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Abstract. For a connected graph G of order n > 3 and an ordering s : v1, v2, . . . , vn of

the vertices of G, d(s) =
n−1∑
i=1

d(vi, vi+1), where d(vi, vi+1) is the distance between vi and

vi+1. The traceable number t(G) of G is defined by t(G) = min {d(s)} , where the minimum
is taken over all sequences s of the elements of V (G). It is shown that if G is a nontrivial
connected graph of order n such that l is the length of a longest path in G and p is the
maximum size of a spanning linear forest in G, then 2n−2−p 6 t(G) 6 2n−2− l and both
these bounds are sharp. We establish a formula for the traceable number of every tree in
terms of its order and diameter. It is shown that if G is a connected graph of order n > 3,
then t(G) 6 2n − 4. We present characterizations of connected graphs of order n having
traceable number 2n− 4 or 2n− 5. The relationship between the traceable number and the
Hamiltonian number (the minimum length of a closed spanning walk) of a connected graph
is studied. The traceable number t(v) of a vertex v in a connected graph G is defined by
t(v) = min{d(s)}, where the minimum is taken over all linear orderings s of the vertices of
G whose first term is v. We establish a formula for the traceable number t(v) of a vertex v
in a tree. The Hamiltonian-connected number hcon(G) of a connected graph G is defined
by hcon(G) =

∑
v∈V (G)

t(v). We establish sharp bounds for hcon(G) of a connected graph G

in terms of its order.

Keywords: traceable graph, Hamiltonian graph, Hamiltonian-connected graph

MSC 2000 : 05C12, 05C45

1. Introduction

We refer to the book [6] for graph-theoretical notation and terminology not de-

scribed in this paper. Hamiltonian graphs can be defined as those graphs of or-
der n > 3 for which there is a cyclic ordering v1, v2, . . . , vn, vn+1 = v1 of the

vertices of G such that
n∑

i=1

d(vi, vi+1) = n, where d(vi, vi+1) is the distance be-
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tween vi and vi+1. For a connected graph G of order n > 3 and a cyclic ordering
s : v1, v2, . . . , vn, vn+1 = v1 of the vertices of G, the number d(s) is defined in [5] as

d(s) =
n∑

i=1

d(vi, vi+1).

Therefore, d(s) > n for each cyclic ordering s of V (G). The Hamiltonian number
h(G) of G is defined in [5] by

h(G) = min {d(s)} ,

where the minimum is taken over all cyclic orderings s of the vertices of G. Therefore,

h(G) = n if and only if G is Hamiltonian. To illustrate these concepts, consider the
graph G of Figure 1. For the cyclic orderings s1 : v1, v2, v3, v4, v5, v1 and s2 : v1,

v3, v2, v4, v5, v1 of V (G), we see that d(s1) = 8 and d(s2) = 6. Since G is a
non-Hamiltonian graph of order 5 and d(s2) = 6, it follows that h(G) = 6.

v3

v2

v5

v1

v4G :

Figure 1. A graph G with h(G) = 6

In [8] Goodman and Hedetniemi introduced the concept of a Hamiltonian walk

in a connected graph G, defined as a closed spanning walk of minimum length in
G. They denoted the length of a Hamiltonian walk in G by h(G). It was shown in
[5] that the Hamiltonian number of a connected graph G is, in fact, the length of a
Hamiltonian walk in G. Consequently, this result justifies using the notation h(G)
for both the Hamiltonian number of a graph G and the length of a Hamiltonian walk
in G. This concept was studied further in [4]. Hamiltonian walks were also studied

by Asano, Nishizeki, and Watanabe [1], [2], [7], Bermond [3], Nebeský [9], and Vacek
[11]. The following result appears in the papers [4], [5], [7], [8], [9].

Theorem A. For every connected graph G of order n > 2,

n 6 h(G) 6 2n − 2.

Moreover, h(G) = 2n − 2 if and only if G is a tree.

In this paper, we study a natural related concept. A graph has been called traceable
if it contains a Hamiltonian path. Therefore, every Hamiltonian graph is traceable.
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The converse is not true of course. For a connected graph G of order n > 3 and
an ordering (also called a linear ordering) s : v1, v2, . . . , vn of the vertices of G, the
number d(s) is defined as

d(s) =
n−1∑

i=1

d(vi, vi+1).

The traceable number t(G) of G is defined by

t(G) = min {d(s)} ,

where the minimum is taken over all sequences s of the elements of V (G). Thus if G
is a connected graph of order n > 2, then t(G) > n − 1. Furthermore, t(G) = n − 1
if and only if G is traceable. For example, since the graph G of Figure 1 is traceable
and has order 5, it follows that t(G) = 4.
As with Hamiltonian numbers of graphs, we now see that there is an alternative

way to define the traceable number of a connected graph. Denote the length of a

walk W in a graph by L(W ).

Proposition 1.1. Let G be a nontrivial connected graph. Then t(G) is the
minimum length of a spanning walk in G.

