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Abstract. A graph is called magic (supermagic) if it admits a labelling of the edges by
pairwise different (consecutive) positive integers such that the sum of the labels of the edges
incident with a vertex is independent of the particular vertex. We characterize magic line
graphs of general graphs and describe some class of supermagic line graphs of bipartite
graphs.
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1. Introduction

We consider finite undirected graphs without loops, multiple edges and isolated
vertices. If G is a graph, then V (G) and E(G) stand for the vertex set and edge
set of G, respectively. Cardinalities of these sets, denoted by |V (G)| and |E(G)|, are
called the order and the size of G.

Let a graph G and a mapping f from E(G) into positive integers be given. The
index-mapping of f is the mapping f∗ from V (G) into positive integers defined by

f∗(v) =
∑

e∈E(G)

η(v, e)f(e) for every v ∈ V (G),

where η(v, e) is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise.
An injective mapping f from E(G) into positive integers is called a magic labelling
of G for index λ if its index-mapping f∗ satisfies

f∗(v) = λ for all v ∈ V (G).

A magic labelling f of G is called a supermagic labelling of G if the set {f(e) :
e ∈ E(G)} consists of consecutive positive integers. We say that a graph G is
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supermagic (magic) if and only if there exists a supermagic (magic) labelling of G.

Note that any supermagic regular graph G admits a supermagic labelling into the
set {1, . . . , |E(G)|}. In the sequel we will consider only such supermagic labellings.
The concept of magic graphs was introduced by Sedláček [8]. The regular magic

graphs are characterized in [2]. Two different characterizations of all magic graphs

are given in [6] and [5].

Supermagic graphs were introduced by M.B. Stewart [9]. It is easy to see that

the classical concept of a magic square of n2 boxes corresponds to the fact that
the complete bipartite graph Kn,n is supermagic for every positive integer n 6= 2
(see also [9]). Stewart [10] characterized supermagic complete graphs. In [7] and
[1] supermagic labellings of the Möbius ladders and two special classes of 4-regular

graphs are constructed. In [4] supermagic regular complete multipartite graphs and
supermagic cubes are characterized. Some constructions of supermagic labellings of

various classes of regular graphs are described in [3] and [4].

The line graph L(G) of a graph G is the graph with vertex set V (L(G)) = E(G),
where e, e′ ∈ E(G) are adjacent in L(G) whenever they have a common end vertex
in G. In the paper we deal with magic and supermagic line graphs.

2. Magic line graphs

In this section we characterize magic line graphs of connected graphs. Since,

except for the complete graph of order 2, no graph with less than 5 vertices is magic,
we consider connected graphs of size at least 5.
We say that a graph G is of type A if it has two edges e1, e2 such that G−{e1, e2}

is a balanced bipartite graph with a partition V1, V2, and the edge ei joins two

vertices of Vi (i = 1, 2). A graph G is of type B if it has two edges e1, e2 such that
G− {e1, e2} has a component H which is a balanced bipartite graph with partition

V1, V2, and ei joins a vertex of Vi with a vertex of V (G)−V (H) (i = 1, 2). As usual,
for S ⊂ V (G), Γ(S) denotes the set of vertices adjacent to a vertex in S.

Proposition 1 (Jeurissen [5]). A connected non-bipartite graph G is magic

if and only if G is neither of type A nor of type B, and |Γ(S)| > |S| for every
independent non-empty subset S of V (G).

Denote by F1 the family of connected graphs which contain an edge uv such that

deg(u) + deg(v) = 3. By F2 we denote the family of all connected unicyclic graphs
with a 1-factor. F3 denotes the family of connected graphs which contain edges vu

and uw such that deg(v) + deg(u) = deg(u) + deg(w) = 4. F4 is the family of six
graphs illustrated in Figure. Finally, let F = F1 ∪ F2 ∪ F3 ∪ F4.
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Figure. The family F4

The main result of this section is

Theorem 1. Let G be a connected graph of size at least 5. The line graph L(G)
is magic if and only if G /∈ F .
���� ! #"

. Assume that the line graph of G is not magic. If each vertex of G

has degree at most 2, then G is either a path or a cycle, i.e., G ∈ F1 ∪ F3. Next,

we suppose that the maximum degree of G is at least 3. So, L(G) is non-bipartite.
According to Proposition 1, we consider the following cases.

