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Abstract. We give sufficient conditions for the existence of at least one integrable solution
of equation x(t) = f(t)+

∫ t
0 K(t, s)g(s, x(s)) ds. Our assumptions and proofs are expressed

in terms of measures of noncompactness.
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Let E be a Banach space and let J = [0, d] be a compact interval in
�
. Denote by

L1(J, E) the space of all Bochner integrable functions x : J → E equipped with the
norm ‖x‖1 =

∫
J
‖x(t)‖ dt.

In this paper we give sufficient conditions for the existence of a solution x ∈
L1(J, E) of the integral equation

(1) x(t) = f(t) +
∫ t

0

K(t, s)g(s, x(s)) ds

with the kernel

K(t, s) =
A(t, s)
|t− s|r (t, s ∈ J, t 6= s),

where 0 < r < 1 and A is a bounded strongly measurable function from J × J into

the space of continuous linear mappings E → E.

Throughout this paper we shall assume that
1. f ∈ L1(J, E);
2. (s, x) 7→ g(s, x) is a function from J ×E into E such that
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(i) g is strongly measurable in s and continuous in x;

(ii) ‖g(s, x)‖ 6 a(s) + b‖x‖ for s ∈ J and x ∈ E, where a ∈ L1(J,
�
) and b > 0.

Since
∫ t

0
(t− s)−r ds = (1− r)−1t1−r, we have

(2)
∫ d

0

ds

|t− s|r 6 Q for all t ∈ J, where Q =
2d1−r

1− r
.

Put c = max{‖A(t, s)‖ : s, t ∈ J}, L1 = L1(J, E) and

(Sx)(t) =
∫

J

K(t, s)x(s) ds (x ∈ L1, t ∈ J).

Lemma 1. S is a continuous linear mapping of L1 into itself and ‖S‖ 6 cQ.

���������
. By (2) for each z ∈ L1(J,

�
) we have

(3)
∫∫

J×J

|z(s)|
|t− s|r ds dt =

∫

J

( ∫

J

dt

|t− s|r
)
|z(s)| ds 6 Q

∫

J

|z(s)| ds,

and therefore for almost every t ∈ J the integral

∫

J

|z(s)|
|t− s|r ds

exists. This shows that S is well defined. Moreover, if x ∈ L1, then

‖(Sx)(t)‖ 6
∫

J

‖A(t, s)‖‖x(s)‖
|t− s|r ds 6 c

∫

J

‖x(s)‖
|t− s|r ds.

Thus

∫

J

‖(Sx)(t)‖ dt 6 c

∫

J

( ∫

J

‖x(s)‖
|t− s|r ds

)
dt

= c

∫

J

( ∫

J

dt

|t− s|r
)
‖x(s)‖ ds 6 cQ

∫

J

‖x(s)‖ ds,

so that ‖Sx‖1 6 cQ‖x‖1.
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Lemma 2. Put g̃(x)(s) = g(s, x(s)) for x ∈ L1 and s ∈ J . Then g̃ is a continuous

mapping of L1 into itself.

���������
. Let xn, x0 ∈ L1 and lim

n→∞
‖xn−x0‖1 = 0. Suppose that ‖g̃(xn)−g̃(x0)‖1

does not converge to 0 as n → ∞. Then there are ε > 0 and a subsequence {xnj}
such that

(4) ‖g̃(xnj )− g̃(x0)‖1 > ε for j = 1, 2, 3, . . . ,

and lim
j→∞

xnj (s) = x0(s) for a.e. s ∈ J . By 2(i) we have

lim
j→∞

‖g(s, xnj (s))− g(s, x0(s))‖ = 0 for a.e. s ∈ J.

Moreover, as lim
n→∞

‖xn−x0‖1 = 0 implies that the sequence (xn) has equi-absolutely

continuous norms in L1, it follows from 2(ii) that the functions ‖g(·, xn) − g(·, x0)‖
(n = 1, 2, . . .) are equi-integrable on J . Hence, by the Vitali convergence theorem,

lim
j→∞

‖g(·, xnj )− g(·, x0)‖1 = 0. This contradicts (4).

Denote by α and α1 the Kuratowski measures of noncompactness in E and
L1(J, E), respectively. The next lemma clarifies the relation between α and α1. For

any set V of functions belonging to L1(J, E) denote by v the function defined by
v(t) = α(V (t)) for t ∈ J (under the convention that α(X) = ∞ if X is unbounded),
where V (t) = {x(t) : x ∈ V }.

Lemma 3. Assume that V is a countable set of strongly measurable functions

J → E and there exists an integrable function µ such that ‖x(t)‖ 6 µ(t) for all
x ∈ V and t ∈ J . Then the corresponding function v is integrable on J and

α

({ ∫

J

x(t) dt : x ∈ V

})
6 2

∫

J

v(t) dt.

If, in addition, lim
h→∞

sup
x∈V

∫
J
‖x(t + h)− x(t)‖ dt = 0, then

α1(V ) 6 2
∫

J

v(t) dt.

(See [3], Th. 2.1 and [8], Th. 1).
The main result of this paper is the following
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Theorem. Let ω :
�

+ → �
+ be a continuous nondecreasing function such that

ω(0) = 0, ω(t) > 0 for t > 0 and

(5)
∫ δ

0

1
s

[ s

ω(s)

] 1
1−r

ds = ∞ (δ > 0).