���������
. Suppose that the minimum length of a spanning walk in a graph G

is l. Furthermore, let s : v1, v2, . . . , vn be a sequence of the vertices of G such that

d(s) = t(G). For each integer i with 1 6 i 6 n − 1, let Pi be a vi − vi+1 path
of length d(vi, vi+1) in G. Let W ′ be the v1 − vn spanning walk of G obtained by

proceeding along the paths P1, P2, . . . , Pn−1 in the given order. Thus the length of
W ′ is L(W ′) = d(s) = t(G). Since l 6 L(W ′), it follows that l 6 t(G).
Next, let W be a spanning walk of minimum length in G. Thus the length of

W is l. Suppose that W : x1, x2, . . . , xl+1, where then l + 1 > n. Define u1 = x1

and u2 = x2. For 3 6 i 6 n, define ui to be xji , where ji is the smallest positive

integer such that xji /∈ {u1, u2, . . . , ui−1}. Then s : u1, u2, . . . , un is an ordering of
the vertices of G. For each integer i with 1 6 i 6 n − 1, let Wi be the ui − ui+1

subwalk of W determined by the terms ui and ui+1 in s. Thus d(ui, ui+1) 6 L(Wi).
Since

t(G) 6 d(s) =
n−1∑

i=1

d(ui, ui+1) 6
n−1∑

i=1

L(Wi) = L(W ) = l,

it follows that t(G) 6 l, giving the desired result. �
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2. Bounds for the traceable number of a graph

In Theorem A it is stated that for every connected graph G of order n > 2, the
Hamiltonian number h(G) 6 2n − 2. As expected, there is a smaller upper bound
for the traceable number of G.

Theorem 2.1. If G is a nontrivial connected graph of order n the length of whose
longest path is l, then

t(G) 6 2n− 2− l.

���������
. To show that t(G) 6 2n − 2 − l, we proceed by induction on n. Since

it is straightforward to see that t(G) = 2n − 2 − l for every connected graph G of

order n with 2 6 n 6 4, the inequality holds for every connected graph of order n

with 2 6 n 6 4. Assume, for every connected graph H of order n− 1 > 4 the length
of whose longest path is l′, that d(H) 6 2n − 4 − l′. Let G be a connected graph of
order n, the length of whose longest path is l. We show that t(G) 6 2n− 2− l. If G

contains a Hamiltonian path, then l = n− 1 and t(G) = n− 1; so t(G) = 2n− 2− l.
Hence we may assume that G does not contain a Hamiltonian path. Let P be a path

of length l < n − 1 in G. Among the vertices of G not on P , let w be a vertex of G
such that the length of a path from w to a vertex on P is maximum. Thus G − w

has order n− 1, is connected, and the length of a longest path in G−w is l. By the
induction hypothesis, t(G − w) 6 2n − 4 − l. Let s : v1, v2, . . . , vn−1 be a sequence

of the vertices of G−w for which d(s) = t(G−w). Suppose that w is adjacent to vi

(1 6 i 6 n − 1). If i = n − 1, then let s′ : v1, v2, . . . , vn−1, w. Thus

t(G) 6 d(s′) = d(s) + d(vn−1, w) = d(s) + 1

= t(G − w) + 1 6 (2n − 4 − l) + 1 < 2n− 2 − l.

If 1 6 i 6 n − 2, then insert w immediately after vi in s, producing the sequence

s∗ : v1, v2, . . . , vi, w, vi+1, . . . , vn−1.

Thus

d(s∗) = d(s) − d(vi, vi+1) + d(vi, w) + d(w, vi+1)

6 d(s) − d(vi, vi+1) + d(vi, w) + d(w, vi) + d(vi, vi+1)

= t(G − w) + 2 6 (2n − 4 − l) + 2 = 2n − 2 − l.

Since t(G) 6 d(s∗), it follows that t(G) 6 2n − 2 − l. �
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A graph is a linear forest if each of its components is a path. The following result

gives a lower bound for the traceable number of a connected graph in terms of its
order and the maximum size of a spanning linear forest.

Proposition 2.2. If G is a nontrivial connected graph of order n such that the

maximum size of a spanning linear forest in G is p, then

t(G) > 2n − 2 − p.

���������
. Let s : v1, v2, . . . , vn be an arbitrary sequence of the vertices of G. Since

the maximum size of a spanning linear forest in G is p, at most p of the n−1 numbers
d(vi, vi+1) (1 6 i 6 n− 1) are 1 and the remaining n− 1− p numbers are at least 2.
Thus

d(s) > p · 1 + (n − 1 − p) · 2 = p + 2n − 2 − 2p = 2n − 2− p.

Therefore, t(G) > 2n − 2 − p. �

The following corollary is an immediate consequence of Theorem 2.1 and Propo-

sition 2.2.

Corollary 2.3. Let G be a nontrivial connected graph of order n such that l

is the length of a longest path in G and p is the maximum size of a spanning linear

forest in G. Then

2n − 2 − p 6 t(G) 6 2n − 2 − l.

The graph G of Figure 2 has order n = 11. The length of a longest path in
G is l = 6 and the maximum size of a spanning linear forest in G is p = 8. By
Corollary 2.3, 12 6 t(G) 6 14. Actually, t(G) = 13 and s : v1, v2, . . . , v11 is a linear
ordering of the vertices of G such that d(s) = 13.

v1 v2 v3 v4 v9 v10 v11

v8

v7

v5 v6

G :

Figure 2. A graph G with 2n− 2 − p < t(G) < 2n − 2 − l
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Proposition 2.4. If G is a nontrivial connected graph of order n and diameter 2
such that the maximum size of a spanning linear forest in G is p, then

t(G) = 2n − 2 − p.