A. There is an independent set S ⊂ V (L(G)) such that |Γ(S)| 6 |S|. Suppose
that S = {e1, . . . , ek} is minimal possible. If |S| = 1, then |Γ({e1})| = 1, i.e., e1 is a

terminal edge of G with end vertices of degree 1 and 2. Thus, G ∈ F1.
If |S| > 1, then any edge of G is adjacent to at least two others. The edges

e1, . . . , ek are independent, thus any edge of G is adjacent to at most two of them.
Therefore,

|S| > |Γ(S)| = |Γ({e1})∪ . . .∪Γ({ek})| > 1
2 (|Γ({e1})|+ . . .+ |Γ({ek})|) > 1

22k = |S|.

It means |Γ(S)| = |S| and any edge of Γ(S) is adjacent to exactly two edges of S.

As G is a connected graph, |E(G)| = |S ∪ Γ(S)| = 2|S| = |V (G)|. So, G is unicyclic
and S is its 1-factor, i.e., G ∈ F2.

B. Suppose that L(G) is of type B. Then there is a set E ′ ⊂ E(G) such that the
subgraph L′ of L(G) induced by E′ is a balanced bipartite graph connected by a pair

of edges to another subgraph. Since L′ is bipartite, every vertex of the subgraph G′

of G induced by E′ is of degree at most two, i.e., every component of G′ is either a

path or an even cycle. Moreover, the set E(G)−E ′ contains either one edge incident
with a 2-vertex (i.e., vertex of degree 2) of G′, or a pair of edges incident with two

1-vertices of G′. Consider the following subcases.
B1. G′ contains an even cycle. Then only one edge of E(G)−E ′ is incident with

its vertex. Thus, some two adjacent edges of this cycle have both end vertices of
degree 2 in G, i.e., G ∈ F3.
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B2. G′ consists of two paths. Then a pair of edges of E(G) − E ′ is incident

with its terminal vertices. The other terminal vertices of G′ are terminal in G, too.
Evidently, in this case G ∈ F1.

B3. G′ is a path connected by one edge to another subgraph. Then either |E ′| > 2
and G ∈ F1, or |E′| = 2 and G ∈ F3, because both edges of E ′ have end vertices of

degree 1 and 3 in G.
B4. G′ is a path connected by a pair of edges to another subgraph. Then any two

adjacent edges of this path have both end vertices of degree 2 in G, i.e., G ∈ F3.
C. Suppose that L(G) is of type A. Moreover, assume that G /∈ F1 ∪ F2 ∪ F3.

For d 6 2, every d-vertex of G is adjacent to some vertex of degree at least 3,
because G /∈ F1 ∪ F3. As L(G) is a balanced bipartite graph with two added edges,
6 6 |E(G)| ≡ 0 (mod 2) and G contains either one 4-vertex or two 3-vertices. One
can easily see that G ∈ F4 in this case.

The converse implication is obvious. �

It is easy to see that the complexity of deciding whether the graph G belongs to the

family Fi (i = 1, 2, 3, 4) is polynomial. Using the Even-Kariv algorithm for finding
1-factor in G we get that testing whether the line graph of a given graph is magic has

computational complexity O(n5/2). Moreover, each graph of the family F contains
a vertex of degree at most two. Thus, we immediately obtain

Corollary 1. Let G be a connected graph with minimum degree at least 3. Then
L(G) is a magic graph.

3. Supermagic line graphs

The problem of characterizing supermagic line graphs of general graphs seems to
be difficult. It is solved in this section for regular bipartite graphs.

