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HAMILTONIAN COLORINGS OF GRAPHS WITH LONG CYCLES
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Abstract. By a hamiltonian coloring of a connected graph G of order n > 1 we mean a
mapping c of V (G) into the set of all positive integers such that |c(x) − c(y)| > n − 1 −
DG(x, y) (where DG(x, y) denotes the length of a longest x− y path in G) for all distinct
x, y ∈ G. In this paper we study hamiltonian colorings of non-hamiltonian connected graphs
with long cycles, mainly of connected graphs of order n > 5 with circumference n − 2.
Keywords: connected graphs, hamiltonian colorings, circumference

MSC 2000 : 05C15, 05C38, 05C45, 05C78

The letters f–n (possibly with indices) will be reserved for denoting non-negative
integers. The set of all positive integers will be denoted by � . By a graph we mean
a finite undirected graph with no loop or multiple edge, i.e. a graph in the sense of
[1], for example.

0. Let G be a connected graph of order n > 1. If u, v ∈ V (G), then we denote by
DG(u, v) the length of a longest u− v path in G. If x, y ∈ G, then we denote

D′
G(x, y) = n− 1−DG(x, y).

We say that a mapping c of V (G) into � is a hamiltonian coloring of G if

|c(x) − c(y)| > D′
G(x, y)

for all distinct x, y ∈ V (G). If c is a hamiltonian coloring of G, then we denote

hc(c) = max{c(w); w ∈ V (G)}.

Research supported by Grant Agency of the Czech Republic, grant No. 401/01/0218.
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The hamiltonian chromatic number hc(G) of G is defined by

hc(G) = min{hc(c); c is a hamiltonian coloring of G}.

Fig. 1 shows four connected graphs of order six, each of them with a hamiltonian
coloring.
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Fig. 1

The notions of a hamiltonian coloring and the hamiltonian chromatic number of a

connected graph were introduced by G.Chartrand, L.Nebeský and P.Zhang in [2].
These concepts have a transparent motivation: a connected graph G is hamiltonian-

connected if and only if hc(G) = 1.
The following useful result on the hamiltonian chromatic number was proved in

[2]; its proof is easy.

Proposition 1. Let G1 and G2 be connected graphs. If G1 is spanned by G2,

then hc(G1) 6 hc(G2).

It was proved in [2] that

hc(G) 6 (n − 2)2 + 1

for every connected graph G of order n > 2 and that hc(S) = (n− 2)2 + 1 for every
star S of order n > 2. These results were extended in [3]: there exists no connected
graph of order n > 5 with hc(G) = (n − 2)2, and if T is a tree of order n > 5
obtained from a star of order n − 1 by inserting a new vertex into an edge, then
hc(T ) = (n − 2)2 − 1.
The following definition will be used in the next sections. Let G be a connected

graph containing a cycle; by the circumference of G we mean the length of a longest
cycle in G; similarly as in [2] and [3], the circumference of G will be denoted by

cir(G). If G is a tree, then we put cir(G) = 0.

1. It was proved in [2] that if G is a cycle of order n > 3, then hc(G) = n − 2.
Proposition 1 implies that if G is a hamiltonian graph of order n > 3, then hc(G) 6
n− 2.
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As was proved in [2], if G is a connected graph of order n > 4 such that cir(G) =
n−1 and G contains a vertex of degree 1, then hc(G) = n−1. Thus, by Proposition 1,
if G is a connected graph of order n > 4 such that cir(G) = n−1, then hc(G) 6 n−1.
Consider arbitrary j and n such that j > 0 and n−j > 3. We denote by hcmax(n, j)

the maximum integer i > 1 with the property that there exists a connected graph G

of order n such that cir(G) = n − j and hc(G) = i.

As follows from the results of [2] mentioned above,

hcmax(n, 0) = n − 2 for every n > 3

and
hcmax(n, 1) = n− 1 for every n > 4.

Using Proposition 1, it is not difficult to show that hcmax(5, 2) = 6. Combining
Proposition 1 with Fig. 1 we easily get hcmax(6, 2) 6 10. In this section, we will find

an upper bound of hcmax(n, 2) for n > 7.