���������
. Since the maximum size of a spanning linear forest in G is p, there exists

a sequence s : v1, v2, . . . , vn of the vertices of G such that p of the n − 1 distances
d(vi, vi+1) (1 6 i 6 n − 1) are 1 and the remaining n − 1 − p numbers are 2. Thus
d(s) = p · 1+ (n− 1− p) · 2 = p + 2n− 2− 2p = 2n− 2− p. Hence t(G) 6 2n− 2− p.

Since t(G) > 2n − 2 − p by Proposition 2.2, it follows that t(G) = 2n− 2 − p. �

Each of the graphs G1 and G2 of Figure 3 has order n = 10 and the maximum
size of a spanning linear forest of each graph is p = 7. Such a spanning linear forest
Fi of Gi (i = 1, 2) is also shown in Figure 3.

v3
v4

v5

v8
v9

v7

v6

v2

v1

v10

G1 : v3

v4

v5

v8
v9

v7

v6

v2

v1

v10

F1 :

u6
u5

u4

u9 u10

u8

u7

u2

u1 u3

G2 :
u6

u5

u4

u9 u10

u8

u7

u2

u1 u3

F2 :

Figure 3. The graphs G1 and G2 and a spanning linear forest in each

By Proposition 2.2, t(Gi) > 2n−2−p = 11 for i = 1, 2. While t(G1) = 11, it turns
out that t(G2) = 12. In the sequence s1 : v1, v2, . . . , v10 of the vertices of G1, exactly

p = 7 of the 9 distances d(vi, vi+1) (1 6 i 6 9) are 1 and the other distances are 2.
On the other hand, there is no sequence of the vertices of G1 with this property and

so t(G2) > 12. Because d(s2) = 12 for the sequence s2 : u1, u2, . . . , u10, it follows
that t(G2) = 12.
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The following lemma establishes expected upper and lower bounds for h(G)− t(G)
for a nontrivial connected graph G. The diameter diam(G) of a connected graph G

is the largest distance between two vertices in G.

Lemma 2.5. For every nontrivial connected graph G,

1 6 h(G) − t(G) 6 diam(G).

���������
. The lower bound is immediate. To verify the upper bound, let s :

v1, v2, . . . , vn be an ordering of the vertices of G such that d(s) = t(G) and let
sc : v1, v2, . . . , vn, v1 be the cyclic ordering of the vertices of G obtained from s.
Then

h(G) 6 d(sc) = d(s) + d(vn, v1) 6 t(G) + diam(G).

Therefore, h(G) − t(G) 6 diam(G). �

We now determine all connected graphs G for which h(G) − t(G) = 1.

Proposition 2.6. For a nontrivial connected graph G,

h(G) − t(G) = 1 if and only if G is Hamiltonian.

���������
. Observe first that if G is a Hamiltonian graph of order n, then h(G) = n

and t(G) = n−1; so h(G)−t(G) = 1. For the converse, assume that G is a connected
graph such that h(G)−t(G) = 1. Let sc : v1, v2, . . . , vn, vn+1 = v1 be a cyclic ordering
of the vertices of G with d(sc) = h(G). We show that dG(vi, vi+1) = 1 for 1 6 i 6 n,

which implies that v1, v2, . . . , vn, v1 is a Hamiltonian cycle of G. Consider the linear
ordering sl : v1, v2, . . . , vn of the vertices of G obtained from sc. Since

d(sl) = d(sc) − d(v1, vn) = h(G) − d(v1, vn),

it follows that t(G) 6 d(sl) = h(G)−d(v1, vn) and so 1 6 d(v1, vn) 6 h(G)−t(G) = 1.
Thus d(v1, vn) = 1. Consequently, d(vi−1, vi) = 1 for 2 6 i 6 n as well. Therefore,

v1, v2, . . . , vn, v1 is a Hamiltonian cycle of G and so G is Hamiltonian. �
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3. Traceable numbers of trees

If G is a connected graph and H is a connected spanning subgraph of G, then

dG(u, v) 6 dH (u, v) for all u, v ∈ V (G) = V (H). Thus for every linear ordering
s : v1, v2, . . . , vn of the vertices of G (or H),

dG(s) =
n−1∑

i=1

dG(vi, vi+1) 6
n−1∑

i=1

dH(vi, vi+1) = dH(s)

and so t(G) 6 t(H). We state this useful observation below.

Observation 3.1. If G is a connected graph and H is a connected spanning

subgraph of G, then t(G) 6 t(H). In particular, if G is a connected graph and T is

a spanning tree of G, then t(G) 6 t(T )

Observation 3.1 suggests the usefulness of knowing the traceable numbers of trees.
Since a tree T is traceable if and only if T is a path, it follows for a tree T of order

n that t(T ) = n − 1 if and only if T = Pn and so t(T ) > n if T 6= Pn.
Since the length of a longest path in T is the diameter of T , we have the following

consequence of Corollary 2.3.

Corollary 3.2. If T is a nontrivial tree of order n such that the maximum size

of a spanning linear forest in T is p, then

2n− 2 − p 6 t(T ) 6 2n − 2 − diam(T ).