Let Kk[n] denote the complete k-partite graph whose every part has n vertices. As

usual, the union of m disjoint copies of a graph G is denoted by mG. In the sequel
we will use the following assertions proved in [4].

Proposition 2 ([4]). Let F1, F2, . . . , Fk be mutually edge-disjoint supermagic

factors of a graph G which form its decomposition. Then G is supermagic.

Proposition 3 ([4]). The graph mKk[n] is supermagic if and only if one of

the following conditions is satisfied:

(1) n = 1, k = 2, m = 1;
(2) n = 1, k = 5, m > 2;
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(3) n = 1, 5 < k ≡ 1 (mod 4), m > 1;
(4) n = 1, 6 6 k ≡ 2 (mod 4), m ≡ 1 (mod 2);
(5) n = 1, 7 6 k ≡ 3 (mod 4), m ≡ 1 (mod 2);
(6) n = 2, k > 3, m > 1;
(7) 3 6 n ≡ 1 (mod 2), 2 6 k ≡ 1 (mod 4), m > 1;
(8) 3 6 n ≡ 1 (mod 2), 2 6 k ≡ 2 (mod 4), m ≡ 1 (mod 2);
(9) 3 6 n ≡ 1 (mod 2), 2 6 k ≡ 3 (mod 4), m ≡ 1 (mod 2);
(10) 4 6 n ≡ 0 (mod 2), k > 2, m > 1.

Note that all edges of a graph G incident with a vertex v induce a subgraph K(v)
of L(G), which is isomorphic to the complete graph of order deg(v). SubgraphsK(v),
for all v ∈ V (G), are edge-disjoint and form a decomposition of L(G). If vertices
u and v of G are not adjacent, then K(u) and K(v) are vertex-disjoint subgraphs
of L(G). So, for a bipartite graph G with parts V1 and V2, the subgraph R1(G) =⋃
v∈V1

K(v)
(
R2(G) =

⋃
v∈V2

K(v)
)
consists of mutually disjoint complete subgraphs of

L(G). Moreover, R1(G) and R2(G) are spanning subgraphs of L(G) which form its
decomposition.

Let d1, d2, q be positive integers and let G(q; d1, d2) be the family of all bipartite
graphs of size q whose every edge joins a d1-vertex to a d2-vertex. Clearly, there is

a vertex partition {V1, V2} of G ∈ G(q; d1, d2) where Vi consists of di-vertices of G

(i = 1, 2). Then |Vi|di = q and Ri(G) = q
di

Kdi is a factor of L(G) for i ∈ {1, 2}. So,
combining Proposition 2 and Proposition 3 we immediately obtain

Corollary 2. Let d1 > 5, d2 > 5 and q be positive integers such that one of the

following conditions is satisfied:

(1) d1 ≡ 1 (mod 4), d2 ≡ 1 (mod 4);
(2) d1 ≡ 1 (mod 4), d2 ≡ 2 (mod 4), q ≡ 2 (mod 4);
(3) d1 ≡ 1 (mod 4), d2 ≡ 3 (mod 4), q ≡ 1 (mod 2);
(4) d1 ≡ 2 (mod 4), d2 ≡ 2 (mod 4), q ≡ 2 (mod 4);
(5) d1 ≡ 3 (mod 4), d2 ≡ 3 (mod 4), q ≡ 1 (mod 2).
If G ∈ G(q; d1, d2), then L(G) is a supermagic graph.

For regular bipartite graphs we are able to extend this result. First, we prove an

auxiliary assertion.

Lemma 1. Let m and d > 3 be positive integers. Suppose vi,1, vi,2, . . . , vi,d are

vertices of the ith component of mKd for i ∈ {1, . . . , m}. Then there is a bijective
mapping f : E(mKd) → {1, . . . , m

(
d
2

)
} such that

f∗(v1,j) = f∗(v2,j) = . . . = f∗(vm,j) for all j ∈ {2, . . . , d}.
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. Evidently, it is sufficient to considerm > 2. If mKd is supermagic, then

its supermagic labelling has the desired properties. So, according to Proposition 3 it
remains to consider the following cases.