Let n > 7, let 0 6 i 6 b 1
2 (n − 2)c, and let V be a set of n elements, say ele-

ments u0, u1, . . . , un−4, un−3, v, w. We denote by F (n, i) the graph defined as follows:
V (F (n, i)) = V and

E(F (n, i)) = {u0u1, u1u2, . . . , un−4un−3, un−3u0} ∪ {u0v, uiw}.

Lemma 1. Let n > 7. Then there exists a hamiltonian coloring ci of F (n, i) with

hc(ci) = 3n− b1
3
(n− 2)c − 6− i

for each i, 0 6 i 6 b 1
3 (n − 2)c.

���������
. Put j = b 1

3 (n− 2)c. Let 0 6 i 6 j. Consider a mapping ci of V (F (n, i))
into � defined as follows:

ci(u0) = n− 1, ci(u1) = n− 3, . . . , ci(uj−1) = n− 2(j − 1)− 1,

ci(uj) = n− 2j − 1, ci(uj+1) = 3n− 2j − 7, ci(uj+2) = 3n− 2j − 9, . . . ,

ci(un−4) = n + 3, ci(un−3) = n + 1, ci(v) = 1 and ci(w) = 3n− j − 6− i.

(A diagram of F (21, 0) with c0 can be found in Fig. 2.)

Consider arbitrary distinct vertices r and s of F (n, i) such that ci(r) > ci(s). Put
D′

i(r, s) = D′
F (n,i)(r, s). Obviously, ci(r) > ci(s). If (r, s) = (w, uj+1) or (un−3, u0)

or (uf+1, uf ), where 0 6 f 6 n − 4, then ci(r) − ci(s) = D′
i(r, s). If (r, s) = (uj , v),

then D′
i(r, s) +2 > ci(r)− ci(s) > D′

i(r, s). Otherwise, ci(r)− ci(s) > D′
i(r, s). Thus

ci is a hamiltonian coloring of F (n, i). We see that hc(ci) = ci(w). �

Let n > 7. We define F ′(n) = F (n, 0)− u0w + vw.
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Corollary 1. Let n > 7. Then there exists a hamiltonian coloring c′0 of F ′(n)
with hc(c′0) = 3n− b 1

3 (n − 2)c − 7.
���������

. Put c′0 = c1, where c1 is defined in the proof of Lemma 1. It is clear
that c′0 is a hamiltonian coloring of F ′(n). Applying Lemma 1, we get the desired
result. �

Lemma 2. Let n > 7. Then there exists a hamiltonian coloring c+
i of F (n, i)

with

hc(c+
i ) = 2n− 4 + 2b 1

2 (n − 2)c − i

for each i, b 1
3 (n − 2)c+ 1 6 i 6 b 1

2 (n − 2)c.
���������

. Put j = b 1
2 (n − 2)c and k = b 1

2 (n − 2)c. Let j + 1 6 i 6 k. Consider a

mapping c+
i of V (F (n, i)) into � defined as follows:

c+
i (u0) = 3k + 1, c+

i (u1) = 3k − 1, . . . , c+
i (uk−1) = k + 3, c+

i (uk) = k + 1,

c+
i (uk+1) = 2(n− 3) + k + 1, c+

i (uk+2) = 2(n− 3) + k − 1, . . . ,

c+
i (un−4) = 3k + 5, c+

i (un−3) = 3k + 3, c+
i (v) = 1 and c+

i (w) = 2n− 4 + 2k − i.

(A diagram of F (21, 7) with c+
7 can be found in Fig. 3.)

PutD′
i = D′

F (n,i). We see that c
+
i (uk)−c+

i (v) = D′
i(uk, v) and c+

i (w)−c+
i (uk+1) =

D′
i(w, uk+1). It is easy to show that c+

i is a hamiltonian coloring of F (n, i). We have
hc(c+

i ) = c+
i (w). �

Theorem 1. Let n > 7. Then

hcmax(n, 2) 6 3n− b 1
3 (n− 2)c − 6.

���������
. Consider an arbitrary connected graph G of order n with cir(G) = n−2.