A caterpillar is a tree T the removal of whose end-vertices is a path. The trees T1

and T2 of Figure 4 are caterpillars of the same order n = 10. While the maximum
size of a spanning linear forest of T1 is diam(T1), the maximum size of a spanning
linear forest of T2 is diam(T2) + 1. In Figure 4, Fi is a spanning linear forest of

maximum size in Ti for i = 1, 2.

u1 u2 u3 u4 u5 u6

u7 u8 u9 u10

T1 :

v1 v2 v3 v4 v5 v6

v7 v8 v9 v10

T2 :

u1 u2 u3 u4 u5 u6

u7 u8 u9 u10

F1 :

v1 v2 v3 v4 v5 v6

v7 v8 v9 v10

F2 :

Figure 4. Spanning linear forests of maximum size in caterpillars
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Since the maximum size of a spanning linear forest of T1 is diam(T1), it follows by
Corollary 3.2 that t(T1) = 2n − 2 − diam(T1). In fact, s1 : u1, u2, u3, u8, u7, u4, u9,

u5, u6, u10 is a linear ordering of the vertices of T1 for which d(s1) = t(T1). For the
caterpillar T2, however, the maximum size p of a spanning linear forest is diam(T2)+1.
Consequently, by Corollary 3.2 either t(T2) = 2n− 2− diam(T2) or t(T2) = 2n− 3−
diam(T2). The linear ordering s2 : v7, v1, v2, v8, v9, v3, v4, v10, v5, v6 of the vertices of

T2 has the property that d(s2) = 2n−2−diam(T2). A total of p of the n−1 terms in
the sum d(s2) are 1. All of the remaining terms in d(s2) are 2, except for one which
is 3. If fewer than p terms in the sum d(s′) for a linear ordering s′ of the vertices of
T2 are 1, then d(s′) > 2n− 2− diam(T2). Hence if there is a linear ordering s of the

vertices of T2 for which d(s) = 2n−3−diam(T2), then there must be p terms in d(s)
equal to 1. We may assume that both v1, v2, v8 (or v8, v2, v1) and v9, v3, v4 (or v4,

v3, v9) are subsequences of s. Assume, without loss of generality, that the vertices v1,
v2, v8 occur before v9, v3, v4. Then the first vertex in s that follows the last vertex

of v1, v2, v8 or the last vertex of v1, v2, v8, v7 is a vertex whose distance is at least 3
from that vertex. Hence d(s) > 2n− 2−diam(T2) and so t(T2) = 2n− 2−diam(T2).
Proceeding in a similar manner for every caterpillar gives us the following result.

Corollary 3.3. If T is a caterpillar of order n, then

t(T ) = 2n − 2 − diam(T ).

We now show that the formula presented in Corollary 3.3 for the traceable number
of a caterpillar holds in fact for all trees.

Theorem 3.4. If T is a nontrivial tree of order n, then

t(T ) = 2n − 2 − diam(T ).

���������
. Since h(T ) = 2n−2 for every tree T of order n, it follows by Lemma 2.5

that t(T ) > 2(n − 1) − diam(T ). Furthermore, since the length of a longest path in
T is diam(T ), it follows by Theorem 2.1 that t(T ) 6 2(n− 1)− diam(T ), giving the
desired result. �
If T is a tree of order n > 3, then 2 6 diam(T ) 6 n−1. Therefore, by Theorem 3.4,

if T is a tree of order n > 3, then

(1) n − 1 6 t(T ) 6 2n − 4.

We saw that t(T ) = n − 1 if and only if T = Pn. Furthermore, only stars have
diameter 2. So t(T ) = 2n − 4 if and only if T = K1,n−1 by Theorem 3.4. More

generality, we have the following the realization result.
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Proposition 3.5. For each pair k, n of integers with 3 6 n − 1 6 k 6 2n − 4,
there exists a tree T of order n with t(T ) = k.

���������
. Let P : v1, v2, . . . , v2n−1−k be a path of length 2n − 2 − k. A tree T

is constructed by adding k + 1 − n new vertices w1, w2, . . . , wk+1−n and joining all

of these vertices to v2. Since diam(T ) = 2n − 2 − k, it follows by Theorem 3.4 that
t(T ) = 2n − 2 − (2n − 2 − k) = k. �

With the aid of Theorem 3.4, it is straightforward to determine those nontrivial

trees T of order n such that t(T ) = n.

Proposition 3.6. Let T be a tree of order n > 4. Then t(T ) = n if and only

if T is a caterpillar with maximum degree ∆(T ) = 3 and having exactly one vertex
of degree 3.
���������

. By Theorem 3.4, t(T ) = n if and only if 2n − 2 − diam(T ) = n and so
diam(T ) = n − 2. Hence T contains a path P : v1, v2, . . . , vn−1 of length n − 2 and
a vertex w not on P that is adjacent to some vertex vi with 2 6 i 6 n − 2. �

By (1) and Observation 3.1, if G is a connected graph of order n > 3, then

(2) n − 1 6 t(G) 6 2n − 4.

We now determine all those connected graphs G of order n such that t(G) = 2n− 4
or t(G) = 2n − 5.

Proposition 3.7. Let G be a connected graph of order n > 3. Then

t(G) = 2n− 4 if and only if G = K3 or G = K1,n−1.