A. d = 3. Define a mapping f : E(mK3) → {1, . . . , 3m} by

f(vi,jvi,k) =





i if {j, k} = {1, 2},
1 + 2m− i if {j, k} = {2, 3},
2m + i if {j, k} = {1, 3}.

Clearly, f is the desired mapping because

f∗(vi,j) =





2m + 2i if j = 1,

1 + 2m if j = 2,

1 + 4m if j = 3.

B. d = 4. In this case we define a bijection f : E(mK4) → {1, . . . , 6m} by

f(vi,jvi,k) =





i if {j, k} = {1, 2},
m + i if {j, k} = {3, 4},
1 + 4m− 2i if {j, k} = {2, 3},
2 + 4m− 2i if {j, k} = {1, 4},
4m + i if {j, k} = {1, 3},
5m + i if {j, k} = {2, 4}.

For its index-mapping we get

f∗(vi,j) =





2 + 8m if j = 1,

1 + 9m if j = 2,

1 + 9m if j = 3,

2 + 10m if j = 4.

C. 4 < d ≡ 0 (mod 4). Then there is an integer p > 2 such that d = 4p. The

subgraph Hi,s of mKd induced by {vi,4s−3, vi,4s−2, vi,4s−1, vi,4s} is a complete graph
for all i ∈ {1, . . .m} and s ∈ {1, . . . , p}. Therefore, the spanning subgraph H :=
m⋃

i=1

p⋃
s=1

Hi,s of mKd is isomorphic to mpK4. As is proved in the case B, there is

a bijection h : E(H) → {1, . . . , 6mp} such that h∗(v1,j) = . . . = h∗(vm,j) for all
j ∈ {1, . . . , d}. Similarly, the spanning subgraph B := mKd − E(H) of mKd is
isomorphic to mKp[4]. By Proposition 3, mKp[4] is a supermagic graph. Thus,
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there exists a supermagic labelling g : E(B) → {1, . . . , |E(B)|} of B for an index

λ, i.e., g∗(vi,j) = λ for all i ∈ {1, . . .m} and j ∈ {1, . . . , d}. Since H and B form
a decomposition of mKd, we can define a mapping f : E(mKd) → {1, . . . , m

(
d
2

)
} by

f(e) =

{
h(e) if e ∈ E(H),

6mp + g(e) if e ∈ E(B).

As f∗(vi,j) = h∗(vi,j) + 6mp(d − 4) + λ, we have f∗(v1,j) = . . . = f∗(vm,j) for all
j ∈ {1, 2, . . . , d}.
D. 6 6 d ≡ 2 (mod 4) and m ≡ 0 (mod 2). Then there is a positive integer p such

that d = 4p + 2. The subgraph G of mKd induced by
m⋃

i=1

d⋃
j=3

{vi,j} is isomorphic

to mK4p. As is proved in the case C (B, if p = 1), there is a bijection t : E(G) →
{1, . . . , m

(
4p
2

)
} such that t∗(v1,j) = . . . = t∗(vm,j) for all j ∈ {3, 4, . . . , d}. Consider

a mapping f : E(mKd) → {1, . . . , m
(
d
2

)
} given by

f(vi,jvi,k) =





(k − 3)m + i if j = 2, 3 6 k, k ≡ 1 (mod 2),

1 + (k − 2)m− i if j = 2, 4 6 k < d, k ≡ 0 (mod 2),

1 + (k − 1)m− 2i if j = 2, k = d,

(k − 3)m + 2i if j = 1, k = d,

(2d− k − 2)m + i if j = 1, 4 6 k < d, k ≡ 0 (mod 2),

1 + (2d− k − 1)m− i if j = 1, 3 6 k, k ≡ 1 (mod 2),

2(d− 2)m + i if j = 1, k = 2,

(2d− 3)m + t(vi,jvi,k) if 2 < j < k 6 d.