Obviously, G is spanned by a connected graph F such that cir(F ) = n − 2 and F
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has exactly one cycle. By Proposition 1, hc(G) 6 hc(F ). Thus we need to show that
hc(F ) 6 3n− b 1

3 (n − 2)c − 6.
If F is isomorphic to F ′(n), then the result follows from Corollary 1. Let F be

not isomorphic to F ′(n). Then there exists i, 0 6 i 6 b 1
2 (n − 2)c, such that F is

isomorphic to F (n, i). If 0 6 i 6 b 1
3 (n − 2)c, then the result follows from Lemma 1.

Let b 1
3 (n− 2)c 6 i 6 b 1

2 (n− 2)c. By Lemma 2, hc(F ) 6 2n− 4 + 2b 1
2 (n − 2)c − i 6

2n − 4 + 2b 1
2 (n − 2)c − b 1

3 (n − 2)c − 1 6 3n − b 1
3 (n − 2)c − 7, which completes the

proof. �

Corollary 2. Let n > 7. Then

hcmax(n, 2) 6 1
3 (8n − 14).

2. Consider arbitrary j and n such that j > 0 and n − j > 3. We denote by
hcmin(n, j) the minimum integer i > 1 with the property that there exists a connected
graph G of order n such that cir(G) = n−j and hc(G) = i. Since every hamiltonian-
connected graph of order > 3 is hamiltonian, we get hcmin(n, 0) = 1 for every n > 3.
In this section we will find an upper bound of hcmin(n, j) for j > 1 and n > j(j+3)+1.
We start with two auxiliary definitions. If U is a set, then we denote

Ecom(U) = {A ⊆ U ; |A| = 2}.

If W1 and W2 are disjoint sets, then we denote

Ecombi(W1, W2) = {A ∈ Ecom(W1 ∪ W2); |A ∩ W1| = 1 = |A ∩ W2|}.
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Lemma 3. Consider arbitrary j, k and n such that j > 1, k > j + 1, and

k + j(k + 1) 6 n 6 k + (k − 1)2 + 2j.

Then there exists a k-connected graph G of order n such that cir(G) = n − j and

hc(G) 6 2j(k − 1) + 1.
���������

. Clearly, there exist f1, . . . , fk−1 such that

j 6 fg 6 k − 1 for all g, 0 6 g 6 k − 1

and
f1 + . . . + fk−1 = n − 2j − k.

Consider pairwise disjoint finite sets U, W1, . . . , Wk and Wk+1 such that |U | = k,

|Wg | = fg for each g, 0 6 g 6 k − 1

and |Wk | = |Wk+1| = j. We denote by G the graph with

V (G) = U ∪ W1 ∪ . . . Wk ∪ Wk+1

and

E(G) = Ecom(V1) ∪ . . . ∪ Ecom(Vk+1) ∪ Ecombi(U, V1 ∪ . . . ∪ Vk+1).

It is easy to see that G is a k-connected graph of order n and cir(G) = n − j.
Put D′(x, y) = D′

G(x, y) for x, y ∈ U . It is clear that

D′(u, u∗) = 2j

for all distinct u, u∗ ∈ U ,
D′(u, w) = j

for all u ∈ U and w ∈ W1 ∪ . . . ∪Wk+1,

D′(w, w∗) = 0

for all w and w∗ such that there exist distinct g, g∗ ∈ {1, . . . , k+1} such that w ∈ Wg

and w∗ ∈ Wg∗ , and

D′(w, w∗) = j

for all distinct w and w∗ such that there exists h ∈ {1, . . . , k + 1} such that w, w∗ ∈
Wh.

268



Put fk = fk+1 = j. Consider a mapping c of V (G) into � with the properties that

c(U) = {1, 2j + 1, 4j + 1, . . . , 2j(k − 1) + 1}

and

c(Wg) = {j + 1, 3j + 1, . . . , 2j(fg − 1) + j + 1}

for each g, 1 6 g 6 k + 1. It is easy to see that c is a hamiltonian coloring of G.

Hence hc(G) 6 hc(c) = 2j(k − 1) + 1. �

Theorem 2. Let n and j be integers such that j > 1 and n > j(j + 3) + 1, and
let k be the smallest integer such that

k > j + 1 and (k − 1)2 + k > n− 2j.