���������
. Let G be a connected graph of order n > 3 such that t(G) = 2n−4. If G

contains a path of length 3 or more, then it follows by Theorem 2.1 that t(G) 6 2n−5.
Hence the length of a longest path in G is 2. This implies that ∆(G) = n − 1 and
so G = K3 or G = K1,n−1. Furthermore, note that t(K3) = 2n − 4 = n − 1 and
t(K1,n−1) = 2n − 4. �

A tree T is a double star if T contains exactly two vertices that are not end-

vertices, necessarily these vertices are adjacent in T . For integers a, b > 2, let Sa,b

denote the double star whose two vertices that are not end-vertices have degrees a

and b.
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Proposition 3.8. Let G be a connected graph of order n > 4. Then t(G) = 2n−5
if and only if (1) n = 4 and G 6= K1,3 and (2) n > 5 and G = K1,n−1 + e or G = Sa,b

for some positive integers a and b with a + b = n.
���������

. Let G be a connected graph of order n > 4 such that t(G) = 2n − 5.
From Theorem 2.1, it follows that the length of a longest path in G is 3. This implies

that (1) n = 4 and G 6= K1,3, (2) n > 5, ∆(G) = n − 1, and G = K1,n−1 + e, or (3)
n > 5, ∆(G) 6 n − 2 and G is a double star. The converse is straightforward. �

4. Traceable numbers of vertices

Let G be a connected graph of order n. For v ∈ V (G), the traceable number t(v)
of v is defined by

t(v) = min{d(s)},

where the minimum is taken over all linear orderings s of the vertices of G whose

first term is v. Thus t(v) > n− 1 for every vertex v of G. Furthermore, t(v) = n− 1
if and only if G contains a Hamiltonian path with initial vertex v. Observe that

t(G) = min{t(v) : v ∈ V (G)}.

Using an argument similar to that used in the proof of Proposition 1.1, we have the

following.

Proposition 4.1. Let G be a nontrivial connected graph and let v ∈ V (G). Then
t(v) is the minimum length of a spanning walk in G whose initial vertex is v.

We present a result concerning the traceable number of adjacent vertices in a
connected graph.

Proposition 4.2. Let G be a connected graph and let u and v be adjacent vertices

of G. Then

|t(u) − t(v)| 6 1.

���������
. Let s : v = v1, v2, . . . , vn be a linear ordering of the vertices of G such

that d(s) = t(v). Thus u = vi for some integer i with 2 6 i 6 n. We consider two
cases.�

	�

� 1. u = vi, where 2 6 i 6 n − 1. Let

s′ : u = vi, vi−1, . . . , v2, v1 = v, vi+1, vi+2, . . . , vn.
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Then

t(u) 6 d(s′) = d(s) − d(u, vi+1) + d(v, vi+1)

6 d(s) − d(u, vi+1) + d(v, u) + d(u, vi+1) = d(s) + 1 = t(v) + 1.

Thus t(u) − t(v) 6 1.�
	�

� 2. u = vn. Consider the sequence

s′′ : u = vn, vn−1, . . . , v2, v1 = v.

Then t(u) 6 d(s′′) = d(s) = t(v) and so t(u) − t(v) 6 0.
In either case, t(u) − t(v) 6 1. Applying a similar argument to that given above,

we have t(v) − t(u) 6 1 as well and so |t(u) − t(v)| 6 1. �

For a connected graph G, let

t+(G) = max{t(v) : v ∈ V (G)}.

Obviously, t(G) 6 t+(G) for every connected graphG. The following is a consequence
of Proposition 4.2.

Corollary 4.3. Let G be a connected graph and let k be an integer such that

t(G) 6 k 6 t+(G). Then there exists a vertex w of G such that t(w) = k.
���������

. The statement is obvious if k = t(G) or k = t+(G). Hence we may
assume that t(G) < k < t+(G). Let u be a vertex such that t(u) = t(G) and let v

be a vertex such that t(v) = t+(G). Since G is connected, G contains a u − v path
P : u = u1, u2, . . . , us = v. By Proposition 4.2, |t(ui) − t(ui+1)| 6 1 for all i with
1 6 i 6 s− 1. Let j be the largest integer with 1 6 j < s such that t(uj) 6 k. Then
t(uj) = k; for otherwise, t(uj) 6 k − 1 and so t(uj+1) 6 1 + (k − 1) = k, producing

a contradiction. �

For a vertex v in a connected graph G, the eccentricity e(v) of v is the largest
distance between v and a vertex of G.

Theorem 4.4. If T is a nontrivial tree of order n and let v be a vertex of T ,

then

t(v) = 2(n − 1) − e(v).

���������
. First, we show that t(v) > 2(n− 1)− e(v). Let s : v = v1, v2, . . . , vn be

a linear ordering of the vertices of T such that d(s) = t(v), and let

s′ : v = v1, v2, . . . , vn, v1
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be the cyclic ordering of the vertices of T obtained by adding v1 = v at the end of

s. Then

2(n − 1) = h(T ) 6 d(s′) = d(s) + d(vn, v1) 6 t(v) + e(v)

and so t(v) > 2(n − 1) − e(v).
Next, we show that t(v) 6 2(n− 1)− e(v) for each vertex v in a nontrivial tree of

order n. We proceed by induction on n. This is certainly true for a tree of order 2.
Assume, for every tree T ′ of order n− 1, where n− 1 > 2, and every vertex u of T ′,

that t(u) 6 2(n − 2) − e(u). We show that if T is a nontrivial tree of order n and v

is a vertex of T , then

t(v) 6 2(n − 1) − e(v).

This is certainly the case if T is the path Pn and v is an end-vertex of Pn. Hence we
may assume that this is not the case. Let P be a longest path in T with initial vertex

v, say P is a v − w path. Then d(v, w) = e(v). Hence there exists an end-vertex x

of T such that x does not lies on P . Let y be the vertex of T that is adjacent to x.

Thus T − x is a tree of order n − 1 such that v ∈ V (T − x) and eT−x(v) = eT (v).
By the induction hypothesis,

tT−x(v) 6 2(n − 2) − eT−x(v) = 2(n − 2) − eT (v).