It is not difficult to check that f is a bijection and for its index-mapping we have

f∗(vi,j) =





2p + (8p(3p + 1)− 1)m + 2i if j = 1,

2p + (8p(p + 1) + 1)m if j = 2,

1 + 2(d− 2)m + (2d− 3)m(d− 3) + t∗(vi,j) if 3 6 j 6 d.

E. 7 6 d ≡ 3 (mod 4) and m ≡ 0 (mod 2). Then the subgraph G of mKd induced

by
m⋃

i=1

d⋃
j=3

{vi,j} is isomorphic tomKd−2. By Proposition 3 the graph G is supermagic

and so there is a supermagic labelling t : E(G) → {1, . . . , m
(
d−2
2

)
} of G for an index
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λ. Consider a mapping f : E(mKd) → {1, . . . , m
(
d
2

)
} given by

f(vi,jvi,k) =





(k − 3)m + i if j = 2, 3 6 k ≡ 1 (mod 2),

1 + (k − 2)m− i if j = 2, 4 6 k ≡ 0 (mod 2),

1 + (2d− k − 1)m− i if j = 1, 3 6 k ≡ 1 (mod 2),

(2d− k − 2)m + i if j = 1, 4 6 k ≡ 0 (mod 2),

1 + (2d− 3)m− i if j = 1, k = 2,

(2d− 3)m + t(vi,jvi,k) if 2 < j < k 6 d.

It is easy to verify that f is a bijection. Moreover, for its index-mapping we get

f∗(vi,j) =





1
2 (d + 1) + ( 1

2 (d− 3)(3d + 1) + 5)m− 2i if j = 1,
1
2 (d− 1) + ( 1

2 (d− 1)(d + 1)− 1)m if j = 2,

1 + 2(d− 2)m + (d− 3)(2d− 3)m + λ if 3 6 j 6 d,

which completes the proof. �

Theorem 2. Let G be a bipartite regular graph of degree d > 3. Then the line
graph L(G) is supermagic.
���� ! #"

. Suppose that V1, V2 are parts of G. As G is a bipartite d-regular
graph, there exist mutually edge-disjoint 1-factors F1, . . . , Fd of G which form its

decomposition. Put m = |V1| (clearly, |V1| = |V2|) and denote the vertices of G

by u1, . . . , um, v1, . . . , vm in such a way that E(F1) = {u1v1, . . . , umvm}, V1 =
{u1, . . . , um} and V2 = {v1, . . . , vm}.
The subgraphs R1(G), R2(G) of the line graph L(G) consist of complete graphs

with d vertices. Therefore, they are isomorphic to mKd. Denote by ai,j (bi,j),
i ∈ {1, . . . , m}, j ∈ {1, . . . , d}, the vertex of R1(G) (R2(G)) which corresponds to
the edge of G incident with ui (vi) and which belongs to Fj , i.e., the vertex of L(G)
corresponding to urvs ∈ E(Fj) is denoted by ar,j in R1(G) and by bs,j in R2(G).
By Lemma 1, there exists a bijective mapping g1 : E(R1(G)) → {1, . . . , m

(
d
2

)
} such

that g∗1(a1,j) = g∗1(a2,j) = . . . = g∗1(am,j) for all j ∈ {2, . . . , d}. Then a mapping
g2 : E(R2(G)) → {1 + m

(
d
2

)
, . . . , 2m

(
d
2

)
} given by

g2(bi,jbi,k) = 1 + 2m

(
d

2

)
− g1(ai,jai,k)

is bijective, too. Moreover, g∗2(bi,j) = (d − 1)(1 + 2m
(
d
2

)
) − g∗1(ai,j). Consider the

mapping f : E(L(G)) → {1, . . . , 2m
(
d
2

)
} defined by

f(e) =

{
g1(e) if e ∈ E(R1(G)),

g2(e) if e ∈ E(R2(G)).
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Evidently, f is a bijection. Let x be an edge of G which belongs to F1. Then there

exists i ∈ {1, . . . , m} such that x = uivi, i.e., the vertex of L(G) corresponding to x

is denoted by ai,1 in R1(G) and by bi,1 in R2(G). Thus

f∗(x) = g∗1(ai,1) + g∗2(bi,1) = (d− 1)
(

1 + 2m

(
d

2

))
.