Then

hcmin(n, j) 6 2j(k − 1) + 1.

���������
. The theorem immediatelly follows from Lemma 3. �

Corollary 3. Let n > 5 and let k be the smallest integer such that

k > 2 and n 6 (k − 1)2 + k + 2.

Then

hcmin(n, 1) 6 2k − 1.

Corollary 4. Let n > 11 and let k be the smallest integer such that

k > 3 and n 6 (k − 1)2 + k + 4.

Then

hcmin(n, 2) 6 4k − 3.

3. As follows from results obtained in [2], if (a) n > 3, then for every k ∈
{1, 2, . . . , n−1} there exists a connected graph G of order n > 4 such that hc(G) = k,

and if (b) G is a graph of order n such that hc(G) > n, then cir(G) 6= n, n− 1.
For n = 4 or 5, it is easy to find a connected graph of order n with hc(G) =

n : hc(P4) = 4 and hc(2K2 + K1) = 5. On the other hand, there exists no connected
graph of order 6 with hc(G) = 6. We can state the folowing question: Given n > 7,
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does there exist a connected graph G of order n with hc(G) = n? Answering this
question for n > 8 is the subject of the present section.
Let 1 6 j 6 i. Consider mutually distinct elements r, s, u, v, w and finite sets X

and Y such that |X | = i, |Y | = j and the sets X , Y and {r, s, u, v, w} are pairwise
disjoint. We define a graph G(i, j) as follows:

V (G(i, j)) = X ∪ Y ∪ {r, s, u, v, w} and E(G(i, j))

= {uv} ∪Ecom(X) ∪ Ecom(Y ) ∪ Ecombi({u, w}, X ∪ {r})
∪ Ecombi({v, w}, Y ∪ {s}).

Obviously, cir(G(i, j)) = i + j + 3 = |V (G(i, j)| − 2 .

Proposition 2. Let 1 6 j 6 i. Put D′(t1, t2) = D′
G(i,j)(t1, t2) for all t1, t2 ∈

V (G(i, j)). Then

D′(x, y) = 0 for all x ∈ X and all y ∈ Y,(1)

D′(x, s) = 0, D′(x, r) = D′(x, v) = 1 and D′(x, u) = D′(x, w) = 2(2)

for all x ∈ X,

D′(y, r) = 0, D′(y, s) = D′(y, u) = 1 and D′(y, v) = D′(y, w) = 2(3)

for all y ∈ Y,

D′(x1, x2) = 2 for all distinct x1, x2 ∈ X,(4)

D′(y1, y2) = 2 for all distinct y1, y2 ∈ Y,(5)

D′(r, s) = 0,(6)

D′(r, v) = D′(s, u) = 1,(7)

D′(u, v) = 2,(8)

D′(s, v) = D′(s, w) = j + 1,(9)

D′(v, w) = j + 2,(10)

D′(r, u) = D′(r, w) = min(i + 1, j + 2),(11)

and

(12) D′(u, w) = min(i + 2, j + 3).

���������
is easy.
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Lemma 4. Let 1 6 j 6 i. Then hc(G(i, j)) > i + j + 5.
���������

. Suppose, to the contrary, that there exists a hamiltonian coloring c of

G(i, j) such that hc(c) 6 i + j + 4. Thus hc(c) 6 2i + 4. We may assume that there
exists t ∈ V (G(i, j)) such that c(t) = 1.
Put X+ = X ∪ {u, w}. By virtue of (2), (4) and (12),

(13) |c(x+
1 ) − c(x+

2 )| > 2 for all distinct x+
1 , x+

2 ∈ X+.

By virtue of (2), (7) and (12),

c(r) 6= c(x+) 6= c(v) for all x+ ∈ X+,(14)

c(r) 6= c(v), c(s) 6= c(u)(15)

and
|c(u)− c(v)| > 2.

Obviously, |X+| = i + 2. As follows from (13),

(16) max c(X+) > 2i + 2 + min c(X+).