Let s1 : v = u1, u2, . . . , un−1 be a linear ordering of the vertices of T − x such that

d(s1) = tT−x(v). Then y = ui for some i with 2 6 i 6 n − 1. Let z be the vertex of
T − x that immediately follows or immediately precedes y in s1, say z immediately

follows y in s1. Thus z = ui+1. Let s be the linear ordering of the vertices of T

obtained by inserting x between y and z. Then

d(s) = d(s1) − d(y, z) + d(y, x) + d(x, z) 6 d(s1) − d(y, z) + 1 + 1 + d(y, z)

= d(s1) + 2 = tT−x(v) + 2 6 2(n − 2) − eT (v) + 2.

Therefore, tT (v) 6 d(s) 6 2(n − 1) − eT (v). Hence t(v) = 2(n − 1) − e(v). �

By Theorem 4.4,

t(v) = h(T ) − e(v)

for every tree T and every vertex v of T . Since t(T ) = min{t(v) : v ∈ V (G)}, it
follows that

t(T ) = h(T ) − max{e(v) : v ∈ V (T )} = 2n − 2 − diam(T ),

which provides us with an alternative proof of Theorem 3.4.

75



Observe that Theorem 4.4 is not true in general for connected graphs that are not

trees. Consider the graphs G and H in Figure 5. Each vertex of G and H is labeled
with its traceable number. The Hamiltonian number of graph G is h(G) = 7. Since
e(u) = e(y) = 3 and e(v) = e(w) = e(x) = 3, it follows that t(z) = h(G) − e(z)
for every vertex z of G. On the other hand, for the graph H , h(H) = 6. While
t(z) = h(H) − e(z) for z = w and z = x, this is not true otherwise.

u v x y

w

4 5 5 4

5
G :

u

v

x

y

w 4

5

4

5

4

H :

Figure 5. The graphs G and H

5. Graphs with prescribed Hamiltonian and traceable numbers

We have seen in Lemma 2.5 that for every nontrivial connected graph G,

1 6 h(G) − t(G) 6 diam(G).

Furthermore, by Proposition 2.6, Hamiltonian graphs are the only connected graphs

G for which h(G)−t(G) = 1. By Theorems A and 3.4, if T is a tree then h(T )−t(T ) =
diam(T ). However, trees are not the only connected graphs with this property. In
fact, there are other classes of connected graphs with this property. For example, if
G = Kn1,n2,...,nk

is a complete k-partite graph, where k > 2, n1 6 n2 6 . . . 6 nk,

and n1 + n2 + . . . + nk−1 < nk, then h(G) − t(G) = 2 = diam(G). Next, we show
that for each pair k, d of integers with 1 6 k 6 d, there exists a connected graph G

with diam(G) = d such that h(G) − t(G) = k. In order to do this, we first state a
useful lemma that appeared in [5].

Lemma B. Let G be a connected graph having blocks B1, B2, . . . , Bk. Then

h(G) =
k∑

i=1

h(Bi).
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Proposition 5.1. For each pair k, d of integers with 1 6 k 6 d, there exists a

connected graph G with diameter d such that h(G) − t(G) = k.

���������
. If k = d, letG be a tree with diam(G) = d. It then follows by Theorem A

and Theorem 3.4 that h(G)−t(G) = (2n−2)−(2n−d−2) = d. Thus, we may assume

that k < d. For k = 1, the cycle C2d of order 2d has the desired property. For k > 2,
let G be the graph obtained from the cycle C2(d−k+1) : u1, u2, . . . , u2(d−k+1), u1 and

the path Pk−1 : v1, v2, . . . , vk−1 by joining ud−k+1 and vk−1. Then the order of G is
n = 2d − k + 1 and its diameter is diam(G) = d. By Lemma B,

h(G) = h(C2(d−k+1)) + (k − 1)h(P2) = 2(d − k + 1) + 2(k − 1) = 2d.

Since G is traceable, t(G) = n − 1 = 2d − k. Therefore, h(G) − t(G) = k. �

Since h(G) 6 t(G)+diam(G) for every nontrivial connected graph G and, trivially,

t(G) > diam(G), it follows that t(G) < h(G) 6 2t(G). Thus if G is a connected graph
with t(G) = a and h(G) = b, then a < b 6 2a. Next, we show that every pair a, b

of positive integers with a < b 6 2a is realizable as the traceable number and the
Hamiltonian number of some connected graph, respectively.

Proposition 5.2. For every pair a, b of positive integers with a < b 6 2a, there

is a connected graph G with t(G) = a and h(G) = b.

���������
. If b = 2a, then G = Pa+1 has the desired properties. Hence we may

assume that a < b < 2a. Let k = b − a. Thus k < a. Let G be the graph obtained

from the path P : u1, u2, . . . , ua, ua+1 by joining ua+1 and uk. By Lemma B,

h(G) = h(Ca−k+2) + (k − 1)h(P2) = (a − k + 2) + 2(k − 1) = b.

Since G is traceable, t(G) = (a + 1) − 1 = a. �

By Theorem A, Lemma 2.5, and (2), if G is a connected graph of order n > 3 with
t(G) = a and h(G) = b, then

(3) 1 6 n − 1 6 a < b 6 2n− 2.

