min(do(7), 01(7), d2(7))

for 7 € [a,b]. Then § is a gauge on [a,b] and every d-fine P-partition
D= {OZOaTlaalaTQa c ',Oékfl,Tk,Olk}

of the interval [a,b] has the property that {o1,...,00.} C {71,..., 7%} (this is the
consequence of the fact that D is do-fine) and (11) holds because D is dp-fine.
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Assume now that D is an arbitrary o-fine P-partition of [a, b]. Then using (9) we
have

(13)

Al (z,y) — ZA+ ZAw Ay)

T€la,b) 7€(a,b]

Al (z,y) ZA+ (ox)ATy(o% —I—ZA x(ok) A" y(o)
k=1 k=1

< lAd(z,y) = Al v, D)z

H (z,y,D) ZA"’ (k) AT y(o%) JrZA (o)A y(o)
k=1

k=1

Z

<e+ HA(x,y, D) — Z Ataz(op)ATy(or) + Z A" x(ok) A y(ok)
k=1

k=1

zZ

where (11) was taken into account. Further, by (10) we have

(14) H (z,y,D) Z 2(op) AT y(on) + > A" z(ok) A y(o%)
k=1 =1 Z
L. ' L
< 2+ HA(x,y, D) — ZA+$(01)A+y(01) + ZA_SL’(O'l)A_y(Ul)
=1 =1 z
Now let us consider the last term on the right hand side of (14):
L.
(15) H x,y, D) Z z(o) AT y(oy +ZA x(o) A" y(o7)
=1 1=1 z
k
= || Do l(ay) = 2(m)(ylay) —y(m) — (@(aj-1) — (7)) (y(aj-1) = y(7))]
=t L. L.
=Y ATa(o)ATy(o) + Y A a(e) Ay(or)
. =1 =1 z
< | Z [(z(a) — (7)) (y(e;) — y(75))
netee = (alag) - o) (as-) — y(r)

L. L.
=Y ATa(o)ATy(o) + Y A a(e) Ay(or)

b =1 =1 7z
X (6 - s - vm)
e = (g - a(m)uley1) - u(m)]
Z
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Ifr; ¢ {o1,..., or.} then ||[ATy(r))|lz < e, |[A~y(rj)||z < € and by (12) also

ly(ey) = y(mH)lly <e, llylaj1) —y(m-)lly <e

This yields

ly(e) = y(m)lly = llylay) = y(m+) + ATy()]ly < 2¢
and
ly(ej—1) = y(m)lly < 2
in this case, and we have

k

(16) || Yo lalay) = 2(m)(ylay) —y(m)

IijE{O’l ..... ULS}then
(17)

H Z [(z(ay) — (7)) (y(ey) — y(75)) — (x(aj-1) — x(7)) (y(a;-1) — y(7;))]
'rje{a]i},aLs}

- Z At (o) ATy(or) + Z A1) A7y (o)
_ H 3" l(e(0) ~ () wla) ~ 9(73)) ~ (ol 1) — () oo 1) ~ 9(r,)
TjE{Ujli-l-JLE}
- Z At x(r)Aty(r) + Z A7 (1) A7y(75)
rje{ojiiﬂs} TjE{"]i‘l"”Lf} ’
< Z — x(m))(y(ay) — y(75)) = AT a(r;) ATy (7))]

rr€{on,mor.)

k
Z w(aj-1) = 2(m))(y(ej-1) = y(73)) = A7 x(7;) A7 y(7)]

Tje{a'l 44444 or.}

Z
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We have

N

k
> (wlay) —a(m+)ATy(r)

z
< e(B)varbz 4 e(B)varly = ((B)var’z + (B)vary)

and similarly also

k
H Yo o) —a(m)ylaj-1) = y(1)) = A”a(m) A"y (7))

z
< e((B)varlz + (B)varly).

Hence by (17) we get

k
H Z [(z(y) — 2(7;))(y(ay) = y(75)) — (2(ej—1) — (7)) (y(ej—1) — y(75))]
TjG{UJ:}’JLE}
— ZE: Ataz(op)ATy(or) + ZE: A~ z(or) A y(ow)
k=1 k=1

< 2e((B)varbz 4 (B)varly).
z

This inequality together with (15) and (16) leads to

Le

HA(x, y, D) — 2A+x(ak)A+y(Uk) + ZA‘x(ak)A_y(Uk)
k= k=1

< 2e((B)varbz + (B)varly) + 2¢(B)varbz = e(4(B)varlz + 2(B)varty)

Z

and this with (9) implies (8) because € > 0 can be taken arbitrarily small. O

627



13. Theorem. IfB = (X,Y,Z) is a bilinear triple such that x € G([a,b], X) N
(B)BV ([a,b],X) and y € G([a,b],Y) N (B)BV([a,b],Y) then
b

b
/ 2(s)dly(s)] + / d(s)ly(s) = 2(B)y(b) — 2(a)y(a)
— Y Ata(nATy(r) + Y ATa(r)ATy(r).

a<T<b a<t<b

(18)

Proof. By the assumption the integrals f; z(s)d[y(s)], f; d[z(s)]y(s) exist (see
Corollary 8) and by the integration by parts Theorem 10 we have

b b
[ adlue)) + [ da@lats) = 2(t®) - alaly(a) - Abay).
Using (8) from Lemma 12 we immediately obtain (18). O

14. Corollary. Ifx € BV ([a,b],X) and y € BV ([a,b],Y) then the integrals

/ " s($)dly(e)), / " dfe()l(s)

exist and (18) holds.
Proof. By (1) and (3) we have z € G([a,b],X) N (B)BV([a,b],X), y €
G(la,b],Y)N (B)BV([a,b],Y) and the result follows from Theorem 13. O

Remark. This form of integration by parts result was derived e.g.in [6], [7] for
the case of finite dimensional spaces.

15. Theorem. If
z € C([a,b], X) N (B)BV ([a,b],X) and y € G([a,b],Y) N (B)BV ([a,b],Y)
or if
z € G([a,b], X)N (B)BV([a,b],X) and y € C([a,b],Y) N (B)BV ([a,b],Y)

then
b

b
(19) [ @y + [ dats)ly(s) = s0)y(b) - slayyta)

Proof. Since C([a,b],X) C G([a,b], X) we have Atz(7) =0, A~x(r) = 0 for
T € [a,b], and the assumptions of Theorem 13 being satisfied the equality (18) holds.
Moreover,

Y Atz(n)ATy(r) + Y ATa(r)ATy(r) =0

a<T<b a<tT<b
and therefore (19) holds in the first case. The second can be proved analogously. O
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