Thus hc(c) > 2i + 3. Since hc(c) 6 i + j + 4, we get

(17) i− 1 6 j 6 i.

If {c(r), c(v)} = {1, 2}, then (14) implies that max c(X+) > 2i + 5; a contradiction.
If {c(r), c(v)} = {hc(c), hc(c) − 1}, then max c(X+) 6 2i + 2; a contradiction. Thus

(18) {1, 2} 6= {c(r), c(v)} 6= {hc(c), hc(c) − 1}.

Moreover, if

c(u) = min c(X+) and c(v) = c(u) + 2

or

c(u) = max c(X+) and c(v) = c(u) − 2,

then max c(X+) > 2i + 3 + min c(X+).
Combining (11) and (12) with (17), we have

(19) |c(r) − c(u)| > i + 1, |c(r) − c(w)| > i + 1 and |c(u) − c(w)| > i + 2.

We denote by c′ a mapping of V (G(i, j)) into � defined as follows:

c′(t) = hc(c) + 1− c(t) for each t ∈ V (G(i, j)).
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We see that c′ is a hamiltonian coloring of G(i, j) and that hc(c′) = hc(c). Obviously,
c(u) 6 c(v) or c′(u) 6 c′(v). Without loss of generality we assume that c(u) 6 c(v).
Thus

c(v) > c(u) + 2

and if c(u) = 1 and hc(c) = 2i + 3, then c(v) > 4.
We distinguish two cases.
� �"!�#

1. Assume that j = i− 1. Then hc(c) = 2i + 3. By virtue of (9) and (10),

|c(s) − c(v)| > i, |c(s) − c(w)| > i and |c(v) − c(w)| > i + 1.

If c(r) < c(u) < c(w) or c(r) < c(w) < c(u) or c(u) < c(w) < c(r) or c(w) < c(u) <

c(r), then (19) implies that hc(c) > 2i + 4, which is a contradiction.
Let c(w) < c(r) < c(u). As follows from (19), c(u) = 2i + 3 and therefore

c(v) > 2i + 5; a contradiction.

Finally, let c(u) < c(r) < c(w). Thus c(w) = 2i + 3 and therefore c(u) = 1 and
c(r) = i + 2. Since c(u) = 1 and hc(c) = 2i + 3, we get c(v) > 4. If c(v) < c(s), then
c(s) > i+4 and therefore |c(s)−c(w)| 6 i−1; a contradiction. Let c(s) < c(v). Since
c(s) 6= c(u), we have c(s) > 2. This implies that c(v) > i + 2. Since c(w) = 2i + 3,
we get c(v) = i + 2. Thus c(v) = c(r), which contradicts (15).
� �"!�#

2. Assume that i = j. Recall that hc(c) 6 2i + 4. By virtue of (9) and
(10),

|c(s) − c(v)| > i + 1, |c(s) − c(w)| > i + 1 and |c(v) − c(w)| > i + 2.

If c(r) < c(w) < c(u) or c(w) < c(r) < c(u), then (19) implies that c(u) > 2i+3 and
therefore c(v) > 2i + 5, which is a contradiction.
Let c(r) < c(u) < c(w). Then c(w) = 2i+4 and therefore c(r) = 1 and c(u) = i+2.

This implies that c(v) > i + 4 and therefore |c(v) − c(w)| 6 i; a contradiction.

Let c(u) < c(w) < c(r). Then c(u) = 1, c(w) = i + 3 and c(r) = 2i + 4. Since
3 6 c(v) 6= c(r), we get |c(v) − c(w)| 6 i; a contradiction.
Let c(w) < c(u) < c(r). Then c(w) = 1, c(u) = i + 3 and c(r) = 2i + 4. Assume

that c(s) < c(v); since c(w) = 1, we get c(s) > i+2 and therefore c(v) > 2i+3; since
c(r) = 2i + 4 and c(v) 6= c(r), we get c(v) = 2i + 3, which contradicts (18). Assume
that c(v) < c(s); since c(u) = i + 3, we get c(v) > i + 5 and therefore c(s) > 2i + 6;
a contradiction.