Next we determine all triples (a, b, n) of positive integers satisfying (3) that can be
realized as the traceable number, Hamiltonian number, and order, respectively, of
some connected graph.
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Theorem 5.3. For each triple (a, b, n) of positive integers with 1 6 n − 1 6 a <

b 6 2n − 2 and n > 3, there is a connected graph G of order n such that t(G) = a

and h(G) = b if and only if (1) b = a + 1 = n or (2) b > a + 2.

���������
. Let G be a connected graph of order n such that t(G) = a and h(G) = b.

If b = a + 1, then h(G) − t(G) = 1. By Proposition 2.6, G is Hamiltonian. Thus

t(G) = n − 1 and h(G) = n. Thus b = a + 1 = n. If b 6= a + 1, then b > a + 2 by
Lemma 2.5.

For the converse, let (a, b, n) be a triple of positive integers with 1 6 n − 1 6 a <

b 6 2n − 2 such that b = a + 1 = n or b > a + 2. If b = a + 1 = n, then any

Hamiltonian graph of order n has the desired property. Thus, we may assume that
b > a + 2. Observe that b − a − 1 > 1 and 2n − b > 2. We consider two cases.�

	�

� 1. a = n − 1. Let G1 be the graph obtained from the path Pb−a−1 :
u1, u2, . . . , ub−a−1 of order b−a−1 and the complete graph K2n−b with V (K2n−b) =
{v1, v2, . . . , v2n−b} by joining ub−a−1 to v1. Then the order of G1 is n = (b − a −
1) + (2n − b) = n. By Lemma B,

h(G1) = (b − a − 1)h(P2) + h(K2n−b) = 2(b − a − 1) + (2n − b) = b.

Since G1 is traceable, t(G1) = n − 1 = a.�
	�

� 2. a > n. Let G2 be the graph obtained from the graph G1 in Case 1 by

adding a − n + 1 new vertices w1, w2, . . . , wa−n+1 and joining wi to v1 for 1 6 i 6
a − n + 1. Then the order of G2 is n = (b − a − 1) + (2n− b) + (a− n + 1) = n and
diam(G2) = b − a. By Lemma B,

h(G2) = (b − a − 1)h(P2) + h(K2n−b) + (a − n + 1)h(P2)

= 2(b − a − 1) + (2n − b) + 2(a − n + 1) = b.

It remains to show that t(G2) = a. By Lemma 2.5,

t(G2) 6 h(G2) − diam(G2) = b − (b − a) = a.

Since the maximum size of a spanning linear forest in G2 is p = 2n−a− 2, it follows
by Proposition 2.2 that t(G2) > 2n− 2 − p = a. Thus t(G2) = a. �
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6. Hamiltonian-connected numbers of graphs

For a connected graph G of order n, the Hamiltonian-connected number hcon(G)
of G is defined by

hcon(G) =
∑

v∈V (G)

t(v).

Since t(v) > n − 1 for every vertex v of G, it follows that hcon(G) > n(n − 1). Fur-
thermore, hcon(G) = n(n− 1) if and only if G is Hamiltonian-connected. Therefore,
the Hamiltonian-connected number of a connected graph G of order n can be con-
sidered as a measure of how close G is to being Hamiltonian-connected—the closer

hcon(G) is to n(n − 1), the closer G is to being Hamiltonian-connected.
Consider the graphs H1 and H2 in Figure 6, where H1 is obtained from the com-

plete graph Kn−1 by adding a pendant edge and H2
∼= 2K1 +(Kn−4∪2K1). For the

graph H1, every vertex of H1 has traceable number n − 1, except for the vertex v

which has traceable number n. Thus hcon(H1) = n(n − 1) + 1. Every vertex of the
graph H2 has traceable number n − 1, except for v1 and v2, which have traceable
number n. Thus hcon(H2) = n(n − 1) + 2.

Kn−1

v

H1 : Kn−4

v1

v2

H2 :

Figure 6. The graphs H1 and H2

Next consider the graphs G1 and G2 in Figure 7, where G1 is obtained from the
complete graph Kn−2 (n > 5) by adding two pendant edges and G2 is obtained from

the cycle Cn−1 (n > 4) by adding a pendant edge. The graphG1 of order n in Figure 7
contains exactly two vertices with traceable number n−1, namely t(u) = t(v) = n−1.
All other vertices of G1 have traceable number n. Thus hcon(G1) = n(n−1)+(n−2).
The graph G2 of order n in Figure 7 contains exactly three vertices with traceable

number n − 1, namely t(u) = t(v) = t(w) = n − 1. All other vertices of G2 have
traceable number n. Thus hcon(G2) = n(n− 1) + (n− 3). Therefore, the graphs H1

and H2 in Figure 6 are closer to being Hamiltonian-connected than are the graphs
G1 and G2 of Figure 7.

The minimum eccentricity among the vertices of G is its radius, which is denoted
by rad(G). A vertex v in G is a central vertex if e(v) = rad(G) and the subgraph
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Kn−2

u

v

G1 :
n > 5

Cn−1

u

v w

G2 :
n > 4

Figure 7. The graphs G1 and G2

induced by the central vertices of G is the center of G. Next, we establish upper and
lower bounds for the Hamiltonian-connected number of a connected graph in terms

of its order, beginning with trees.

Theorem 6.1. For every tree T of order n > 3,

n(n − 1) +
⌊(n − 1

2

)2⌋
6 hcon(T ) 6 n(n − 1) + (n2 − 3n + 1).