Similarly, for an edge y ∈ E(Fj), j ∈ {2, . . . , d}, there exist r, s ∈ {1, . . . , m}, r 6= s,
such that y = urvs. Then

f∗(y) = g∗1(ar,j) + g∗2(bs,j) = g∗1(as,j) + g∗2(bs,j) = (d− 1)
(

1 + 2m

(
d

2

))
.

Therefore, f is a supermagic labelling of L(G) for index (d− 1)(1 + 2m
(
d
2

)
). �

Corollary 3. Let k1, k2, q and d > 3 be positive integers such that one of the
following conditions is satisfied:

(1) d ≡ 0 (mod 2);
(2) d ≡ 1 (mod 2), k1 ≡ 1 (mod 4), k2 ≡ 1 (mod 4);
(3) d ≡ 1 (mod 2), k1 ≡ 1 (mod 4), k2 ≡ 2 (mod 4), q ≡ 2 (mod 4);
(4) d ≡ 1 (mod 2), k1 ≡ 1 (mod 4), k2 ≡ 3 (mod 4), q ≡ 1 (mod 2);
(5) d ≡ 1 (mod 2), k1 ≡ 3 (mod 4), k2 ≡ 3 (mod 4), q ≡ 1 (mod 2).
If G ∈ G(q; k1d, k2d), then L(G) is a supermagic graph.
���� ! #"

. Suppose that ui for i ∈ {1, . . . , m}, where m = q
k1d , (vj for j ∈

{1, . . . , n}, where n = q
k2d ) denotes a (k1d)-vertex ((k2d)-vertex) of a graph G be-

longing to G(q; k1d, k2d). Then there is a graph G′ ∈ G(q; d, d) with vertex set

V (G′) =
( m⋃

i=1

k1⋃
r=1

{ur
i }

)
∪

( n⋃
j=1

k2⋃
s=1

{vs
j}

)
such that for any edge uivj ∈ E(G) there

exists an edge ur
i v

s
j ∈ E(G′), where r ∈ {1, . . . , k1} and s ∈ {1, . . . , k2} (i.e., G′ is

obtained from G by distributing every vertex into vertices of degree d).

The subgraphK(ui) (K(vj)) of L(G) is decomposable into k1Kd andKk1[d] (k2Kd

and Kk2[d]). Thus, it is not difficult to see that L(G) is decomposable into factors
F1, F2, F3, where F1 is isomorphic to L(G′), F2 is isomorphic to mKk1[d] (if k1 > 1)
and F2 is isomorphic to nKk2[d] (if k2 > 1). Combining Theorem 2, Proposition 3
and Proposition 2 we obtain the assertion. �

We conclude this paper with the following negative statement:

Theorem 3. Let q, d1, d2 be positive integers such that either d1 + d2 6 4 and
q > 2, or 4 < d1 + d2 ≡ 1 (mod 2) and q ≡ 0 (mod 4). If G ∈ G(q; d1, d2), then the
line graph L(G) is not supermagic.
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. The line graph L(G) of a graph G ∈ G(q; d1, d2) is (d1 + d2− 2)-regular

of order q. Evidently, L(G) is not magic when d1 + d2 6 4 and q > 2. The other
case immediately follows from the fact (see [4]) that a supermagic regular graph H

of odd degree satisfies |V (H)| ≡ 2 (mod 4). �
$&%�'!(  *),+.-*/10#-324- (!5
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