Finally, let c(u) < c(r) < c(w). Then c(w) > 2i + 3. If c(v) < c(s), then c(v) > 3
and c(s) > i+4 and therefore c(w) > 2i+5; a contradiction. Assume that c(s) < c(v).
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If c(s) > 2, then c(v) > i + 3 and therefore c(w) > 2i + 5, which is a contradiction.
Let c(s) = 1. Then c(u) = 2, c(r) = i + 3 and c(w) = 2i + 4. This implies that
c(v) = i + 2. Obviously, min c(X+) = 2. Since c(v) = i + 2 and c(r) = i + 3,
we see that c(x+) 6∈ {i + 2, i + 3} for each x+ ∈ X+. Therefore max c(X+) >
2i + 3 + min c(X+) = 2i + 5, which is a contradiction.
Thus the proof of the lemma is complete. �

Theorem 3. For every n > 8, there exists a connected graph G of order n with

cir(G) = n− 2 and hc(G) = n.

���������
. For every f and h such that f 6 h we define

EVEN[f, h] = {g; f 6 g 6 h, g is even}

and

ODD[f, h] = {g; f 6 g 6 h, g is odd}.

We will use graphs G(i, j) in the proof.
Consider an arbitrary n > 8. We distinguish four cases.

� �"!�#
1. Let n = 4f + 8, where f > 0. Put

G1 = G(2f + 2, 2f + 1).

Then the order of G1 is n. Let c1 be an injective mapping of V (G1) into � such that

c1(r) = c1(s) = 2f + 5, c1(u) = 1, c1(v) = 3, c1(w) = 4f + 8,

c1(X) = EVEN[4, 4f + 6] and c1(Y ) = EVEN[6, 4f + 6].

(For f = 0, G1 and c1 are presented in Fig. 4.) Combining (1)–(12) with the definition

of a hamiltonian coloring, we see that c1 is a hamiltonian coloring of G1. Clearly,
hc(c1) = 4f + 8 = n. Lemma 4 implies that hc(c1) = hc(G1). Thus hc(G1) = n.

6

31

6

8

4 5 5

Fig. 4
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2. Let n = 4f + 9, where f > 0. Put

G2 = G(2f + 2, 2f + 2).

Then the order of G2 is n. Let c2 be an injective mapping of V (G2) into � such that

c2(r) = c2(s) = 2f + 6, c2(u) = 1,

c2(v) = 3, c2(w) = 4f + 9 and c2(X) = c2(Y ) = ODD[5, 4f + 7].

(For f = 0, G2 and c2 are presented in Fig. 5.) By virtue of (1)–(12), c2 is a
hamiltonian coloring of G2. Obviously, hc(c2) = n. As follows from Lemma 4,

hc(G2) = n.

5

31

7

9

5 6 6 7

Fig. 5

� �"!�#
3. Let n = 4f + 10, where f > 0. Put

G3 = G(2f + 3, 2f + 2).

The order of G3 is n. Let c3 be an injective mapping of V (G3) into � such that

c3(r) = 2f + 5, c3(s) = 2f + 6, c3(u) = 1, c3(v) = 3, c3(w) = 4f + 10,

c3(X) = EVEN[4, 4f + 8] and c3(Y ) = ODD[5, 4f + 7].

(See Fig. 6 for f = 0.) By (1)–(12), c3 is a hamiltonian coloring of G3. By Lemma 4,

hc(G3) = hc(c3) = n.
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Fig. 6
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4. Let n = 4f + 11, where n > 0. Put

G4 = G(2f + 4, 2f + 2).

The order of G4 is n again. Let c4 be an injective mapping of V (G4) into � such
that

c4(r) = 2f + 6, c4(s) = 2f + 7, c4(u) = 1, c4(v) = 4, c4(w) = 4f + 11,

c4(X) = ODD[3, 4f + 9] and c4(Y ) = EVEN[6, 4f + 8].

(See Fig. 7 for f = 0.) Combining (1)–(12) with Lemma 4, we see that hc(G4) =
hc(c4) = n.
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Fig. 7

Thus the proof is complete. �

The author conjectures that there exists no connected graph G of order 7 such

that hc(G) = 7.

The author sincerely thanks the referee for helpful comments and suggestions.
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