���������
. For a tree T , it is known (see [10]) that there exists at least one vertex

v with e(v) = rad(T ) and there exist at least two vertices v with e(v) = k for every

integer k with rad(T ) < k 6 diam(T ). Furthermore, it is well-known that for every
tree T , either

diam(T ) = 2 rad(T ) or diam(T ) = 2 rad(T ) − 1

where the center of T contains exactly one vertex in the first case and exactly two
vertices in the second case. Since diam(T ) 6 n − 1 for every tree T of order n, the

largest possible radius of a tree T having odd order is (n − 1)/2, while the largest
possible radius of a tree T having even order is n/2. We consider the cases when n

is odd or n is even separately.�
	�

� 1. n is odd. In this case,

∑

v∈V (T )

e(v) 6 n − 1
2

+ 2
[n + 1

2
+

n + 3
2

+ . . . + (n − 1)
]

=
n − 1

2
+ (n + 1) + (n + 3) + . . . + 2(n − 1)

=
n − 1

2
+

n(n − 1)
2

+
(n − 1

2

)2

=
n2 − 1

2
+

(n − 1
2

)2

.
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It then follows by Theorem 4.4 that

hcon(T ) =
∑

v∈V (T )

t(v) =
∑

v∈V (T )

(2n − 2 − e(v)) = n(2n− 2) −
∑

v∈V (T )

e(v)

> n(2n− 2) −
[n2 − 1

2
+

(n − 1
2

)2]
= n(n − 1) +

(n − 1
2

)2

.

�
	�

� 2. n is even. In this case,

∑

v∈V (T )

e(v) 6 2
[n

2
+

n + 2
2

+ . . . + (n − 1)
]

= n + (n + 2) + . . . + 2(n − 1) =
n2

2
+

n2 − 2n

4
.

It then follows by Theorem 4.4 that

hcon(T ) =
∑

v∈V (T )

t(v) =
∑

v∈V (T )

(2n − 2 − e(v)) = n(2n− 2) −
∑

v∈V (T )

e(v)

> n(2n− 2) −
(n2

2
+

n2 − 2n

4

)
= n(n − 1) +

n2 − 2n

4
.

Therefore, hcon(T ) > n(n − 1) + b(n−1
2 )2c for every tree T of order n > 3.

If a tree T of order n > 3 contains a vertex with eccentricity 1, then T is a star
and all other vertices have eccentricity 2. If the minimum eccentricity of a vertex
of T is 2, then at most two vertices of T have eccentricity 2, with all other vertices

have eccentricity 3 or 4. In any case,

∑

v∈V (T )

e(v) > 1 + (n − 1) · 2 = 2n − 1.

Consequently,

hcon(T ) =
∑

v∈V (T )

t(v) =
∑

v∈V (T )

(2n − 2 − e(v)) = n(2n− 2) −
∑

v∈V (T )

e(v)

6 n(2n− 2) − (2n − 1) = n(n − 1) + (n2 − 3n + 1).

Therefore, hcon(T ) 6 n(n − 1) + (n2 − 3n + 1) for every tree T of order n > 3. �

Since hcon(Pn) = n(n−1)+b(n−1
2 )2c and hcon(K1,n−1) = n(n−1)+(n2−3n+1),

the lower and upper bounds in Theorem 6.1 are both sharp.
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Corollary 6.2. For a nontrivial connected graph G of order n,

n(n − 1) 6 hcon(G) 6 n(n − 1) + (n2 − 3n + 1).

���������
. We have already noted that hcon(G) > n(n − 1), so it remains only to

show that hcon(G) 6 n(n−1)+(n2−3n+1). For every connected spanning subgraph
H of G and every two vertices x and y of G, dG(x, y) 6 dH(x, y). Therefore, for every
vertex v of G, tG(v) 6 tH(v). Hence if T is a spanning tree of G, then tG(v) 6 tT (v)
for every vertex v of G. This implies that among all connected graphs G of order n,
the maximum value of hcon(G) occurs when G is a tree. The result then follows by

Theorem 6.1. �

We now show that for every integer n > 3 and integer k with 2 6 k 6 n, there

exists a connected graph G of order n containing k vertices v with t(v) = n− 1 such
that hcon(G) = n(n − 1) + (n − k).

Proposition 6.3. For every integer n > 3 and integer k with 2 6 k 6 n, there

exists a connected graph of order n containing k vertices with traceable number n−1
and n − k vertices with traceable number n.
���������

. Since every Hamiltonian-connected graph has the desired properties for

k = n, we restrict our attention to those integers k for which 2 6 k 6 n − 1. For
3 6 n 6 5, the graphs Gk,n of Figure 8 have the desired properties.

G2,3 : G2,5 :

G2,4 : G3,5 :

G3,4 : G4,5 :

Figure 8. Graphs Gk,n where 2 6 k 6 n− 1 = 4

For n > 6, the graphs Gk,n of Figure 9 have the appropriate properties. �

There is no graph of order n containing exactly one vertex with traceable number
n − 1. We know of no example of a nontrivial connected graph of order n, every

vertex of which has traceable number n, that is, of a non-traceable graph G of order
n for which hcon(G) = n2.

82



Kn−2G2,n : Kn−4Gn−2,n :

Kn−1Gn−1,n :
Kk

Kn−k−1

Gn−1,n :
(3 6 k 6 n − 3)

Figure 9. Graphs Gk,n where 2 6 k 6 n − 1 and n > 6
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