If 1–2 hold and

(6) α(g(s, X)) 6 ω(α(X))

for any s ∈ J and for any bounded subset X of E, then there exists a solution

x ∈ L1(J, E) of (1).
���������

. It is known that there exists a nonnegative solution u ∈ L1(J,
�
) of the

integral equation

u(t) = ‖f(t)‖+
∫ t

0

‖K(t, s)‖a(s) ds + b

∫ t

0

‖K(t, s)‖u(s) ds.

Put B = {x ∈ L1 : ‖x(t)‖ 6 u(t) for a.e. t ∈ J} and

G(x)(t) = f(t) +
∫ t

0

K(t, s)g(s, x(s)) ds for x ∈ L1 and t ∈ J.

Since

‖G(x)(t)‖ 6 ‖f(t)‖+
∫ t

0

‖K(t, s)‖(a(s) + b‖x(s)‖) ds

6 ‖f(t)‖+
∫ t

0

‖K(t, s)‖a(s) ds + b

∫ t

0

‖K(t, s)‖u(s) ds = u(t)

for x ∈ B and t ∈ J , Lemmas 1 and 2 prove that G is a continuous mapping B → B.

Putting

K(t, s) =

{
K(t, s) for 0 6 s 6 t 6 d

0 for s > t,

we see that

G(x)(t) = f(t) +
∫

J

K(t, s)g(s, x(s)) ds for x ∈ L1 and t ∈ J.

Without loss of generality we shall always assume that all functions from L1 are
extended to

�
by putting x(t) = 0 outside J .
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Therefore

(7) ‖G(x)(t + h)−G(x)(t)‖ 6 d(t, h) for x ∈ B, t ∈ J and small |h|,

where

d(t, h) =





u(t) if t ∈ J and t + h /∈ J

‖f(t + h)− f(t)‖+
∫

J

‖K(t + h, s)−K(t, s)‖(a(s) + bu(s)) ds

if t, t + h ∈ J.

In view of (3) the function (t, s) 7→ W (t, s) = K(t, s)(a(s) + bu(s)) is integrable on
J × J . Hence

lim
h→0

∫

J

( ∫

J

‖K(t + h, s)−K(t, s)‖(a(s) + bu(s)) ds

)
dt

= lim
h→0

∫∫

J×J

‖W (t + h, s)−W (t, s)‖ ds dt = 0,

and consequently

(8) lim
h→0

∫

J

d(t, h) dt = 0 for t ∈ J.

This fact, plus (7), implies that

(9) lim
h→0

sup
x∈B

∫

J

‖G(x)(t + h)−G(x)(t)‖ dt = 0.

Let V be a countable subset of B such that

(10) V ⊂ conv(G(V ) ∪ {0}).

Then V (t) ⊂ conv(G(V )(t) ∪ {0}) for a.e. t ∈ J , so that

(11) α(V (t)) 6 α(G(V )(t)) for a.e. t ∈ J.

Put v(t) = α(V (t)) for t ∈ J . From (9) and (10) it is clear that

lim
h→0

sup
x∈V

∫

J

‖x(t + h)− x(t)‖ dt = 0.

Moreover, ‖x(t)‖ 6 u(t) for all x ∈ V and a.e. t ∈ J . Hence, by Lemma 3, v ∈
L1(J,

�
) and

(12) α1(V ) 6 2
∫

J

v(t) dt.
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From (3) it follows that

(13)
∫

J

a(s) + bu(s)
|t− s|r ds < ∞ for a.e. t ∈ J.

Fix now t ∈ J such that the integral (13) is finite.
Since

‖K(t, s)g(s, x(s))‖ 6 c
a(s) + bu(s)
|t− s|r for x ∈ B and s ∈ J,

owing to (11), (6) and Lemma 3 we get

α(V (t)) 6 α(G(V )(t)) 6 α

({ ∫ t

0

K(t, s)g(s, x(s)) ds : x ∈ V

})

6 2
∫ t

0

α({K(t, s)g(s, x(s)) : x ∈ V }) ds

6 2
∫ t

0

‖K(t, s)‖α(g(s, V (s)) ds

6 2
∫ t

0

‖K(t, s)‖ω(α(V (s))) ds,

i.e.

v(t) 6 2c

∫ t

0

ω(v(s))
(t− s)r

ds for t ∈ J.

Putting w(t) = 2c
∫ t

0
ω(v(s))(t− s)−r ds for t ∈ J we see that w is a continuous

function such that v(t) 6 w(t) for t ∈ J . Hence

(14) w(t) 6 2c

∫ t

0

ω(w(s))
(t− s)r

ds for t ∈ J.

By the Mydlarczyk-Gripenberg theorem ([7], Th. 3.1) and assumption (5), the inte-
gral equation

z(t) = 2c

∫ t

0

ω(z(s))
(t− s)r

ds for t ∈ J

has the unique continuous solution z(t) ≡ 0. Applying now the theorem on integral
inequalities ([1], Th. 2), from (14) we deduce that w(t) ≡ 0. Thus v(t) = 0 for t ∈ J

and consequently, by (12), α1(V ) = 0. Hence the set V is relatively compact in L1.

Thus we can apply the Mönch fixed point theorem ([6], Th. 2.1) which yields the
existence of a function x ∈ L1 such that x = G(x). Clearly x is a solution of (1).
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